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EMPLOYING WEAK (¢ —¢ CONTRACTION ON FUZZY METRIC
SPACES WITH APPLICATION

AMRISH HANDA

ABSTRACT. We establish a common fixed point theorem satisfying a weak
¢ contraction on partially ordered non-Archimedean fuzzyrinespaces. In the
process, some multidimensional common fixed point resuéisdarived from
our main results. As an application, we study the existemmtieeosolution to an
integral equation and also give an example to show the usesfslof the obtained
results. Our results generalize, extend and improve dewet&known results
of the existing literature.

1. INTRODUCTION

George and Veeramani [12] modified the concept of fuzzy meaces intro-
duced by Kramosil and Michalek [18] with the help of a contina t-norm and
defined the Hausdorff topology of fuzzy metric spaces. Iri,[1stratescu intro-
duced the concept of a non-Archimedean fuzzy metric space.

In [14], Guo and Lakshmikantham introduced the notion of@pbed fixed point
for single-valued mappings. Using this notion, Gnana-Raasand Lakshmikan-
tham [2] established some coupled fixed point theorems byidgfithe mixed
monotone property. After that, Lakshmikantham and Cirig] [@xtended the no-
tion of the mixed monotone property to the mix&dmonotone property and es-
tablished coupled coincidence point results using a paioofmutative mappings,
which generalized the results of Gnhana-Bhaskar and Laksmiiam [2]. For
more details one can consult ([1], [4]- [11], [15], [16]).

On the other hand Gordji et al. [13] proved some fixed poinbtems for(y,
$)-weak contractive mappings in a complete partially ordenedric space.

In this paper, we establish a common fixed point theoremfgatis a weak
Y — ¢ contraction on partially ordered non-Archimedean fuzzytrinespaces. In
the process, some multidimensional common fixed point tesuk derived from
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our main results. As an application, we study the existeridbensolution to an

integral equation and also give an example to show the filoiks of the obtained
results. We generalize, extend, improve and fuzzify thalte®f Gnana-Bhaskar
and Lakshmikantham [2], Lakshmikantham and Ciric [19] aenvksal well-known

results of the existing literature.

2. PRELIMINARIES

Definition 2.1. [20]. A binary operationx : [0, 1] x [0, 1] — [0, 1] is a continuous
t-norm if it satisfies the following conditions:
(1) = is commutative and associative,
(2) = is continuous,
(3) axl=aforall ac|0,1],
(4) axb<cxd whenever & cand b< d witha b, c,d € [0, 1].
A few examples of continuous t-norms are

axb=ab axb=min{a, b} and axb=max{a+b— 1, 0}.

Definition 2.2. [12]. The 3-tuple(X, M, %) is called a fuzzy metric space if X is an

arbitrary non-empty set; is a continuous t-norm and M is a fuzzy set ohX0,
) satisfying the following conditions: for eachy ze X and t s> 0,

(FM—1) M(x,y,t) >0,

(FM 2) (X yv )—1|ffX:y,

(FM—3) M(x, ¥, ) = M(y, x, ),

(FM—4) M(x, 2, t+5) > M(X, y, 1) «M(y, 2 5),

(FM—=5) M(x,y, ) : [0, @) — [0, 1] is continuous.

Remark2.1 If in the above definition (FM-4) is replaced by
(NAFM—4) M(x, zz max{t, s}) > M(x, y, t)«M(y, z, s),
or equivalently,
(NAFM—4) M(X, z, t) > M(X, ¥y, t) «M(y, z t),

then (X, M, x) is called a non-Archimedean fuzzy metric space [17]. It isyea
to check that (NAFM-4) implies (FM-4), that is, every noneAimedean fuzzy
metric space is itself a fuzzy metric space.

Example 2.1. [12]. Let (X, d) be a metric space. Define t-norm byla= ab and

M(x, y, t) = forall x, ye X andt> 0.

t
t+d(x y)
Then(X, M, %) is a fuzzy metric space. We call this fuzzy metric M inducettidy
metric d the standard fuzzy metric space.

Remark2.2 [12]. In the fuzzy metric spaceX, M, %), M(X, Y, -) is non-decreasing
forall x,y € X.
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Definition 2.3. [12]. Let (X, M, x) be a fuzzy metric space. A sequekige}n in
X is called Cauchy if for each € (0, 1) and each t> O there is iy € N such that

M (Xn, Xm, t) > 1— € whenever > m> no.

We say thatX, M, ) is complete if every Cauchy sequence is convergent, that is,
if there exists ¥ X such thatrlli_r>n M(Xn, y,t) =1, forallt > 0.

Definition 2.4. [2]. Let F : X? — X be a given mapping. An elemért y) € X2
is called a coupled fixed point of F if(k, y) = x and Ky, x) =Y.

Definition 2.5. [2]. Let (X, <) be a partially ordered set and EX? — X be a
given mapping. We say that F has the mixed monotone progdatyall x, y € X,
we have

X1, X2 € Xa X1 XX = F(X1> y) = F(X27 y)7

Y1, Y2 € X, y1 2 Y2 = F(X, y1) = F(X, Y2).

Definition 2.6. [19]. Let F: X2 — X and g: X — X be given mappings. An
elementx, y) € X2 is called a coupled coincidence point of the mappings F and g

if F(x, y) = gx and Ky, x) = gy.

Definition 2.7. [19]. Let F: X2 — X and g: X — X be given mappings. An
elementx, y) € X2 is called a common coupled fixed point of the mappings F and

gif x="F(x y) =gxand y=F(y, x) = gy.

Definition 2.8. [19]. The mappings F X? — X and g: X — X are said to be
commutative if gFx, y) = F(gx, gy), for all (x, y) € X2.

Definition 2.9. [19]. Let (X, <) be a partially ordered set. Suppose: K? — X
and g: X — X are given mappings. We say that F has the mixedhgnotone
property if for all x y € X, we have

X1, X2 € X> (9)41 = g — F(XL y) = F(X2> y)v
Vi, Y2 € X, gy1 292 = F(X, y1) = F(X, ¥2).
If g is the identity mapping on Xhen F satisfies the mixed monotone property.

Definition 2.10. ( [2], [11]). A partially ordered metric spac€X, d, <) is a

metric spaceX, d) provided with a partial order< . A partially ordered metric
space(X, d, <) is said to be non-decreasing-regular (respectively, narréasing-
regular) if for every sequende,) C X such that x— x and x < X1 (respectively,
Xn = Xnt1) for all n > 0, we have x < x (respectively, x> x) for all n > 0. (X,

d, <) is said to be regular if it is both non-decreasing-regulardamon-increasing-
regular.

Definition 2.11. [11]. Let (X, <) be a partially ordered set and,F5: X — X
be two mappings. We say that F (&, <)—non-decreasing if Fxx Fy for all
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X,y € X such that Gx< Gy. If G is the identity mapping on Xwe say that F is
=< —non-decreasing. If F i$G, <)—non-decreasing and Gx Gy, then Fx= Fy.

Definition 2.12. [3]. Let (X, M, %) be an ordered fuzzy metric space. Two map-
pings E G: X — X are said to be compatible if

lim M(GFX,, FGX,, t) =1,

n—oo

provided that(x,) is a sequence in X such that
lim Fxq = lim Gx, = x & X.
n—00

n—oo

Definition 2.13. [15]. Let F : X2 — X and g: X — X be two mappings. We say
that the pair(F, g) is compatible if

lim M(F (9%, 9%h), 9(F (Xn, ¥n). F(yn, %)), t)
lim M(F(gyn, 9%); 9(F (%, %), F(%n, yn)), t) =
whenevelx,) and (y,) are sequences in X such that
lim g% = lim F(xn, yn) =x € X,
lim gyn = lim F(yn, Xn) =y € X.

1,
1

)

Definition 2.14. [15]. Let X be a non-empty set. The mappingsX¥ — X and
g: X — X are called weakly compatible if(i, y) = gx and Ky, x) = gy implies

that o(F (x, y), F(y. X)) = F(g9x gy) and gF(y, x), F(x, y)) = F(gy, gx), for all
X,y e X.

3. HXED POINT RESULTS

In the sequelX is a non-empty set arfél: X — X is a mapping. For simplicity,
we denote3(x) by Bx wherex € X.

Let W denote the set of all functionB: [0, +o) — [0, 4-) satisfying:
(iy) Y is continuous and non-decreasing,
(lig) P(t)=0<1t=0.

Let @ denote the set of all functionjs: [0, +) — [0, +o0) satisfying:
(i9) ¢ is lower semi-continuous and non-decreasing,
(iip) o(t) =0t =0.

Let © denote the set of all functiors: [0, +-o) — [0, +0) satisfying:
(ip) B is continuous,
(iig) B(t) =0t =0.

Theorem 3.1. Let (X, <) be a partially ordered set angX, M, x) be a complete
non-Archimedean fuzzy metric space. Suppofe X — X are two mappings such
that a is (B, <)—non-decreasing and (X) C B(X) for which there existh € ®,
Y € WandB € O such that
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(e a Y G4
1 1 1
<0 (s 2) ¢ (4 (s 2)) o (eay )
where
A(x, y) = min{M(Bx, By, t), M(Bx, ax, t), M(By, ay, t)}, (3.2)
and
B(x, y) = max{M(By, ax, t), M(By, ay, t)}, (3.3)

for all x, y € X such thaf3x < By. There exists x€ X such thaff3xg < axg. Also
assume that, at least, one of the following conditions holds

(@) (X, M) is completep and are continuous and the pain, [3) is compatible,

(b) (B(X), M) is complete andX, M, <) is non-decreasing-regular,

(c) (X, M) is completef is continuous and monotone-non-decreasing, the pair
(a, B) is compatible andX, M, <) is non-decreasing-regular.

Thena and3 have a coincidence point. Furthermore, if the following didion
holds:

(d) Suppose that for every x € X there exists & X such thatiu is comparable
to ax anday and also the paifa, B) is weakly compatible.

Thena and 3 have a uniqgue common fixed point.

Proof. Let xg € X be arbitrary and sincexy € a(X) C B(X), there existsg € X
such thatoxg = Bx;. ThenPxy < aXp = Bx;. Sincea is (B, <)—non-decreasing,
oxp <X axg. Now ax; € a(X) C B(X), so there existg; € X such thatix; = BXo.
ThenBx; = axp < axg = Bxe. Sincea is (B, <)—non-decreasingyx; =< oxy. Re-
peating this argument, there exists a sequérgr>o such thatxn) is < —non-
decreasingPxn; 1 = 00Xy =< OXn1 = PXny2 @nd

BXnr1 = ax, foralln> 0. (3.4)

Suppose that for eagh> 0, M (Bxn, PXn+1, t) < 1. Itis clear thatB(X,, Xn+1) = 1
for all n> 0. Now, by the contractive condition (3.1)jg) and by the monotonicity
of Y, we have

1
llJ( M(BXn 1, an+2, t) _l>

-1
(M (OXn, OXny1, t) )

(w4~ ()
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Thus

1

v (M(an+1, BXn+2, 1) _1> (3.5)
1 1

<4 (3t (e 1)

which sinced > 0 implies that

e e
M(BXnt1, BXns2, t) n A(Xn, Xnt1) .

Sincey is non-decreasing, therefore we obtain
1 1

1<t
M(BXH+17 an+27 t) - A(Xl'h Xn+1)

~1. (3.6)
Again

A(Xn, Xn+1)

= Min{M(Bxn, BXn+1, t), M(BXn, 0Xn, 1), M(BXn+1, OXny1, 1)}

= Min{M(BXn, BXn+1, t), M(BXn, BXni1, 1), M(BXasi1, BXni2, 1)}

= Min{M(Bxn, BXn+1, t), M(BXni1, BXni2, 1)}
If M(BXn11, BXai2, t) < M(BXq, BXny 1, ), then

A(Xn, Xn11) = M(BXni1, BXni2, t). (3.7)

Thus, by (3.5) and (3.7), we have

1
v <M(an+17 BXn+2, t) _l>
1 1
= LIJ <M(an+l> an+27 t) - 1> _(I) (qJ <M(an+l> an+2> t) - l>> ’

which is only possible wheM (Bxni1, BXhi2, t) = 1, a contradiction. Hence,
M(ana BXI"H-la t) S M(BXI"H-L BXI"H-27 t) Then

AXn; Xng1) = M(BXn, BXat1, t). (3.8)
Thus, by (3.6), we get

1
-1< -1 3.9
M(an-ﬁ-la BXI"H-Za t) o M(BXn, an-l-la t) ( )
This shows that the sequen@® ).>o defined by
! (3.10)

On = -1,
" M(BXm Bxﬂ+17 t)
is a non-increasing sequence. Thus there e&ist® such that

1
im & — I —1)=28. 3.11
e 1 nm:('\/l(ﬁxn, Bai1, ) > -
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Then

. 1
i (3 r2) =2 o1

We shall prove thad = 0. Assume to the contrary that> 0. Now, by contractive
condition (3.1)iig) and by the monotonicity af, we have

<M(Bxﬂ+17 Bxﬂ+27 ) B 1>
-V <M(Gxn, Wi, ) 1>

gw<m—1>‘¢<w<m_l>>'

Letting n — o in the above inequality, by usin@y), (i), (3.11) and (3.12), we
get

W(d) <w(d)—-¢(W(9),

which is only possible whed = 0. Thus

1
0= Iim &, = Ilim —1)=0. 3.13
e | N (M(an, BXnt1, t) > (313)
or
r!in M(BXm B)<I"I+17 t) =1 (314)

Now we claim that(Bx,)n>0 is @ Cauchy sequence X. Suppose thatBx,)n>o0
is not a Cauchy sequence. Then there exists arD for which we can find two
sequences of positive integeirm(k)) and(n(k)) such that for all positive integers
K,

M (BXn(ky» BXmiiy: 1) < 1—¢€for n(k) > m(k) > k. (3.15)
Assuming thah(k) is the smallest such positive integer, we get
M (BXn(k) -1, BXmq> ) > 1—¢. (3.16)

Now, by (3.15), (3.16) and (NAFM-4), we have
1—&e>re=M(BXyk), BXme» t)
> M(BxXnak)s Bxngg—1, t) * M(BXak)—15 BXmek)» t)
> M (B> BXngg—1, t) * (1—€).
Letting k — o in the above inequality, by using (3.14), we have
lim rg = lim M(an(k), Ban(k), t) =1-—c¢. (3.17)
k—oc0 k—oc0
By (NAFM-4), we have
M (BXn(k)+15 BXm(o+1, t)
> M(BXa+15 BXn(iky» t) ¥ M(BXn(iy, BXmis t) * M (BXmi), BXmii+15 t)-
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Letting k — o in the above inequalities, using (3.14) and (3.17), we have
lim M (B +1, Brmgg 11, 1) = 1 —¢. (3.18)

As n(k) > m(K), Bxy) = BXm), by using contractive condition (3.1)ijg) and by
the monotonicity ofp, we have

(s o0 Y
M (BXn(k)+1, BXm+15 t)

1
-V (M(O(Xn(k)> Mk ) 1>
S‘“(W*)”(“’(W*»

(i 1Y) ¢ (4 (i )
= T A\M(BXak), BXms t) M (BXnk)> BXmik)» t) '

Letting k — o in the above inequality, by using the propertylafo, ¢ and (3.17),
(3.18), we have

o(ce)=o(ae) o (vls)) <vle)

which is a contradiction due > 0. It means thaff3x,)n>0 is @ Cauchy sequence
in X.

We claim thata and 3 have a coincidence point distinguishing between cases
(a) - ().

Suppose now thdt) holds, that is(X, M) is completep andf3 are continuous
and the pair(a, B) is compatible. SincéX, M) is complete, there exists e
X such that(Bx,) — z By (3.4), we also have thdtix,) — z As a andp are
continuous, therapx,) — azand(BBx,) — Bz By using the fact that the pafo,
B) is compatible, we deduce that

r!gn M(Baxn, ofXn, t) =1.
In such a case, we conclude that
M(Bz, az, t) = lim M(BBxni1, aPxn, t) = lim M(Baxa, afxy, t) =1,

that is,zis a coincidence point af andf.

Suppose now thdb) holds, thatis(B(X), M) is complete andX, M, <) is non-
decreasing-regular. A$x,) is a Cauchy sequence in the complete spf¢X),
M), there existy € B(X) such that(Bx,) — Y. Let z€ X be any point such that
y = Bz In this case(Bx,) — Bz Indeed, agX, M, <) is non-decreasing-regular
and(Bx,) is < —non-decreasing and converging3n we deduce thgbx, < pzfor
all n > 0. Applying the contractive condition (3.1) and by the monatdp of ),
we get
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v <M(an+17 a: t) 1>

-1
<M axn, az t) >

(1) (s ) (g ) @
where
AXn, 2) = min{M(Bxn, Bz, t), M(Bxn, 0Xy, t), M(Bz, 0z t)}
= min{M(Bxn, Bz t), M(BXn, BXat1, 1), M(Bz, az 1)},
and

B(X, 2) = max{M(Bz, axy, t), M(Bz, 0z, t)}
=maxM(Bz, Bxni1, t), M(Bz, az t)}.
Lettingn — o in (3.19), by usindiy), (i) and(iig), we get

v (e Y =t (wman 1) (¢ (wmas 1Y)

which is possible only wheM (Bz, az t) = 1, that is,zis a coincidence point af
andp.

Suppose now thafc) holds, that is,(X, M) is complete 8 is continuous and
monotone non-decreasing, the péir, B) is compatible andX, M, <) is non-
decreasing-regular. A, M) is complete, there existse X such that(fx,) —
z By (3.4), we also have thdtix,) — z. As [ is continuous, theripfx,) — Bz
Furthermore, since the pdia, B) is compatible, we have

lim M(BBXn11, oOBXn, t) = lim M(Bax,, afx,, t) = 1.
n—oo n—o0

As (BBx,) — Bzthe previous property means tha3x,) — Bz

Indeed, agX, M, <) is non-decreasing-regular a@x,) is <-non-decreasing
and converging ta, we deduce thgbx, < z It follows, by the monotonicity of,
that 3Bxn < Bz Applying the contractive condition (3.1) and by the monatay
of Y, we get

__t 1
lp <M(GBXH7 az, t) N >

“(apes2) ¢ (V(ames ) lemes 2 6

where
A(Bxn, 2) = min{M(BPxn, Bz, t), M(BPxn, aPxn, t), M(Bz, 0z t)},

and

B(Bxn, 2) = max{M(Bz, afx, t), M(Bz, az t)}.



246 AMRISH HANDA

Lettingn — o in (3.20), by usind(iy), (i) and(iig), we get

‘“(W‘l)ﬁw(m*)‘q’@(m*»’

which is possible wheM Bz, az, a) =1, that is,z is a coincidence point af and
B.

Hence, the set of coincidence pointsfpanda is non-empty. Therefore, sup-
pose thak andy are coincidence points af andf3, that is,ax = Bx anday = By.
Now, we show thapx = By. By the assumption, there exisis= X such thatou
is comparable witlux anday. Putup = u and choosel; € X so thatBug = au;.
Then, we can inductively define sequen¢@s,) wherefun,1 = au, for alln > 0.
Henceax = Bx andau = aug = Bu; are comparable. Suppose tifat < (Bx (the
proof is similar to that in the other case). We claim tRat < Bx for eachn € N.
In fact, we will use mathematical induction. Singe; < x, our claim is true for
n=1

We presume thgbu, < Bx holds for somen > 1. Sincea is —non-decreasing

with respect to<, we getBun. 1 = au, < ax = Bx, and this proves our claim. Since
Bun, < Bxand so by using contractive condition (3.(i)g) and by the monotonicity
of Y, we have

o (i 50 2) (i oY)
() ¢ (Vs )
A(Un, X) = min{M(Bun, BX, t), M(Bun, aun, t), M(BX, ax, t)}

= min{M(BUn, Bxa t)7 M(Bum Bul’l-‘rla t)}
Letting n — o in the above inequality and by usirtijy) and(iig), we get

where

r!im M(Bun, Bx, t) = 1. (3.21)
— 00
Similarly, one can prove that
lim M(Bun, By, t) =0. (3.22)
n—oo
Hence, by (3.21) and (3.22), we get
Bx = By. (3.23)

Sincefx = ax, by weak compatibility ofa and 3, we haveff3x = Bax = afx.
Let z=[x. ThenBz= az Thuszis a coincidence point df anda. Then from
(3.23) withy = z, it follows that Bx = Bz that is,z= fz= az Therefore,zis a
common fixed point ot and3. To prove the uniqueness, assume tha another
common fixed point o&t andB. Then by (3.23) we haver = Bw = Bz= z Hence
the common fixed point ai andf is unique. O
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If we put(t) = 0 in the Theorem 3.1, we get the following result:

Corollary 3.1. Let(X, <) be a partially ordered set anX, M, %) be a complete
non-Archimedean fuzzy metric space. Suppofe X — X are two mappings such
thata is (B, <)—non-decreasing and(X) C B(X) for which there exisp € ® and
Y € W such that

(e oY) =¥y )¢ (g 1)

where AX, y) is defined in (3.2), for all xy € X such tha3x < By. There exists
Xo € X such thafixg < axo. Furthermore, suppose one of the conditi¢as— (c) of
Theorem 3.1 holds. Thenand[3 have a coincidence point. Moreover, if condition
(d) of Theorem 3.1 holds. Thenand 3 have a unique common fixed point.

If we putd(t) =t —td,(t) forallt > 0in Corollary 3.1, then we get the following
result:

Corollary 3.2. Let(X, <) be a partially ordered set an@X, M, x) be a complete
non-Archimedean fuzzy metric space. Suppofe X — X are two mappings such
that a is (B, <)—non-decreasing and(X) C B(X) for which there existy; € ®
andy € W such that

marn )= (ay ) (g 2)

where AX, y) is defined in (3.2), for all xy € X such tha3x < By. There exists
Xo € X such thaPxp < axo. Futhermore, suppose one of the conditi¢as— (c) of
Theorem 3.1 holds. Thenand[3 have a coincidence point. Moreover, if condition
(d) of Theoem 3.1 holds. Thenand 3 have a unigue common fixed point.

If we put Y(t) =2t for all t > 0 in Corollary 3.2, then we get the following
result:

Corollary 3.3. Let(X, <) be a partially ordered set anX, M, x) be a complete
non-Archimedean fuzzy metric space. Suppofe X — X are two mappings such
thata is (B, <)—non-decreasing and(X) C B(X) for which there exist$; € ®
such that

o= (2o 1) (e ).

where AX, y) is defined in (3.2), for all xy € X such tha3x < By. There exists
Xo € X such thafixg < axo. Furthermore, suppose one of the conditi¢as— (c) of
Theorem 3.1 holds. Thenand[ have a coincidence point. Moreover, if condition
(d) of Theoem 3.1 holds. Thenand 3 have a unigue common fixed point.

If we put¢4(t) = k where O< k< 1, for allt > 0 in Corollary 3.3, then we get
the following result:
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Corollary 3.4. Let(X, <) be a partially ordered set anX, M, x) be a complete
non-Archimedean fuzzy metric space. Supmosp: X — X are two mappings
such thatx is (B, <)—non-decreasingy(X) C B(X) and

1 1

I -

M(ox oy, ) -5 “ <A(><, y) 1> ’
where AX, y) is defined in (3.2), for all xy € X such thaPx < By and k< 1. There
exists ¥ € X such thatBxg =< axg. Furthermore, suppose one of the conditions
(a) — (c) of Theorem 3.1 holds. Thenandf3 have a coincidence point. Moreover,
if condition (d) of Theorem 3.1 holds. Thenand 3 have a unique common fixed
point.

If B =1 (the identity mapping) in the Corollary 3.4, we get the faling:

Corollary 3.5. Let(X, <) be a partially ordered set anX, M, %) be a complete
non-Archimedean fuzzy metric space. SupposeX — X is a non-decreasing
mapping satisfying

1 1
M(ax, ay, t) L=k (Al(x, y) 1> ’
where
A1(X, y) =min{M(x, y, t), M(x, ax, t), M(y, ay, t)},
for all x, y € X such that x< y and k< 1. If there exists g€ X such that ¥ < axo,
thena has a fixed point.

Example 3.1. Suppose that X [0, 1], equipped with the usual metric:K x X —
[0, +0) with the natural ordering of real numbers and« is defined by ab = ab,
for all a, b € [0, 1]. Define

M(x, y, t) , forallx, ye X and t> 0.

t
S t+d(x y)
Clearly (X, M, x) is a complete non-Archimedean fuzzy metric space.algt:
X — X be defined as

2
X
ax= andBx = x? for all x € X.

Definey : [0, +o) — [0, +0) by

Y(t) =tforallt >0,
defined : [0, +-00) — [0, +0) by

d(t) = % forallt >0,
defined : [0, +-) — [0, +0) by

o(t) = % forallt > 0.
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Now, for all x y € X with fx < By, we have

1
v (M(ax, ay. 1) ‘l>
1

M ax, O(y, t)
1 .
3 <'V| BX By: t) )
-
A(X
1 1
-1)— ——1 +9<7—1>.
( A Y) > (0 (mey )+ (50
Thus the contractive condition of Theorem 3.1 is satisfie@lok, y € X. In ad-

dition all the other conditions of Theorem 3.1 are satisfied a= 0 is a unique
common fixed point af and 3.

-Eoo

4. COUPLED FIXED POINT RESULTS

Next, we deduce the two dimensional version of Theorem 3.vertn € N
wheren > 2, let X" be then'" Cartesian produck x X x ... x X (n times). For
the ordered fuzzy metric spa¢¥, M, <), let us consider the ordered fuzzy metric
space(X?, M5, C), whereMg : X2 x X2 x [0, ®) — [0, 1] defined by

Ms(Y, V, t) =min{M(x, u, t), M(y, v, t)}, Y¥Y = (x, y), V = (u, v) € X2,
andC was introduced by
(u, v) C (x, y) < x=uandy < v, forall (u, v), (x, y) € X2

Itis easy to check thals is a non-Archimedean fuzzy metric o¢f. Moreover(X,
M, x) is complete if and only i{X?, Ms, %) is complete. We define the mapping
QF, Qg : X% — X2 for all (x, y) € X2, by

Qr(x, y) = (F(%, y), F(y, X)) andQq(X, y) = (g%, gy).

Lemma 4.1. Let (X, <) be a partially ordered set an¢X, M, x) be a complete

non-Archimedean fuzzy metric space. Let# — X and g: X — X be two map-

pings. Then

(1) (X, M) is complete if and only ifX2, M3) is complete.

(2) If (X, M, <) is regular, then(X2, M;, C) is also regular.

(3) If F is M—continuous, the®@f is Ms-continuous.

(4) F has the mixed monotone property with respecttdf and only if Qg is
C-non-decreasing.

(5) F has the mixed-gmonotone property with respect toif and only if thenQg
is (Qg, C)-non-decreasing.
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(6) If there exist two elementg xyo € X with g% < F(xo, Yo) and gy = F (Yo,
Xo), then there exists a poiriko, yo) € X? such thatQg(Xo, o) T Qr (X0, Yo)-
(7) If F(X?) Cg(X), thenQg (X2) C Qq(X?).
(8) If F and g are commuting iiX, M, <), thenQr and Qg are also commuting
in (X27 M57 E)
(9) If F and g are compatible itX, M, <), thenQr and Qg are also compatible
in (Xz, Ms, O).
(10) If F and g are weak compatible ifX, M, <), thenQr and Qg are also weak
compatible in(X2, Ms, C).
(11) ) A point(x, y) € X?is a coupled coincidence point of F and g if and only if it
is a coincidence point dr andQg.
(12) (x,y) € X?is a coupled fixed point of F if and only if it is a fixed point®@#.

Proof. Items (1), (2), (3), (6), (7), (11) and (12) are obvious.

(4) LetF has the mixed monotone property with respecktoThen we have to
show thatQr is C-non-decreasing.

Let (x,y), (u, v) € X2 be such thatx, y) C (u, v). Thenx < uandy = v. As F
has the mixed monotone property with respecktand soF (x, y) < F(u, v) and
F(y, X) = F(v, u). ThusQg (X, y) C Qg(u, v).

Thus, if F has the mixed monotone property with respeckiadhenQr is C-
non-decreasing and vice-versa.

(5) LetF has the mixed—monotone property with respect . Then we have
to show thalQr is (Qq, C)-non-decreasing.

Let (x, y), (u, v) € X2 be such thaQg(x, y) T Qg(u, v). Thengx < gu and
gy = gv. As F has the mixedy—monotone property with respect toand soF (X,
y) < F(u,v) andF(y, x) = F(v, u). ThusQg (X, y) C Qg (u, v).

Thus, if F has the mixed)—monotone property with respect 0, then Qg is
(Qg, C)-non-decreasing and vice-versa.

(8) Let(x, y) € X2. Sinceg andF are commutative, by the definition ofy and
Qr, we haveQqQr (x, y) = Qq(F (X, y), F(¥, X)) = (gF (X, ), gF (Y, X)) = (F (g%
ay), F(gy; 9x)) = Qr (9% gy) = QrQq(X, y), which shows thaQgy and Qf are
commutative.

(9) Let((%n, Yn)) € X2 be any sequence such ti2t (X, Yn) M (%, y) andQg(Xn,
M
Yn) = (X, y). Then,
M
(F (% Yn): F(¥ns %)) =% (X Y) = F (%o, Yn) =+ x @ndF (Yo, Xa) =+ .

and M
(G, O¥h) % (X, ¥) = O > x andgyn = v.
Therefore
lim F(Xn, Yn) = lim g%, =x € X,

n—-o0 n—oo

lim F (Y, X) = lim gyn =y € X.

n—o00
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Since the paifF, g) is compatible, we have
lim M(F (g%, g¥%h), 9F (Xn, ¥n), 1) =1
lim M(F(gyn, %), 9F (¥n, %n), 1) = 1.

9

In particular,
lim Ms(QgQr (X0, Yn). Qe Qq(%n, Yn), 1)
= lim M5(Qg(F (%, Yn), F(Yn, Xn)), Qr (9%, 9¥n), 1)
= lim M5 ((9F (Xn, ¥n), GF (Yn, Xn)), (F (9%, G¥n); F (9%, 9%n)); 1)

{ M(GF (n, Yn), F (9%, O%n), 1), }

= [im min
M(gF(Yn, Xn), F (9%, 0%), t)

n—oo

=1

Hence, the mapping@r andQq are compatible irfX2, Mg, C).

(10) Let(x, y) € X2 be a coincidence point 61 andQg. ThenQq(x, y) = Qr (X,
y), that is, (gx gy) = (F(x, y), F(y, X)), that is,gx = F(x, y) andgy = F(y, X).
Sinceg and F are weak compatible, by the definition O and Qr, we have
QgQr (X y) = Qqg(F (X, y), F(y, X)) = (gF (X, y), gF(y, X)) = (F(gx 9y), F(gy,
gx)) = Qr (g%, gy) = QrQq(X,y), which shows thaf)qg and Qr commute at their
coincidence point, that i€) andQr are weak compatible. O

Theorem 4.1. Let (X, <) be a partially ordered set angX, M, x) be a complete
non-Archimedean fuzzy metric space. Assum&¥— X and g: X — X are two
mappings such that F has the mixedrgonotone property with respect toon X
for which there exisp € ®, Y € W and0 € O satisfying

‘“( <ny>1< 75 Y @
< (agiyay oa RIUG i)

0 -1
+ <B X, Y, U, V) >’
where

AL (X, Y, U, V) (4.2)

:min{ M(gx gu, t), M(gx F(x, y), t), M(gu, F(u, v), t), }
M(gy, gv t), M(gy, F(Y, X), t), M(gu F(v, u), t) |~

and

_ M(gu, F(x, y), t), M(gu, F(u, v), t),
B ¥ U V>‘max{ M(gv F(y, %), 1), M(gu F(v, u), t) } (43)
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for all x, y, u, v € X, where gx< gu and gy> gv. Suppose that FX?) C g(X), g
is continuous, monotone non-decreasing and the (faig) is compatible. Also
suppose that either

(a) F is continuous or
(b) (X, d, <) is regular.
If there exist two elementg /o € X with

g% = F(Xo, Yo) and gy = F (Yo, Xo),

then F and g have a coupled coincidence point. In additioppsse that for every
(X, y), (X*,y*) € X2, there exists a poinfu, v) € X? such that(F (u, v), F(v, u)) is
comparable tqF (x, y), F(y, X)) and (F (x*, y*), F(y*, X*)), and also the pailF,
) is weakly compatible. Then F and g have a unique common abéigksl point.

Proof. Letx, y, u, v e X, with gx < guandgy > gv. Then, by using (4.1), we have

1
v (M(F(x, V), F V), 1) ‘1>
< (acyan Y (e )

1
T -
B%/I(Xv Yy, U, V)

Furthermore taking into account tigt > gvandgx < gu, the contractive condition
(4.1) also guarantees that

1

‘“(M(F(y, X, F (v ), 1 ‘1>
< (agaoyavY) 0 (gaya2)

1
e (— - 1) |
BY (X ¥, U, V)
Combining them, we get

v (M(F(x, P FED ‘l> ’
ar (M(F(y, TNETATR ‘l>
< (maoyavY) (e Y)

1
+e<——1>.
By (X, ¥, U, V)

Sincey is non-decreasing,
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({ | (o i)

o)l )

+6 <—Bg AR l> . (4.4)
Thus, it follows from (4.4) that
1
Cr=rr =y t>_1>
(i : )
M (( X)), (F(u, v), F(v, u)), t)
—y . —1>
min{M(F ), t), M(F(y, ), F(v, u), t)}

IN

v A xyuv > ¢<¢<m—l>>
e<B X, y, u, v) >
Y\ A 1>‘¢<L"<AM5<<X, g )

0 -1,
<BM5 >

+

IN

( F
e
(rgcra
(Rt

_|_

where
MB(QQ(Xv y)v Q u, V)> t)v
AMa((Xa y)? (U, V)) =min MB(QQ(Xv y)v QF( 5 y)> )7
M5(Qg(u, v), QF(u, v), t)
and

_ MB(Qg(Ua V)v QF (X7 y)7 t)
BM5((X7 y)7 (u’ V)) N max{ MB(Qg(Ua V)a QF(U> V)v t) .
It is only necessary to apply Theorem 3.1 to the mappings Qr andf = Qq
in the ordered metric spad&?, Mg, C) taking into account all items of Lemma
4.1. O
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Corollary 4.1. Let(X, <) be a partially ordered set anX, M, x) be a complete
non-Archimedean fuzzy metric space. Assum&¥— X and g: X — X are two
mappings such that F has the mixedmgonotone property with respect toon X
for which there exisp € @, ¢ € W and6 € O satisfying (4.1), where g\, y, u, v)
and Iﬁ,,(x, Yy, u, v) are defined in (4.2) and (4.3) respectively, for allyxu, v € X,
where gx< gu and gy~ gv. Suppose that FX?) C g(X), g is continuous, monotone
non-decreasing and the pa(F, g) is commuting. Also suppose that either

(a) F is continuous or
(b) (X, d, <) isregular.
If there exist two elementg Xy € X with

g% = F(Xo, Yo) and gy = F (Yo, Xo),

then F and g have a coupled coincidence point. In additioppsse that for every
(x,y), (X*, y*) € X2, there exists a pointu, v) € X? such that(F (u, v), F (v, u))
is comparable tqF(x, y), F(y, x)) and (F(x*, y*), F(y*, x*)), and also the pair
(F, G) is weakly compatible. Then F and g have a unigue common abigted
point.

Corollary 4.2. Let(X, <) be a partially ordered set anX, M, %) be a complete
non-Archimedean fuzzy metric space. Assum&¥— X is a mapping such that
F has the mixed monotone property with respeckton X and there exisp € ®,
Y € Wand0 € © such that

1
w<MG%KW7HwV%U_1>
<o Y (oY)

1
+e<BM(X7 Yy, u, V) _l>’

where
AM (X7 y7 U, V)
~ min MO U0, MO F(xy), 1), M(u, F(u, v), 1),
B M(y, v, t), M(y, F(y, X), t), M(v, F(v, u), t) [’
and

M(u, F(x t), M(u, F(u, v), t
By w v =max] W EE Y R B
forall x, y, u, v e X, where x= u and y> v. Also suppose that either
(a) F is continuous or
(b) (X, d, <) isregular.
If there exist two elementg Xy € X with



WEAK ¢y —$ CONTRACTION 255

X0 = F (X0, Yo) and y = F (Yo, X0),
then F has a coupled fixed point.

In a similar way, we may state the results analogous to GoyoB8.1, Corollary
3.2, Corollary 3.3, Corollary 3.4 and Corollary 3.5 for Them 4.1, Corollary 4.1
and Corollary 4.2.

5. APPLICATION

In this section, we give an application to our results. Cdasthe integral equa-
tion .
u(t) :/ K(t, s, u(s))ds+h(t), t € [0, T, (5.1)
whereT > 0. We introducg the following space:
C[0, T]|={u: [0, T] — R : uis continuous onO, T|},
equipped with the metric

d(x, y) = sup |x(t) —y(t)|, for eachx, y € C[O, T].
te0, T)

It is clear thatC[O, T], d) is a regular complete metric space. Itis easy to check that
(C[0, T], M, %) is a complete non-Archimedean fuzzy metric space with iespe
the fuzzy metric

t
M(x, y, t) = trdxy)

wherex is defined byax b = ab, for all a, b € |. FurthermoreC|0, T| can be
equipped with the partial ordet as follows: forx, y € C[0, T],

, for all x, y € X andt > 0,

X< y<=X(t) <y(t), for eacht € [0, T].
Now, we state the main result of this section.

Theorem 5.1. We assume that the following hypotheses hold:
(i) K: [0, T] x [0, T] x R — R and h: R — R are continuous.
(i) Foralls,t,u, veC|O, T] with v=u, we have
K(t, s, v(s)) <K(t, s, u(s)).
(iii ) There exists a continuous function: ®, T| x [0, T] — [0, +) such that
Kt s 0Kt syl <6, s 0
forall s,t € C[0, T] and x y € R with x> y.
T
(iv) sup | G(t, s)’ds<
telo, T] /0
Then the integral (5.1) has a solutiori @ C[0, T].

Proof. DefineF : C[0, T] — C[0, T| by

|~



256 AMRISH HANDA

Fu(t) = /OT K(t, s, u(s))ds+h(t), forallt € [0, T] andu € C[0, T].

We first prove thaf is non-decreasing. Assume tha& u. From (ii), for all s,
t € [0, T], we haveK(t, s, v(s)) < K(t, s, u(s)). Thus, we get,

T T
Fu(t) = / K(t, s, v(s))ds+h(t) < / K(t, s, u(s))ds+h(t) = Fut).
0 0
Now, for allu, v € C[0, T] with v < u, due to(iii ) and by using Cauchy-Schwarz

inequality, we get
|[Fu(t) —Fv(t)| < /OT IK(t, s, u(s)) —K(t, s, v(s))|ds

< [Tt 949 v9lgg

(o) ([ (2252

Thus N
2 2
S _V(S)’> ds) . 6.2

[Fu(t) —Fv(t)| < </OT G(t, 3)2d5>% </0T <’u()f

Taking (iv) into account, we estimate the first integral in (5.2) as fedo

G 2d : — 5.3
t, s)°ds| < . )
For the second integral in (5.2) we proceed in the followirayw

W v) (5.4)

(r (7lu<s>;v<s>l)2ds)2ﬁ.7.

Combining (5.2), (5.3) and (5.4), we conclude that
d(Fu, Fv) < %d(u, V).

It yields
ity
M(Fu, Fv, t) 2\ M(u, v, t)
1 1
<z (-
<3 (a3

for all u, v e C[0, T] with v < u. Thus the contractive condition of Corollary 3.5 is
satisfied fork =1/2 € (0, 1). Hence, all hypotheses of Corollary 3.5 are satisfied.
Thus,F has a fixed point* € C[0, T] which is a solution of (5.1). O
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6. CONCLUSION

Using the same techniques, we can obtain triple, quadrunalénegeneral, mul-
tidimensional coincidence point theorems from Theorem 3.1
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