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ABSTRACT. This paper investigates an autonomous predator-prey system of dif-
ference equations with three equilibrium points and exhibits chaos in the sense of
Li-Yorke in the positive equilibrium point. Numerical simulations are presented
to illustrate our results.

1. INTRODUCTION AND PRELIMINARIES

A simple criterion for chaos in one dimensional discrete dynamical systems,
“period three implies chaos” was provided by Li and Yorke [12]. This definition is
the first description of chaos. F. R. Marotto mentioned that the essential properties
of chaos are the following: there exist an infinite number of periodic solutions of
various periods; there exists an uncountably infinite set of points which exhibit ran-
dom behavior; and there is a high sensitivity to initial conditions [13–15]. Marotto
extended Li-Yorke chaos in one-dimension to multi-dimension through introduc-
ing the notion of snap-back repeller by his famous theorem in 1978, a few years
after Li and Yorke defined for chaos. Due to a technical flaw, Marotto redefined a
snap-back repeller in 2005 [15]. We will give Marotto’s definition for a “snap-back
repeller” and then his theorem, which are quoted from [13] and [15].

Definition 1.1. [15] Suppose z is a fixed point of a map T with all eigenvalues
of detJT (z) exceeding 1 in magnitude, and suppose there exist a point z0 ̸= z in a
repelling neighbourhood Br (z) of z and an integer M > 1, such that zM = z and
detJT (zk) ̸= 0 for 1 ≤ k ≤ M, where zk = T k(z0). Then z is called a snap-back
repeller of T .

Remark 1.1. [15] It is easy to see that Definition 1.1 still implies that the sequence
{zk}M

k=−∞
, where zk+1 = T (zk) for all k <M, satisfies zM = z and zk → z as k →−∞,

making this set of points a homoclinic orbit. Also, since all zk for k ≤ 0 lie within
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the local unstable manifold of the map T at the fixed point z, where T is 1−1, and
since detJT (zk) ̸= 0 for 1 ≤ k ≤ M, then this homoclinic orbit is transverzal in the
sense that T is 1−1 in a neighborhood of each zk for all k ≤ M.

Theorem 1.1. [13] If a map T possesses a snap-back repeller, then T is chaotic
in the sense of Li-Yorke. That is, there exist
1. a positive integer N, such that T has a point of period p, for each integer p ≥ N,
2. a ”scrambled set” of T , i.e., an uncountable set S containing no periodic points

of T , such that
a) T (S)⊂ S
b) limsup

n→∞

∥T n (x)−T n (y)∥> 0 for all x,y ∈ S, with x ̸= y,

c) limsup
n→∞

∥T n (x)−T n (y)∥> 0 for all x ∈ S, with x ̸= y and periodic point y of

T ,
3. an uncountable subset S0 of S such that liminf

n→∞
∥T n (x)−T n (y)∥= 0, for every

x,y ∈ S0.

In this paper, we investigate Li-Yorke chaos in a positive equilibrium point of an
autonomous system of difference equations of the predator-prey type

xn+1 = axn (1− xn)−bxnyn
yn+1 =−cyn +dxnyn,

(1.1)

where xn and yn represent population density of a prey and predator, respectively,
and a,b,c and d are positive parameters, considered in [20]. See also [10], Problem
21, p.185 for a similar system that appears in the fishery. This is the well known
Lotka-Volterra predator-prey model, which is one of the most important population
models. Here a represents the natural growth rate of the prey in the absence of
predators, b represents the effect of predation on the prey, c represents the natural
death rate of the predator in the absence of prey, and d represents the efficiency
and propagation rate of the predator in the presence of prey. In recent years, the
study of the complex dynamics of the predator-prey models, including aspects such
as stability, periodic solutions, bifurcations, and chaotic behavior, has drawn the
attention of many excellent researchers.

System (1.1) was investigated in [20]. Authors first showed that by using appro-
priate change of variables, parameter b can be eliminated from System (1.1), then
they gave necessary and sufficient conditions for the existence and local stability of
the equilibrium points. They proved that there are flip and Neimark-Sacker bifur-
cations. Our the goal is to show the existence of a chaotic phenomenon in the sense
of Li-Yorke. Similar dynamics have been proven in [2], where the authors investi-
gated a discrete-time predator-prey system with the Allee effect, and they proved
that there are flip and Hopf bifurcations, and there exists a chaotic the phenomenon
in the sense of Li-Yorke.

In [20] it was shown that System (1.1), for b = 1, i.e.
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xn+1 = axn (1− xn)− xnyn
yn+1 =−cyn +dxnyn,

(1.2)

has a unique extinction equilibrium point E1(0,0), a unique exclusion equilibrium
point E2

(a−1
a ,0

)
for a > 1, and a unique coexistence equilibrium point E3(x,y) =(

1+c
d , d(a−1)−a(1+c)

d

)
for d > a(1+c)

a−1 and a > 1. Therefore, z = E3(x,y) is the unique
positive equilibrium point of System (1.2), which is locally asymptotically stable
if and only if one of the following conditions holds:

(a) 1 < a ≤ 3, c > 0 and a(1+c)
a−1 < d < a(2+c)

a−1 ;

(b) 3 < a ≤ 5, c > 0 and a(1+c)(3+c)
3+a−c+ac < d < a(2+c)

a−1 ;

(c) 5 < a ≤ 9, 0 < c < 9−a
a−5 and a(1+c)(3+c)

3+a−c+ac < d < a(2+c)
a−1 .

Also, in [20] it was shown that System (1.2) undergoes a flip bifurcation and
a Neimark-Sacker bifurcation. Some numerical simulations were presented to ex-
hibit the complex dynamical behaviors, such as the period 6,16,18,20,21,24,27,
and 37 orbits, attracting invariant cycles, quasi-periodic orbits, chaotic behaviors,
which appear and disappear suddenly, coexisting chaotic attractors, etc.

2. LI-YORKE CHAOS

In this section, we prove that System (1.2) exhibits chaos in the sense of Li-
Yorke in a positive equilibrium point and present the conditions for the existence
of chaotic behavior.

First, we give the conditions under which the positive equilibrium point z =(
1+c

d , d(a−1)−a(1+c)
d

)
of System (1.2) is a snap-back repeller. The corresponding

map associated with System (1.2) is given with

T
(

x
y

)
=

(
ax(1− x)− xy
−cy+dxy

)
. (2.1)

The Jacobian matrix is of the form

JT (x,y) =
(

a−2ax− y −x
dy −c+dx

)
,

which implies
trJT (x,y) = (d −2a)x− y+a− c

and
detJT (x,y) =−2adx2 +a(2c+d)x+ c(y−a) . (2.2)

The corresponding characteristic equation is

λ
2 − tr(JT (x,y))λ+detJT (x,y) = 0, (2.3)

which in a positive equilibrium z becomes

λ
2 + a+ac−2d

d λ− a(c+1)(2+c−d)+cd
d = 0. (2.4)
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In order to prove the existence of Li-Yorke chaos, we will consider the correspond-
ing eigenvalues which are complex-conjugate with modulus greater then one. It is
equivalent with the following conditions(a+ac−2d

d

)2
+4

(
a(c+1)(2+c−d)+cd

d

)
< 0

−a(c+1)(2+c−d)+cd
d > 1

}
,

see [10]. It implies
d > dmax,

where

dmax =


a(2+c)

a−1 ⇐⇒ 1 < a ≤ 5c+9
c+1 ,

a
(

c+1+
√

(c+1)(a+c)
)

2(a−1) ⇐⇒ a > 5c+9
c+1 .

(2.5)

Our next step is to determine a neighborhood Uz of z = (x,y) in which the norms
of eigenvalues exceed 1 for all (x,y) ∈ Uz. That means that we need to solve the
following system of inequalities

Z1(x,y) = (−trJT (x,y))
2 −4detJT (x,y)< 0,

Z2(x,y) = detJT (x,y)−1 > 0,

}
where

Z1(x,y) = (2a+d)2 x2 −2(2a+d)(a+ c)x+ y2

+2(2a−d)xy−2(a+ c)y+(a+ c)2 ,

Z2 (x,y) =−2adx2 +a(2c+d)x+ cy−ac−1.

The quadratic curves Z1(x,y)= 0 and Z2(x,y)= 0 represent an ellipse and a parabola,
respectively. For equation Z1 (x,y) = 0 we have

y′ =−
∂Z1(x,y)

∂x
∂Z1(x,y)

∂y

=− (2a+d)2x+(2a−d)y−(2a+d)(a+c)
(2a−d)x+y−c−a = 0

if
(2a+d)2 x+(2a−d)y− (2a+d)(a+ c) = 0,

(2a−d)x+ y− c−a ̸= 0.
The last equations combining with equation Z1 (x,y) = 0 provides that the mini-
mum value of y along the ellipse Z1 (x,y) = 0 is

ymin = y
(

a+ c
2a+d

)
= 0,

and the maximum value of y along the ellipse Z1 (x,y) = 0 is

ymax = y
(

(a+ c)d
2a(2a+d)

)
=

(a+ c)(2a+d)
2a

.

The ellipse Z1 (x,y) = 0 intersects axes Ox and Oy in the following points

Ex = 6
( a+c

2a+d ,0
)
, Ey = (0,a+ c) .



LI-YORKE CHAOS IN CERTAIN PREDATOR-PREY SYSTEM 49

Let first find a region I1 ⊂ R2 where Z1(x,y) < 0 for all (x,y) ∈ I1. If D1 is the
corresponding discriminant, then we have

D1 = 16dy(−2ay+(2a+d)(a+ c))> 0 ⇐⇒ 0 < y <
(a+ c)(2a+d)

2a
.

Now,
Z1(x,y)< 0 ⇐⇒ (x,y) ∈ I1,

where
I1 =

{
(x,y) : x ∈ (x̂−, x̂+) , y ∈

(
0, (a+c)(2a+d)

2a

)}
,

and
x̂± =

(−2a+d)y+(a+c)(2a+d)±2
√

d((a+c)(2a+d)−2ay)y

(2a+d)2 .

Let us now find a region I2 ⊂ R2 such that Z2 (x,y) > 0 for all (x,y) ∈ I2. For
the corresponding discriminant D2 = a

(
a(2c+d)2 +8d (−ac+ cy−1)

)
, we have

that
D2 > 0 ⇐⇒ y >

−ad2 +4(ac+2)d −4ac2

8cd
.

Hence,
Z2 (x,y)> 0 ⇐⇒ (x,y) ∈ I2,

where
I2 =

{
(x,y) : x ∈ (x̃−, x̃+) , y ∈

(
−ad2+4(ac+2)d−4ac2

8cd ,+∞

)}
and

x̃± =
a(2c+d)±

√
a(ad2−4(ac−2cy+2)d+4ac2)

4ad .

Therefore, the region Uz = I1 ∩ I2, where Z1(x,y) < 0 and Z2(x,y) > 0, is of the
form

Uz =
{
(x,y) : x ∈ (x̃−, x̃+)∩ (x̂−, x̂+), y ∈

(
ŷ−,

(a+c)(2a+d)
2a

)}
(2.6)

with
ŷ− = max

{
0,
−ad2 +4(ac+2)d −4ac2

8cd

}
.

It is easy to check that
−ad2 +4(ac+2)d −4ac2

8cd
<

(a+ c)(2a+d)
2a

holds if d > a(2+c)
a−1 .

Also, notice that the area Uz is not an empty set since z ∈Uz for d > dmax.
Thus, we have the following result.

Lemma 2.1. Let a > 1, c > 0 and d > dmax, where dmax is given by (2.5). Then Uz
defined by (2.6) is a repelling area of the equilibrium point z.

In order to prove that equilibrium point z = (x,y) =
(

1+c
d , d(a−1)−a(1+c)

d

)
is a

snap-back repeller, our next step is to find one point z0 = (x0,y0) ∈ Uz such that
z0 ̸= z, T M(z0) = z for some positive integer M and detJT (zk) ̸= 0 for 1 ≤ k ≤ M,
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where map T is defined by (2.1). Let it be M = 2. Then, we need to find a point
z0 = (x0,y0) ∈Uz and point z1 = (x1,y1) /∈Uz such that

z1 = T (z0), z2 = T (z1) = T 2(z0) = z and detJT (z1) ̸= 0,

since
detJT (z2) = detJT (z) =−a(c+1)(2+ c−d)+ cd

d
> 1.

By calculating the inverse iterations of the fixed point z twice, we are looking for
the point z0 = (x0,y0), x0, y0 > 0, as the solution of the system

ax(1− x)− xy = x1
−cy+dxy = y1

}
(2.7)

for z1 = (x1,y1) which satisfies the system

ax1 (1− x1)− x1y1 = x
−cy1 +dx1y1 = y

}
. (2.8)

From second equation in (2.8) we have y1 =
y

−c+dx1
for x1 ̸= c

d and it implies

y1 < 0 if x1 <
c
d
,

y1 > 0 if x1 >
c
d
.

Further, we get
ax1 (1− x1)− x1

(
y

−c+dx1

)
− x = 0,

from which
(c+1−dx1)

(
adx2

1 +a(1−d)x1 + c
)

d (c−dx1)
= 0.

It is obvious that the equilibrium point z is one solution (for x1 =
c+1

d ). So, we can
have at most two real solutions different from equilibrium point which we get by
solving equation

adx2
1 +a(1−d)x1 + c = 0. (2.9)

A discriminant of Equation (2.9) is always positive for a > 1 and d > dmax. Indeed,

ad2 −2(a+2c)d +a = (ad −2(a+2c))d +a

>
(

a
(

a(2+c)
a−1

)
−2(a+2c)

)
d +a

=
(a−2)2 cd +2ad +a(a−1)

a−1
> 0

and Equation (2.9) has two positive (positivity is easy to prove) solutions
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(x1)± =
a(d −1)±

√
a(ad2 −2(a+2c)d +a)

2ad
,

so we have
(y1)± =

y
−c+d (x1)±

= d(a−1)−a(c+1)
d(−c+d(x1)±)

.

We get detJT
(
(z1)±

)
̸= 0, where (z1)± =

(
(x1)± ,(y1)±

)
. Namely,

detJT
(
(z1)+

)
=−

(
−a(3+2c−d)+

√
a(ad2−2(a+2c)d+a)

)√
a(ad2−2(a+2c)d+a)

2ad ̸= 0,

if ad2 − 2(a+2c)d + a ̸= a(3+2c−d)2, which is true for d ̸= a(c+2)(c+1)
a+(a−1)c . The

last condition is always satisfied because a(c+2)(c+1)
a+(a−1)c < a(2+c)

a−1 < d. Also, it easy to
see that detJT

(
(z1)+

)
< 0 < 1, which means

(
(z1)+

)
/∈Uz. Similarly, we conclude(

(z1)−
)
/∈Uz.

Hence, we have two points

(z1)± =

(
a(d−1)±

√
a(ad2−2(a+2c)d+a)

2ad ,
a(2c−d+1)±

√
a(ad2−2(a+2c)d+a)
2cd

)
.

In the following analysis we will solve System (2.7) for z1 = (z1)+, i.e. we will
restrict our consideration to the case when both coordinates are positive. From the
second equation in System (2.7) we get

y =
y1

−c+dx
and since y1 > 0, it implies x > c

d . After substituting y in the first equation of
System (2.7), we obtain

ax(1− x)− xy1
dx−c − x1 = 0

y = y1
dx−c

}
assuming that x > c

d . Let

h(d,x) = ax(1− x)− xy1

dx− c
− x1.

Considering the fact that x = c+1
d , it holds

h(d,x) = 0 ⇐⇒ aϒ(a,c,d)+(a(c+1)+cd)
√

a(ad2−2(a+2c)d+a)
2acd2 = 0 (2.10)

where
ϒ(a,c,d) = cd2 − (a+ c+(2c+3)ac)d +a(c+1)

(
2c2 +4c+1

)
.

Equation (2.10) possesses a solution only if

ϒ(a,c,d)< 0, (2.11)

and in that case, Equation (2.10) is equivalent to

ϒ1 (a,c,d) ·ϒ2 (a,c,d) = 0,

where
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ϒ1 (a,c,d) = a(c+2)(c+1)−d (a+(a−1)c) ,
ϒ2 (a,c,d) = (a+(a+1)c)d2 −a(c+1)(a+(a+1)c)d +a2 (c+1)3 .

Now, we have the following two cases.
a) Notice ϒ1 (a,c,d) = 0 if d = a(c+1)(c+2)

(a+(a−1)c) . Since

a(c+2)(c+1)
(a+(a−1)c)

− a(c+2)
a−1

=− a(c+2)
(a−1)(a+(a−1)c)

< 0

it implies
d < dmax,

so d is not appropriate.
b) ϒ2 (a,c,d) = 0 implies

d± =
a(c+1)

(
(a+ c+ac)±

√
(a(c+1)−3c−4)(a+ c+ac)

)
2(a+ c+ac)

for a ≥ 3c+4
c+1 . It has to be ϒ(a,c,d+)< 0, or equivalently

−
ϒ3 (a,c)+

(
a(c+1)2 + c

)√
(a(c+1)−3c−4)(a+ c+ac)

2(a(c+1)+ c)
< 0,

where
ϒ3 (a,c) = a2 (c+1)3 −a(c+1)

(
c2 +4c+2

)
− c

(
4c2 +7c+2

)
.

Since ϒ3 (0,c)< 0 and ϒ3
(3c+4

c+1 ,c
)
= 2(c+1)(c+2)2 > 0, it is obviously ϒ3 (a,c)>

0 and ϒ(a,c,d+)< 0 are satisfied.
Let us now check when d+ > dmax.
1.) We see that dmax =

a(2+c)
a−1 if 3c+4

c+1 ≤ a ≤ 5c+9
c+1 , so d+ > dmax if

a(c+1)
(
(a+ c+ac)+

√
(a(c+1)−3c−4)(a+ c+ac)

)
2(a+ c+ac)

>
a(c+2)

a−1
,

i.e.
a(c+1)

(√
(a(c+1)−3c−4)(a+ c+ac)

)
2(a+ c+ac)

>−a(a(c+1)−3c−5)
2(a−1)

which is satisfied by assumption 3c+5
c+1 ≤ a ≤ 5c+9

c+1 .
For 3c+4

c+1 ≤ a < 3c+5
c+1 inequality d+ > dmax holds if

(c+1)2 ((a(c+1)−3c−4)(a+ c+ac))

(a+ c+ac)2 >

(
−a−3c+ac−5

a−1

)2

,

i.e. a2 (c+1)2 +a(c+1)
(
c2 − c−4

)
−
(
9c+10c2 +3c3 +1

)
(a−1)2 (a+ c+ac)

> 0,
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from which

a >
−
(
c2 − c−4

)
+(c+2)

√
(c+5)(c+1)

2(c+1)
.

So d+ > dmax if

−
(
c2 − c−4

)
+(c+2)

√
(c+5)(c+1)

2(c+1)
< a ≤ 5c+9

c+1
.

2.) If a > 5c+9
c+1 , then dmax =

a
(

c+1+
√

(c+1)(a+c)
)

2(a−1) . So d+ > dmax if

a(c+1)
(
(a(c+1)+c)+

√
(a(c+1)−3c−4)(a(c+1)+c)

)
2(a(c+1)+c) >

a
(

c+1+
√

(c+1)(a+c)
)

2(a−1) ,

i.e.
(c+1)

√
(a−3c+ac−4)(a(c+1)+c)

(a(c+1)+c) >

(
(c+1)(2−a)+

√
(c+1)(a+c)

)
(a(c+1)+c)

(a−1)(a(c+1)+c) .

For a > 5c+9
c+1 the right side of the previous inequality is negative. Indeed,√

(c+1)(a+ c)≤ (c+1)(a−2)

⇐⇒ (c+1)(a+ c)≤ (c+1)2 (a−2)2

⇐⇒ (a+ c)≤ (c+1)(a−2)2

⇐⇒ a ≥ 3c+4
c+1

.

Now, we have that d+ > dmax for a > 5c+9
c+1 .

Hence,

d∗ =
a(c+1)

(
a+ c+ac+

√
(a(c+1)−3c−4)(a+ c+ac)

)
2(a+ c+ac)

(2.12)

for

a >
−
(
c2 − c−4

)
+(c+2)

√
(c+5)(c+1)

2(c+1)
, (2.13)

where d∗ = d+ .

Remark 2.1. Similarly we can prove that d− does not satisfy condition d > dmax.

Function h(d,x) = ax(1− x)− xy1
dx−c −x1, is continuous under conditions x > c

d and
d∗ > dmax. Now, we have

∂h(d,x)
∂x

= 0 ⇐⇒
a(d −2c−3)+

√
a(ad −2(a+2c)d +a)
2d

= 0.

Let us show ∂h(d∗,x)
∂x ̸= 0. Indeed, ∂h(d,x)

∂x = 0 for d < 2c+3 and

a2 (2c+3−d)2 = a
(
ad2 −2(a+2c)d +a

)
. (2.14)
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From (2.14) we get

d =
a(c+1)(c+2)

a+(a−1)c

and we see that d < 2c+3 holds. Also,

a(c+2)(c+1)
(a+(a−1)c)

− a(c+2)
a−1

=− a(c+2)
(a−1)(a+(a−1)c)

< 0.

is satisfied. So,

d =
a(c+1)(c+2)

a+(a−1)c
<

a(c+2)
a−1

< d∗.

Therefore, under certain conditions on the parameters, we have that

1◦ h(d∗,x) = 0,
2◦ h(d,x) is continuous for d > dmax and x > c

d ,

3◦ ∂h(d∗,x)
∂x ̸= 0.

By Implicit Function Theorem there exist a unique function x = x0(d) and η > 0
such that

(i) x0(d∗) = x,
(ii) h(d,x0 (d)) = 0 for d ∈ (d∗−η,d∗+η),

(iii) x = x0 (d) is continuous in d ∈ (d∗−η,d∗+η).

Let M = 2, z0 = (x0,y0) =
(

x0,
y1

−c+dx0

)
. Then, z0 belongs to Uz̄ for d − d∗ small

enough.
Finally, let

U∗ =

{
(x,y) :

(x− x)2

r2
x0

+
(y− y)2

r2
y0

≤ 1

}
,

be a repelling neighborhood, where

rx0 = |x− x0|+δ1, ry0 = ρ(z,z0)+δ2,

ρ(z,z0) =

√
(x− x0)

2 +(y− y0)
2,

and δ1 and δ2 are some positive small enough constants, such that U∗ ⊂Uz. Then
equilibrium point z =

(
1+c

d , d(a−1)−a(1+c)
d

)
is a snap-back repeller in U∗.

So, we proved the following result.

Theorem 2.1. Assume that the conditions in Lemma 2.1 hold. If the conditions
(2.12) and (2.13) are satisfied, then there exists d near d∗ such that z = (x,y) is a
snap-back repeller of System (1.2) and consequently, System (1.2) is chaotic in the
sense of Li-Yorke.
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3. THE LYAPUNOV DIMENSION OF THE ATTRACTOR AND NUMERICAL

SIMULATIONS

In many articles, the appearance of chaos is confirmed by positive Lyapunov
coefficients (e.g., [7, 16]). But, in the previous section, we proved the existence of
chaos, and in this section, we will make several appropriate numerical simulations.

By Kaplan and Yorke [8], and by Alligood, Sauer and Yorke [1] the Lyapunov
dimension of the attractor for n-dimensional map T is defined as follows.

Definition 3.1. [1] Let T be a map on Rn. Consider an orbit with Lyapunov
exponents L1 ≥ L2 ≥ ·· · ≥ Ln, and let j denote the largest integer such that

j

∑
k=1

Lk ≥ 0.

Define the Lyapunov dimension dL of the orbit by

dL = DKY =


0 if no such j exists,

j+ 1
|L j+1|

j
∑

k=1
Lk if j < n,

n if j = n.

Specially, for two-dimensional map we have

dL = 1+
L1

|L2|
, (3.1)

where
L1 ≥ 0 > L2 and |L2|> L1. (3.2)

In this section, we will calculate of the Lyapunov dimension of the attractor.
Also, we illustrate phase portraits (the snap-back repeller with the corresponding

area and chaotic attractor), bifurcation diagrams, maximum Lyapunov exponents
corresponding to bifurcation diagrams for System (1.2) to demonstrate the above
theoretical analysis and show the new attractive, complex dynamical behaviors by
using numerical simulations.

Example 3.1. For a = 4.2,c = 0.1 and d = 3.0 we have

z = (0.36667,1.66) , z0 = (0.37156,0.87785) , z1 = (0.65454,0.89074) ,

δ1 = 0.026733, δ2 = 0.21783
and

ρ(z,z0) =

√
(0.36667−0.37156)2 +(1.66−0.87785)2 ≈ 0.78217,

r2
x0
= (|0.36667−0.37156|+0.026733)2 = 0.001,

r2
y0
= (ρ(z,z0)+δ2)

2 = (0.78217+0.21783)2 = 1,
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U∗ =

{
(x,y) :

(x−0.36667)2

0.001
+

(y−1.66)2

1
≤ 1

}
⊂Uz.

Figure 1 represents phase portrait with 10 iterations with repelling area Uz and
neighborhood U∗ of the snap-back repeller z̄. Figure 2 represents phase portrait
with 10050 iterations.

FIGURE 1. Snap-back repeller z = (0.36667,1.66)

FIGURE 2. Chaotic attractor
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In Figure 3 and 4 we plotted the bifurcation diagrams generated by code Bif2D [18]
and maximum Lyapunov exponents generated by package lce [17].

(A) (B)

FIGURE 3. For a = 4.2, c = 0.1 and initial point (0.3,1.6):
(A) Bifurcation diagram for d ∈ (1.44381,3.5);
(B) The maximum Lyapunov exponents for d ∈ (1.44381,3.3)

(A) (B)

FIGURE 4. For a = 4.2, c = 0.1, d ∈ (2.7563,3.3):
(A) Bifurcation diagram; (B) The maximum Lyapunov exponents

Example 3.2. For the values of parameters a = 4.2 and c = 0.1 we compute the
Lyapunov dimension in the cases where conditions (3.2) are satisfied. In Figure 5
we see that conditions (3.2) are satisfied when d belongs to interval (3.02,3.04).
By (3.1), Lyapunov dimension for d = 3.021 is

dL = 1+
L1

|L2|
= 1+

0.0009727049991202961
0.006455582474271305

= 1.1507.

Other data for different values of parameter d are given in Table 1.
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FIGURE 5. Lyapunov exponents L1 and L2 for a = 4.2, c = 0.1

d For 500 iterations we have {L1,L2} given with: dL

3.020 {−0.00771621443415771,−0.016385081323215037} -
3.021 {0.0009727049991202961,−0.006455582474271305} 1.1507
3.022 {0.002805663684499562,−0.007879936996153374} 1.3561
3.023 {−0.0008108421924574601,−0.008248321634339448} -
3.024 {−0.016420925424534723,−0.018735853081581006} -
3.025 {−0.005298020860912034,−0.009123929620639026} -
3.026 0.0010739514748464175,−0.0022726373249094198} 1.4726
3.027 {0.004722314055858313,0.004276530818779462} -
3.028 {0.0007449252704960492,−0.024522106324883518} 1.0304
3.029 {0.004589591217875484,0.0014255288558806855} -
3.030 {0.011466987871733437,−0.006282177838434302} -
3.031 {0.019241955983153588,−0.02519276681624431} 1.7638
3.070 {0.056465817134740845,0.03238431775602044} -
3.100 {0.08402039436980291,0.053151159101234934} -

TABLE 1. The calculations are conducted for values of parame-
ters a = 4.2, c = 0.1 and initial condition z0 = (0.3,1.6)

Notice that if d ∈ {3.021,3.022,3.026,3.028,3.031} conditions (3.2) hold.
Let us now check how the number of iterations affects the Lyapunov dimension for
d = 3.028. The data are given in Table 2.
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Number of
iteration {L1,L2} dL

500 {0.0007449252704960492,−0.024522106324883518} 1.0304
1000 {0.004264708217339782,−0.01818074631866523} 1.2346

10000 {0.01014786024923329,−0.013084603762557025} 1.7756
100000 {0.010594945814845724,−0.013379956641930453} 1.7919

TABLE 2. The calculations are conducted for values of parame-
ters a= 4.2, c= 0.1, d = 3.028 and initial condition z0 = (0.3,1.6)

Example 3.3. For a = 4.2, c = 0.1, d = 3.028 we have nine-coexisting chaotic
sets. See Figure 6 (B).
In Figure 6 (A): z0 = (0.3,1.6), 100000 orbits, dL = 1.7919.
In Figure 6 (B): z0 = (0.2666,1.542), 100000 orbits, dL = 1.7793.
Then the equilibrium point is z = (0.3632760898282695,1.6742404227212682).

(A) (B)

FIGURE 6. Phase portraits for a = 4.2, c = 0.1, d = 3.028 of System
(1.2), initial point z0 (green) and eqilibrium point z (black)

Example 3.4. For a = 4.2, c = 0.1, d = 3.07 and a = 4.2, c = 0.1, d = 3.1 we
have a chaotic attractor. See Figure 7.
In Figure 7 (A): d = 3.07, 100000 orbits and
(L1,L2) = (0.056561824648223076,0.031407648031095456).
In Figure 7 (B): d = 3.1, 100000 orbits and
(L1,L2) = (0.08714779637266407,0.05465502376283619).
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Equilibrium points are z = (0.3583061889250814,1.695114006514658) and
z = (0.3548387096774194,1.709677419354839) .

(A) (B)

FIGURE 7. Phase portraits for a = 4.2, c = 0.1 of System (1.2), initial
point z0 = (0.2666,1.542) (red) and equilibrium point z (black)
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