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FIXED POINTS OF HYPERBOLIC CONTRACTION MAPPINGS ON

HYPERBOLIC VALUED METRIC SPACES

NILAY SAGER, BIRSEN SAĞIR

ABSTRACT. In this paper, we give some elementary topological concepts and

results on hyperbolic valued metric space and then, we introduce two fixed point

theorems for hyperbolic valued metric spaces by defining hyperbolic contraction

mapping. We also give an example which support the main result.

1. PRELIMINARIES, BACKGROUND AND NOTATION

As we have known, fixed point theory has been an important issue of mod-

ern analysis and applied mathematics, particularly, whose importance comes from

finding roots of algebraic equation and numerical analysis. The main purpose of

researchers is to obtain new results in different metric spaces (see [2, 4–10, 16–18,

20]).

The most comprehensive study of analysis in the bicomplex setting is certainly

the book of Price [19]. Alpay et al. [3] developed a general theory of functional

analysis with bicomplex scalars. After this studies, many articles have been pub-

lished in this area and many important results have been gained (see [1, 12–15]).

The definition of hyperbolic valued metric space was presented by Kumar and

Saini [11]. In this study, we develop a fixed point theory by defining some topo-

logical structures related to hyperbolic valued metric spaces. We also support the

main result with an example.

Now, we give basic properties of bicomplex numbers and hyperbolic numbers

which will be used in our subsequent discussion. For further details on the follow-

ing definitions and results, we refer the reader to [3, 15, 19].

Let i and j be independent imaginary units such that i2 = j2 = −1, i j = ji and

C(i) be the set of complex numbers with the imaginary unit i.The set of bicomplex

numbers BC is defined by

BC= {z = z1 + jz2 : z1,z2 ∈C(i)} .
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The set BC forms a ring with respect to the addition and multiplication defined as

z+w = (z1 + jz2)+ (w1 + jw2) = (z1 +w1)+ j (z2 +w2) ,

z.w = (z1 + jz2) .(w1 + jw2) = (z1w1 − z2w2)+ j (z1w2 + z2w1) .

The set of hyperbolic numbers D is defined by

D= {x+ ky : x,y ∈R} ,

where k2 = 1 and k = i. j.
The set D is a subring of the set BC, and also D is a ring and a module over

itself.

There are three types of conjugates in BC :

z†1 = z1 + jz2,

z†2 = z1 − jz2,

z†3 = z1 − jz2,

where z1,z2 are the complex conjugates of z1,z2 ∈C(i) . Also, we know three types

moduli for any z ∈ BC:

|z|2i = z.z†2 = z2
1 + z2

2 ∈ C(i) ,

|z|2j = z.z†1 =
(

|z1|
2 −|z2|

2
)

+ j (2ℜ(z1.z2)) ∈ C( j) ,

|z|2k = z.z†3 =
(

|z1|
2 + |z2|

2
)

+ k (−ℑ(z1.z2)) ∈ D.

Let z = z1 + jz2 be any bicomplex number in BC. We say that z is invertible if

|z|i 6= 0, that is, z2
1 + z2

2 6= 0 and its inverse is given by z−1 = z†2

|z|2i
. If, on the other

hand, z 6= 0 but |z|i = 0, then z is a zero divisor.

The ring BC is not a division ring, since one can see that if e1 =
1+i j

2
and e2 =

1−i j
2

, then e1 and e2 are zero divisors. The numbers e1 and e2 form idempotent basis

of bicomplex numbers and hence any bicomplex number z = z1 + jz2 is uniquely

written as

z = e1β1 + e2β2 (1.1)

where β1 = z1 − iz2,β2 = z1 + iz2 ∈ C(i) . Formula (1.1) is called the idempotent

representation of z.
The sum and product of bicomplex numbers is also stated by using idempotent

representation (1.1) . Specifically, if z = β1e1+ β2e2, w = γ1e1 + γ2e2 ∈ BC, then

z+w = (β1 + γ1)e1 +(β2 + γ2)e2,

z.w = β1γ1e1 +β2γ2e2,

zn = βn
1e1 +βn

2e2.

Let α = x+ ky be any hyperbolic number. Then, we have the equality

α = e1α1 + e2α2,
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where α1 = x+ y,α2 = x− y ∈ R. If α1 ≥ 0 and α2 ≥ 0, then α is called a pos-

itive hyperbolic number. Therefore, the set of positive hyperbolic numbers D+ is

denoted by
D+ = {α = e1α1 + e2α2 : α1 ≥ 0,α2 ≥ 0} .

For two hyperbolic numbers α and β; if their difference β−α ∈D+ ( or β−α ∈
D+−{0}), then we write α - β ( or α � β ). For α = e1α1 + e2α2, β = β1e1+
β2e2 ∈ D with real numbers α1,α2,β1 and β2, we have that

α - β if and only if α1 ≤ β1 and α2 ≤ β2,

α� β if and only if α 6= β and α1 ≤ β1 and α2 ≤ β2,

α ≺ β if and only if α1 < β1 and α2 < β2.

This relation - is reflexive, anti - symmetric, transitive and so defines a partial

order on D.
We know that the hyperbolic valued module |z|k of a bicomplex number z =

e1β1+ e2β2 is also given as

|z|k = e1 |β1|+ e2 |β2| .

One can easily see that
|z.w|k = |z|k . |w|k

for any z,w ∈ BC.
The following statements are true for α,β,γ ∈ D :

(i) If α - β then α+ γ - β+ γ.
(ii) If α ≺ β then α+ γ ≺ β+ γ.

(iii) If α - β and β� γ, then α� γ.
(iv) If α ≺ β and 0 ≺ γ, then αγ ≺ βγ.
(v) If α ≺ β and γ ≺ 0, then βγ ≺ αγ.

(vi) If α - β and 0� γ, then αγ - βγ.
(vii) If α - β and γ� 0, then βγ - αγ.

(viii) If α - β and γ - δ, then α+ γ - β+δ.
(ix) If α� β and γ� δ, then α+ γ� β+δ.
(x) If α,β ∈ D+, then α - β (or α� β or α ≺ β) implies that |α| ≤ |β| (or |α|<

|β|) where |.| shows Euclidean norm in BC (see [3, 15]).

(xi) If α ∈ D+, then |α|k = α.

A sequence in BC is a function defined by z : N→ BC,n → zn. This sequence

converges to a point z∗ ∈BC if and only if to each ε > 0 there corresponds an n0 (ε)
such that |zn − z∗| < ε for all n ≥ n0 (ε). It is denoted by zn → z∗ as n →+∞. The

sequence z = (zn) is a Cauchy sequence in BC if and only if to each ε > 0 there

corresponds an n0 (ε) such that |zn − zm| < ε for all n,m ≥ n0 (ε) . Also, z = (zn)
converges to a point in BC if and only if it is a Cauchy sequence in BC. On the

other hand, for any sequence (zn) in BC such that z : N→ BC, zn = β1ne1+ β2ne2

and for any z∗ = β∗
1e1 +β∗

2e2 ∈ BC, we have that zn → z∗ as n →+∞ if and only if

β1n → β∗
1 and β2n → β∗

2 as n →+∞.
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The following definition and lemma are recently introduced by Kumar and Saini

[11].

Definition 1.1. Let X be a nonempty set and dD : X ×X → D be a function such

that for any x,y,z ∈ X , the following properties hold :

(i) 0D - dD (x,y) and dD (x,y) = 0 if and only if x = y,
(ii) dD (x,y) = dD (y,x) ,

(iii) dD (x,z)- dD (x,y)+dD (y,z) .
Then dD is called a hyperbolic valued or D - valued metric on X and the pair

(X ,dD) is called a hyperbolic valued or D - valued metric space [11].

Example 1.2. 1) Let X = R and a mapping dD : R×R→ D be defined by

dD (x,y) := (1+ i j) |x− y|

for any x,y∈X where |.| is the usual real modulus. Then, (R,dD) is a hyperbolic

valued metric space.

2) Let X = BC, the mapping dD :BC×BC→D defined by dD (x,y) := |x− y|k for

any x,y ∈ BC is a hyperbolic valued metric.

Lemma 1.3. Every hyperbolic valued metric space is first countable [11].

2. SOME TOPOLOGICAL CONCEPTS ON HYPERBOLIC VALUED METRIC

SPACES

In this part, we define some topological structures related to hyperbolic valued

metric spaces and we discuss some of their properties which will be required in the

subsequent section.

Definition 2.1. Let (X ,dD) be a hyperbolic valued metric space, x ∈ X , and 0D �
r ∈D, we define a set BD (x,r)={y ∈X : dD (x,y) � r} which is called a hyperbolic

open ball of hyperbolic radius r with center x. Similarly, a hyperbolic closed ball of

hyperbolic radius r with center x is defined by BD (x,r) = {y ∈ X : dD (x,y) - r} .

Definition 2.2. Let (X ,dD) be a hyperbolic valued metric space and A⊂X . A point

x ∈ X is called a interior point of A if there exists 0� r ∈D such that BD (x,r)⊂ A.
A point x ∈ X is called a limit point of A if (BD (x,r)−{x})∩A 6= ∅ for every

0 � r ∈ D. The set of interior points of A is denoted by A◦D and the set of limit

points of A is denoted by A′D . We say that the subset A is a hyperbolic open set if

each element of A belong to A◦D . We say that the subset A is a hyperbolic closed

set if each limit point of A belong to A.

Lemma 2.3. Let (X ,dD) be a hyperbolic valued metric space. Then, each hyper-

bolic open ball of X is a hyperbolic open set.

Proof. Let x ∈ X , 0� r ∈ D and BD (x,r) be a hyperbolic open ball. We show that

BD (x,r) is a hyperbolic open set. Suppose that δ = r−dD (x,y) and z∈BD (y,δ) for

each y ∈ BD (x,r) .Thus, we can write dD (y,z)� δ = r−dD (x,y) . Then, it follows
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that dD (x,z) - dD (x,y) + dD (y,z) � r. This means that z ∈ BD (x,r) . Therefore,

BD (y,δ)⊂ BD (x,r) which shows that BD (x,r) is a hyperbolic open set. This com-

pletes the proof. �

Lemma 2.4. Let (X ,dD) be a hyperbolic valued metric space. Then, the following

statements hold :

(i) The sets X and ∅ are hyperbolic open sets.

(ii) The intersection of any finite family of hyperbolic open sets is also a hyper-

bolic open set.

(iii) The union of any countable family of hyperbolic open sets is also a hyperbolic

open set.

(iv) The union of any uncountable family of hyperbolic open sets is also a hyper-

bolic open set.

Proof. The first one is clear. Let us prove (ii). Let A1,A2, ...,Am be hyperbolic

open sets and y be any point of A1 ∪A2 ∪ ...∪Am. Then, there is a natural number

m0 ∈ {1,2, ...,m} such that y ∈ Am0
. Since Am0

is a hyperbolic open set, there exists

0 � r ∈ D such that BD (y,r) ⊂ Am0
. Therefore, we conclude that BD (y,r) ⊂ A1 ∪

A2∪ ...∪Am. This means that the union of any finite family of hyperbolic open sets

is a hyperbolic open set.

The proofs of (iii) and (iv) are similar to the proof of (ii). �

Corollary 2.5. Every hyperbolic valued metric space is a topological space based

on the set of all hyperbolic open sets.

Proof. The proof of Corollary 2.1 depends on properties of hyperbolic open sets

which are in Lemma 2.2. �

Proposition 2.6. Let (X ,dD) be a hyperbolic valued metric space and A⊂X . Then,

the set A is hyperbolic closed if and only if X −A is hyperbolic open.

Proof. The proof of this proposition is direct applications of definitions. �

Definition 2.7. Let (X ,dD) be a hyperbolic valued metric space, (xn) be any se-

quence in X and x ∈ X . If for every 0 � ε ∈ D there exists n0 ∈ N depending on ε
such that for all n ≥ n0

dD (xn,x)� ε,
then we say that (xn) is convergent with respect to the metric dD. We denote this by

limD
n→+∞

xn = x or xn
dD→ x as n →+∞.

If for every 0 � ε ∈ D there exists n0 ∈ N depending on ε such that for all

n,m ≥ n0
dD (xn,xm)� ε,

then we say that (xn) is a Cauchy sequence with respect to the metric dD.
If every Cauchy sequence with respect to the metric dD is convergent with respect

to the metric dD in (X ,dD) , then we say that (X ,dD) is a complete hyperbolic

valued metric space.
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Theorem 2.8. Let (X ,dD) be a hyperbolic valued metric space, x ∈ X and A ⊂ X .
Then, x ∈ A′D if and only if there exists a sequence (xn) contained in A with xn 6= x

for all n ∈ N and xn
dD→ x as n →+∞.

Proof. Let x ∈ A′D .Then, (BD (x,ε)−{x})∩A 6=∅ for every 0� ε ∈ D. Since the

hyperbolic valued metric space (X ,dD) is first countable, each point x in X has a

countable neighbourhood basis. For each x ∈ X we can take the neighbourhood ba-

sis of x, Bx
D to be the set of all hyperbolic open balls centered at x with radius 1

n
e1+

1
n
e2, Bx

D =
{

BD
(

x, 1
n
e1 +

1
n
e2

)

: n ∈ N
}

. In that case,
{

BD
(

x, 1
n
e1 +

1
n
e2

)

−{x}
}

∩
A 6= ∅ for all n ∈ N. Hence, we can find a point xn ∈ X different from x with

xn ∈ BD
(

x, 1
n
e1 +

1
n
e2

)

and xn ∈ A for each n ∈ N. Thus, we obtain that there exists

a sequence (xn) contained in A with xn 6= x for all n ∈N and xn
dD→ x as n →+∞.

Conversely, suppose that there exists a sequence (xn) contained in A with xn 6= x

for all n ∈ N and xn
dD→ x as n →+∞. In this case, for every 0� ε ∈ D there exists

n0 ∈ N depending on ε such that 0 � dD (xn,x) � ε for all n ≥ n0. Thus, we can

write xn ∈ BD (x,ε)−{x} for every 0 � ε ∈ D and for all n ≥ n0. This implies

that (BD (x,ε)−{x})∩A 6= ∅ for every 0 � ε ∈ D, that is, x ∈ A′D . The proof is

completed. �

Theorem 2.9. Let (X ,dD) be a hyperbolic valued metric space and A ⊂ X . Then,

the inclusion (A′D)′D ⊂ A′D holds.

Proof. Let x be any limit point of A′D . Then, for every 0� ε∈D, (BD (x,ε)−{x})∩
A′D 6= ∅. In this case,

(

BD
(

x, ε
2

)

−{x}
)

∩A′D 6= ∅. This implies that there exists

y ∈ A′D different from x with y ∈ BD
(

x, ε
2

)

. On the other hand, since y ∈ A′D , for

every 0 � ε ∈ D, (BD (y,ε)−{y})∩A 6= ∅. In this case,
(

BD
(

y, ε
2

)

−{y}
)

∩A 6=

∅.This implies that there exists z ∈ A different from y with z ∈ BD
(

y, ε
2

)

.
We assume that x /∈ A′D . Then, we can find a hyperbolic number 0� ε0 ∈D such

that (BD (x,ε0)−{x})∩A = ∅. We claim that z 6= x. In fact, if z = x, it would be

obtained that x ∈ (BD (y,ε)−{y})∩A for every 0 � ε ∈ D, that is, x ∈ A′D which

contradicts our assumption. Therefore, it is seen that z 6= x. Also, this means that

z ∈ (BD (x,ε)−{x})∩A for every 0 � ε ∈ D, but this is a contradiction. Then,

our assumption is wrong, x ∈ A′D and so the inclusion (A′D)′D ⊂ A′D holds. This

completes the proof. �

Proposition 2.10. Let (X ,dD) be a hyperbolic valued metric space and A ⊂ X .
Then, A∪A′D is a hyperbolic closed set. This set is called a hyperbolic closure of

the set A, which is denoted by A
D
.

Proof. The proof depends on definition of limit point, Proposition 2.1 and Theorem

2.2. �

Proposition 2.11. Let (X ,dD) be a hyperbolic valued metric space, x ∈ X and

A ⊂ X . Then,
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(i) A
D
= A if and only if A is hyperbolic closed.

(ii) x ∈ A
D

if and only if BD (x,ε)∩A 6=∅ for every 0� ε ∈D.

(iii) x ∈ A
D

if and only if there exists a sequence (xn) contained in A such that

xn
dD→ x as n →+∞.

Proof. The proof of all parts of Proposition 2.3 is clear from Proposition 2.2. �

Proposition 2.12. Let (X ,dD) be a hyperbolic valued metric space, (xn) be a se-

quence in X , x ∈ X and xn
dD→ x as n →+∞. Then,

(i) The limit point of the sequence (xn) is unique.

(ii) The sequence (xn) is a Cauchy sequence with respect to the metric dD.
(iii) All subsequences of the sequence (xn) converges to x with respect to the metric

dD.

Proof. (i) The proof is clear with a routine verification.

(ii) Since xn
dD→ x as n→+∞, for every 0D� ε ∈D there exists n0 ∈N depending

on ε such that dD (xn,x)�
ε
2

for all n ≥ n0. In this case,

dD (xn,xm)- dD (xn,x)+dD (xm,x)�
ε

2
+

ε

2
= ε

for every 0� ε ∈ D and for all n,m ≥ n0.
This means that (xn) is a Cauchy sequence with respect to the metric dD.

(iii) Let (yn) be any subsequence of (xn) . Since xn
dD→ x as n → +∞, for every

0� ε ∈D there exists n1 ∈N depending on ε such that for all n ≥ n1, dD (xn,x)�
ε
2

and also, (xn) is a Cauchy sequence with respect to the metric dD by (ii), that is,

there exists n2 ∈N depending on ε such that for all n,m ≥ n2, dD (xn,xm)� ε
2
. Since

dD (yn,x)- dD (yn,xn)+dD (xn,x) for all n ∈N, if we take n0 = max{n1,n2} , then

dD (yn,x) �
ε

2
+

ε

2
= ε

for all n ≥ n0 which implies that yn
dD→ x as n →+∞.

Then, the proof of all parts of Proposition 2.4 is complete. �

Lemma 2.13. Let (X ,dD) be a hyperbolic valued metric space, (xn) be any se-

quence in X and x ∈ X . Then, the sequence (xn) converges to x with respect to the

metric dD if and only if |dD (xn,x)| → 0 as n →+∞.

Proof. Suppose that (xn) converges to x with respect to the metric dD. For a chosen

real number c > 0, let ε = ce1+ce2. Then, ε ∈D and 0� ε. Thus, there is a natural

number n0 such that dD (xn,x)� ε whenever n ≥ n0. In this case, |dD (xn,x)|< |ε|=
c for all n ≥ n0. This implies that |dD (xn,x)| → 0 as n →+∞.

Conversely, suppose that |dD (xn,x)| → 0 as n →+∞. We claim that for a given

hyperbolic number ε = ε1e1 + ε2e2 with ε1,ε2 > 0, there is a real number δ > 0

such that for any α = α1e1 +α2e2 ∈ D
α ≺ ε whenever |α|< δ.
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In fact, set δ = min
{

ε1

2
, ε2

2

}

for every 0 ≺ ε ∈ D. If |α| < δ, we obtain that

α1 < ε1 and α2 < ε2, that is, α ≺ ε.
Also, for this δ, there is a natural number n0 such that |dD (xn,x)| < δ for all

n ≥ n0. This implies that dD (xn,x) ≺ ε for all n ≥ n0. Thus, (xn) converges to x

with respect to the metric dD. The proof is completed. �

Corollary 2.14. Let (X ,dD) be a hyperbolic valued metric space, (xn) be any se-

quence in X and x ∈ X . Then, the sequence (xn) converges to x with respect to the

metric dD if and only if dD (xn,x) = |dD (xn,x)|k → 0 as n →+∞.

Proof. The proof is clear from Lemma 2.3. �

Lemma 2.15. Let (X ,dD) be a hyperbolic valued metric space and (xn) be any

sequence in X . Then, the sequence (xn) is a Cauchy sequence with respect to the

metric dD if and only if for all m ∈ N, |dD (xn,xn+m)| → 0 as n →+∞.

Proof. Suppose that (xn) is a Cauchy sequence with respect to the metric dD. For a

chosen real number c > 0, let ε = ce1 + ce2. Then, ε ∈ D and 0� ε. Thus, there is

a natural number n0 such that dD (xn,xk)� ε whenever n,k ≥ n0. Since there exists

a natural number m such that k = m+ n for each k greater than n, we can write

dD (xn,xn+m) � ε for all n ≥ n0. Therefore, |dD (xn,xn+m)|< |ε|= c for all n ≥ n0.
This implies that |dD (xn,xn+m)| → 0 as n →+∞.

Conversely, suppose that |dD (xn,xn+m)| → 0 as n →+∞. Then, for a given 0�
ε ∈D, there is a real number δ > 0 such that for any α = α1e1 +α2e2 ∈ D

α ≺ ε whenever |α|< δ.

For this δ, there is a natural number n0 such that |dD (xn,xn+m)|< δ for all n≥ n0.
This means that dD (xn,xn+m) ≺ ε for all n ≥ n0. Then, we obtain that (xn) is a

Cauchy sequence with respect to the metric dD. �

Corollary 2.16. Let (X ,dD) be a hyperbolic valued metric space and (xn) be any

sequence in X . Then, the sequence (xn) is a Cauchy sequence with respect to the

metric dD if and only if for all m ∈ N, dD (xn,xn+m) = |dD (xn,xn+m)|k → 0 as n →
+∞.

Proof. The proof is clear from Lemma 2.4. �

Proposition 2.17. Let (X ,dD) be a hyperbolic valued metric space. Then, we have

the following statement :

|dD (x,z)−dD (y,z)|k - dD (x,y)

for all x,y,z ∈ X .

Proof. We know dD (x,z) - dD (x,y)+ dD (y,z) and dD (y,z) - dD (y,x)+ dD (x,z)
for any x,y,z ∈ X . Thus, we have

−dD (y,x)- dD (x,z)−dD (y,z)- dD (x,y) .



HYPERBOLIC CONTRACTION MAPPINGS 231

Let dD (y,x) = α1e1 +α2e2, dD (x,z) = β1e1 +β2e2, dD (y,z) = γ1e1 + γ2e2 for

any α1,α2,β1,β2,γ1,γ2 ∈ R+∪{0} . In this case, we can write |β1 − γ1| ≤ α1 and

|β2 − γ2| ≤ α2. This implies that

|dD (x,z)−dD (y,z)|k = |β1 − γ1|e1 + |β2 − γ2|e2 - α1e1 +α2e2 = dD (y,x) .

The proof is completed. �

Theorem 2.18. Let (X ,dD) be a hyperbolic valued metric space, (xn) be any se-

quence in X , x ∈ X and xn
dD→ x as n →+∞. Then, for every y ∈ X ,

|dD (xn,y)−dD (x,y)|k → 0.

Proof. We know that |dD (xn,y)−dD (x,y)|k - dD (xn,x) for every y ∈ X and all n ∈

N by Proposition 2.5. Since xn
dD→ x as n→+∞, it follows that |dD (xn,y)−dD (x,y)|k

→ 0 as n →+∞ which is what we want to see. Also, this means that dD (xn,y)→
dD (x,y) . The proof is completed. �

Definition 2.19. Let
(

X ,dX
D

)

and
(

Y,dY
D

)

be two hyperbolic valued metric spaces

and f : X →Y be a function. If for every 0� ε ∈D there exists 0� δ ∈D such that

f (BD (x,δ))⊂ BD ( f (x) ,ε) ,

then we say that the function f is hyperbolic continuous at x ∈ X .

Theorem 2.20. Let
(

X ,dX
D

)

and
(

Y,dY
D

)

be two hyperbolic valued metric spaces,

f : X → Y be a function and x ∈ X . Then, the function f is hyperbolic continuous

at the point x if and only if f (xn)
dY
D→ f (x) for every sequence (xn) with xn

dX
D→ x as

n →+∞ .

Proof. Let f be hyperbolic continuous at the point x∈ X . Then, for every 0� ε ∈D

there exists 0� δ ∈D such that f (BD (x,δ))⊂ BD ( f (x) ,ε) . Also, since xn

dX
D→ x as

n →+∞, there exists a natural number n0 such that dX
D (xn,x)< δ for all n ≥ n0. In

that case, xn ∈ BD (x,δ) for all n ≥ n0, and so f (xn) ∈ BD ( f (x) ,ε) for all n ≥ n0

by hypothesis. Thus, we obtain that f (xn)
dY
D→ f (x) as n →+∞.

Conversely, suppose that f (xn)
dY
D→ f (x) as n → +∞ for every sequence (xn)

with xn

dX
D→ x as n →+∞. Assume that the function f is not hyperbolic continuous

at x ∈ X . Then, there is some 0� ε ∈ D such that

f (BD (x,δ)) BD ( f (x) ,ε)

for every 0 � δ ∈ D. Since the hyperbolic valued metric space
(

X ,dX
D

)

is first

countable, each point x in X has a countable neighbourhood basis. For each x ∈ X

we can take the neighbourhood basis of x, Bx
D to be the set of all hyperbolic open

balls centered at x with radius 1
n
e1 +

1
n
e2

Bx
D =

{

BD

(

x,
1

n
e1 +

1

n
e2

)

: n ∈ N

}

.
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In that case, f
(

BD
(

x, 1
n
e1 +

1
n
e2

))

 BD ( f (x) ,ε) for all n ∈ N. Hence, we can

find a point xn ∈ X with xn ∈ BD
(

x, 1
n
e1 +

1
n
e2

)

, but f (xn) /∈ BD ( f (x) ,ε) for each

n ∈ N. This implies that dD (xn,x) � 1
n
e1 +

1
n
e2 and dD ( f (xn) , f (x)) ⊀ ε for each

n ∈N. Then, xn

dX
D→ x as n →+∞, but ( f (xn)) is not convergent to f (x) with respect

to the metric dY
D. This yields a contradiction and so f is hyperbolic continuous at

the point x ∈ X . This completes the proof. �

Theorem 2.21. The following statements are true for α ∈ D :

(i) α0 = 1.
(ii) If α ∈ D+ , α 6= 1 and 1−α is invertible, then

1+α+α2 + ...+αn =
1−αn+1

1−α
(2.1)

for all n ∈ N.
(iii) If α ∈ D+ and α ≺ 1, then 0 - αn ≺ 1 for all n ∈ N and αn → 0.

Proof. (i) Let α = α1e1+ α2e2. Then, α0 = α0
1e1+ α0

2e2 = 1e1 +1e2 = 1.
(ii) For n = 0 and n = 1, the proof is clear.

We assume that (2.1) holds for n = k. Now, we want to show that (2.1) holds for

n = k+1. Consider

1+α+α2+ ...+αk +αk+1 =
1−αk+1

1−α
+αk+1

=
1−αk+1

1−α
+

(1−α)αk+1

1−α

=
1−αk+1 +αk+1 −αk+2

1−α

=
1−αk+2

1−α
.

Then, (2.1) is true for n = k + 1. Thus, the mathematical induction principle

completes the proof.

(iii) Let α = α1e1+ α2e2. Since 0 - α = α1e1+ α2e2 ≺ 1 = 1e1 +1e2, we write

0 ≤ α1 < 1 and 0 ≤ α2 < 1. In this case, 0 ≤ αn
1 < 1, 0 ≤ αn

2 < 1 for all n ∈ N and

so αn
1 → 0, αn

2 → 0 as n →+∞. On the other hand, since αn = αn
1e1+ αn

2e2 for all

n ∈ N. Thus, 0 - αn ≺ 1 for all n ∈ N and αn → 0.
Then, the proof of all parts of Theorem 2.5 is complete. �

3. MAIN RESULTS

In this part, we first define the hyperbolic contraction mapping, then introduce

two fixed point theorems for hyperbolic valued metric spaces and finally we give

an example for main result.

Definition 3.1. Let X be a set and T be a mapping from X to X . A fixed point of T

is a point x ∈ X such that T x = x.
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Definition 3.2. Suppose that (X ,dD) is a complete hyperbolic valued metric space,

T : X → X , α ∈D+ and 1−α is invertible. The mapping T is said to satisfy hyper-

bolic Lipschitz condition if

dD (T x,Ty)- αdD (x,y)

holds for all x,y ∈ X . If α ≺ 1, then the mapping T is called a hyperbolic contrac-

tion mapping on X.

Theorem 3.3. Let (X ,dD) be a complete hyperbolic valued metric space and T be

a hyperbolic contraction mapping on X . Then, T has a unique fixed point.

Proof. Let x0 be any point in X . We define the iterative sequence (xn) ,

x0,
T x0 = x1,

T x1 = T T x0 = T 2x0 = x2,
...

T nx0 = xn,

and we show that the sequence (xn) is a Cauchy sequence with respect to the metric

dD. For all m,n ∈ N if m < n, then

dD (xm,xn) = dD (T
mx0,T

nx0)

= dD
(

T mx0,T
mT n−mx0

)

- αmdD
(

x0,T
n−mx0

)

= αmdD (x0,xn−m)

- αm {dD (x0,x1)+dD (x1,x2)+ ...+dD (xn−m−1,xn−m)}

= αm
{

dD (x0,x1)+dD (T x0,T x1)+ ...+dD
(

T n−m−1x0,T
n−m−1x1

)}

- αm
{

dD (x0,x1)+αdD (x0,x1)+ ...+αn−m−1dD (x0,x1)
}

= αmdD (x0,x1)
{

1+α+ ...+αn−m−1
}

= αmdD (x0,x1)
1−αn−m

1−α

≺ αmdD (x0,x1)
1

1−α
.

Since dD (x0,x1)∈D+ is fixed and αm ≺ 1, we can make αmdD (x0,x1)
1

1−α as small

as we want by taking m sufficiently large. It follows that (xn) is a Cauchy sequence

with respect to the metric dD. Since (X ,dD) is a complete hyperbolic valued metric

space, there exists a point x ∈ X such that xn
dD→ x as n →+∞. In that case, x = T x,

otherwise 0� dD (x,T x) and we would have

dD (x,T x)- dD (x,xn)+dD (xn,T x)

= dD (x,xn)+dD
(

T T n−1x0,T x
)

= dD (x,xn)+dD (T xn−1,T x)

- dD (x,xn)+αdD (xn−1,x) .
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Making n → +∞, one gets dD (x,T x) = 0 which is a contradiction and hence x =
T x. This shows that x is a fixed point of the mapping T.

To prove the uniqueness of fixed point, let x∗ be another fixed point of T, that is,

T x∗ = x∗. Then,

dD (x,x
∗) = dD (T x,T x∗)- αdD (x,x

∗)≺ dD (x,x
∗)

and so dD (x,x
∗) = 0. We obtain that x∗ = x. �

Theorem 3.4. Let (X ,dD) be a complete hyperbolic valued metric space and T :

X → X satify:
dD (T

nx,T ny)- αdD (x,y)

for all x,y ∈ X , where α ∈D+ , 1−α is invertible and α ≺ 1. Then, T has a unique

fixed point.

Proof. By Theorem 3.1, T n has a unique fixed point, that is, there is a unique x ∈ X

such that T nx = x. Since

dD (T x,x) = dD (T T nx,T nx) = dD (T
nT x,T nx)- αdD (T x,x) ≺ dD (T x,x) ,

we obtain that dD (T x,x) = 0 and hence T x = x.
To show the uniqueness of fixed point of the mapping T , let x∗ be another fixed

point of T, that is, T x∗ = x∗. In this case, T nx∗ = x∗ and so, by hypothesis we obtain

that
dD (x,x

∗) = dD (T
nx,T nx∗)- αdD (x,x

∗)≺ dD (x,x
∗)

and so x∗ = x. �

The following example supports Theorem 3.1.

Example 3.5. Let

X1 = {γ = γ1e1 + γ2e2 ∈D : γ1 = γ2,γ1 ≥ 0} ,

X2 = {γ = γ1e1 + γ2e2 ∈D : γ1 =−γ2,γ1 ≥ 0}

and X = X1 ∪X2. Define a mapping dD : X ×X → D as

dD (α,β) =



















7
6
|α1 −β1|e1 +

9
8
|α1 −β1|e2,α,β ∈ X1

5
6
|α1 −β1|e1 +

7
8
|α1 −β1|e2,α,β ∈ X2

(

7
6
α1 +

5
6
β1

)

e1 +
(

9
8
α1 +

7
8
β1

)

e2,α ∈ X1,β ∈ X2
(

5
6
α1 +

7
6
β1

)

e1 +
(

7
8
α1 +

9
8
β1

)

e2,α ∈ X2,β ∈ X1

,

where α = α1e1 +α2e2,β = β1e1 + β2e2, then (X ,dD) is a complete hyperbolic

valued metric space.

Consider a mapping T on X with γ = γ1e1 + γ2e2 as

T γ =

{

γ1e1 − γ1e2,γ ∈ X1
γ1

2
e1 +

γ1

2
e2,γ ∈ X2

.
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In that case,

dD (T α,T β) =



















5
6
|α1 −β1|e1 +

7
8
|α1 −β1|e2,α,β ∈ X1

7
12
|α1 −β1|e1 +

9
16
|α1 −β1|e2,α,β ∈ X2

(

5
6
α1 +

7
12

β1

)

e1 +
(

7
8
α1 +

9
16

β1

)

e2,α ∈ X1,β ∈ X2
(

7
12

α1 +
5
6
β1

)

e1 +
(

9
16

α1 +
7
8
β1

)

e2,α ∈ X2,β ∈ X1

≺



















|α1 −β1|e1 + |α1 −β1|e2,α,β ∈ X1

5
7
|α1 −β1|e1 +

7
9
|α1 −β1|e2,α,β ∈ X2

(

α1 +
5
7
β1

)

e1 +
(

α1 +
7
9
β1

)

e2,α ∈ X1,β ∈ X2
(

5
7
α1 +β1

)

e1 +
(

7
9
α1 +β1

)

e2,α ∈ X2,β ∈ X1

=

(

6

7
e1 +

8

9
e2

)



















7
6
|α1 −β1|e1 +

9
8
|α1 −β1|e2,α,β ∈ X1

5
6
|α1 −β1|e1 +

7
8
|α1 −β1|e2,α,β ∈ X2

(

7
6
α1 +

5
6
β1

)

e1 +
(

9
8
α1 +

7
8
β1

)

e2,α ∈ X1,β ∈ X2
(

5
6
α1 +

7
6
β1

)

e1 +
(

7
8
α1 +

9
8
β1

)

e2,α ∈ X2,β ∈ X1

=

(

6

7
e1 +

8

9
e2

)

dD (α,β) ,

that is, dD (T α,T β)≺
(

6
7
e1 +

8
9
e2

)

dD (α,β) holds for all α,β ∈ X . Thus, the map-

ping T is a hyperbolic contraction mapping since 0 ≺ 6
7
e1 +

8
9
e2 ≺ 1 and 1 −

(

6
7
e1 +

8
9
e2

)

= 1
7
e1 +

1
9
e2 is invertible. Therefore, T has a fixed point γ = 0 ∈ X ,

which is unique.

4. CONCLUDING REMARKS

In this paper, fixed point theorems have been studied for hyperbolic valued met-

ric spaces, as stated in Theorem 3.1 and Theorem 3.2. For the future, firstly, we

will develop common fixed point theorems for hyperbolic valued metric spaces,

later we will define hyperbolic valued S− metric spaces, hyperbolic valued b−
metric spaces and hyperbolic valued G− metric spaces and we will investigate

fixed point theorems and common fixed point theorems for them.
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