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POINTWISE FOURIER INVERSION OF DISTRIBUTIONS ON
PROJECTIVE SPACES

FRANCISCO JAVIER GONALEZ VIELI

ABSTRACT. Given a distributionT on the real, complex or quaternionic projec-
tive space we define, in analogy to the work of Lojasiewice, alue ofT at a
point z of the projective space and we show thafl ihas the value at z, then
the Fourier-Laplace series ®fatzis Abel-summable ta.

1. INTRODUCTION.
Consider the periodic distributioh with period 2tdefined by

21—¢

T(¢) = lim cot(t/2)d(t)dt

e—0+

for all test functiongp (T is the principal value of c@t/2)). Its Fourier coefficients,
given by FT (k) := T(e ) /2m, are equal to-i for k > 0, 0 fork = 0 andi for
k < 0. Hence the Fourier series of

> FT(ke,

kez
does not converge at antye [—T1,77; generally one only reads that it converges
to T in the sense of distributions. In fact it is possible to restorct T from T
using pointwise convergence only (and no test functioms;Rourier series of
is Abel-summable to ct/2) at everyt # 0:

lim S tMFT (ke = lim ( +Z ret)k +Z (re )k
L&z r—1 K= K=1
. ret rett
:r"—m(_l)l—rét 1-ret
— im 2r sint
r—1_14r2—2rcost

= cot(t/2).
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This result is general: Walter [8, p.146] proved that if aipdic distributionT

in one variable has the valueat a pointt (in the sense of Lojasiewicz [5]), then
the Fourier series df att is Cesaro- and hence Abel-summabla td complete
characterization for Fourier series and Fourier integosd®R was given by [7].
Note that the pointwise convergence or summability of exjmars of distributions
has been investigated with respect to other orthogonaémsstsuch as wavelets
(see [4], [8], [9]).

In [2] we have generalized Walter's result to the spheigs' (n > 2). For
that we had to define the notion of value at a point for distidims on the sphere
analogous to the one of Lojasiewicz; our definition only ubted_aplace-Beltrami
operator and its iterates instead of more general diffedeaperators. We have
then been able to show that,Tifhas the valug at& € S"1, the Fourier-Laplace
series ofT at¢ is Abel-summable ta.

Here we will show in section 4 that from the result on the spheg can obtain a
similar result about the Fourier-Laplace expansion ofithistions on real, complex
and quaternionic projective spaces. In sections 2 and 3tnadurce the necessary
tools on spheres and on projective spaces, respectively.

2. POINTWISE FOURIER INVERSION ON THE SPHERE

The restriction toS"1, the unit sphere iR", of the non-radial part of the
Laplace operato/A on R" is the Laplace-Beltrami operatoon S" 1, As. It is
self-adjoint with respect to the scalar productldfS"*,do,_ 1) and commutes
with rotations (we choosdo,,_1 hormalized).

A spherical harmonic of degree | 8! (I € No) is the restriction taS"!
of a polynomial onR" which is harmonic and homogeneous of degreeWe
write S#(S"1) the set of spherical harmonics of degteeEvery non zero el-
ement ofs A, (S"1) is an eigenfunction afs with eigenvalue—I(n+1 —2). Let
(E},...,E}) be an orthonormal basis of#{|(S"1). The functionz(Z,n) :=

z‘jj':l E!(Q)E|(n) is called thezonal of degree.l For all{, n € S, Z({,n) =
Z(n,{) e Rand

Z(pL,n) =2z(,p'n) (2.1)
if p € O(n) [6, lemma 2.8 p.143].

We write D(S"1) the set of test functions arf (S"~1) the set ofdistributions
onS"1. The support off € 2/(S"~1) is written supf . TheFourier-Laplace se-
ries of a distributionT onS"~tis 5" M (T), whereM (T)(Z) := T[n — Z(Z,n)]
for £ € S"1; this series converges b in the sense of distributions. In [2] we
introduced the following:

Definition 2.1. A distribution T€ 2'(S"1) has the value € C in { € S"Lif there
exist pc No, F € C(S"1) and f € C?P(S"1) such that
(1) in the sense of distributions F AEF on a neighbourhood df;
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(2) F(n) = f(n)+o[d(¢,n)P] forn — ;
(3) ARF(Q) =T.

We then obtained [2, theorem 3.1]:

Theorem 2.1. Let T € 2/(S"1), & e S™tandt € C. If T has the value in &,

then
+o0

lim ' m(T)E) =1

r—1_ =

3. PROJECTIVE SPACES

Here we will write K for either R, C or H (the algebra of quaternions) and
let d := dimg K. We also defindJ (K) := {k € K : k| = 1} and notedk the
normalized Haar measure Of(K).

Forx, y € K1\ {0}, we write x ~ y if there existsk € K* such thatx = ky
and let[x] the equivalence class &f Theprojective space of dimension n &his
P'(K) := K1\ {0}/ ~; it is a compact symmetric space of rank one (see [3]).
Identifying K™ with R9™4, we see thaP"(K) = SI™d-1/ ~. The connected
component of the identity in the group of isometrie$6fKK) is a group we denote
SK(n+1); in fact SK(n+1) = SQn+1), SU(n+1) or Spn+1) for K=R, C
or H respectively (see [1]). Moreover, the actionS(n+ 1) on P"(K) is the one
induced by the action of"9-1 of SK(n+ 1) as a subgroup 8Q(dn+d). We
also have, from the action of (K) on K"+,

U(K) < O(dn+d). (3.1)

If gis aU(K)-invariant function orS®*9-1 we can define a functiog/ on
P'(K) by gl([n]) :==g(n). Conversely, iff is a function onP"(K), we get, by
putting f1(n) := f([n]), aU (K)-invariant functionf1 on $4Md-1 with (f1)|=
f. Now, given an arbitrary functiog on S99-1, we define aU (K)-invariant
functiong? onS™ 41 by g (n) := [, i) 9(kn) dk (whengis U (K)-invariant,gf =
g). We then putg’ := (gf)|. If T is a distribution onP"(K), we let, for¢ ¢
D(SIHA-1) T4(¢) := T(¢"). ThenT1 is a distribution orS4™9-1 of the same
order asT and supf@ 1= {n € 991 : [n] € suppT }.

We writed p, the unique normalized Radon measuré?8(K) which isSK(n+
1)-invariant. The link betweed p, anddogp; ¢-1 IS:

/dedilg(Z)dodmd—l(Z) Z/PH(K)gb(z)dpn(z)

for everyg € D(S"9-1). Finally, we can define the Laplace-Beltrami operator
Ap on P(K) by Ap(f) := (As(f1))], using (3.1) and the facts that is U (K)-
invariant and\s commutes with all rotations. Thex commutes with all elements
of SK(n+1).
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In analogy to the case of the sphere, we now introduce theWoih

Definition 3.1. A distribution Te 2'(P"(K)) has the valug € C in ze P"(K) if
there exist ¢ Ny, F € C(P"(K)) and f< C2(P"(K)) such that

(1) in the sense of distributions F AAF on a neighbourhood of z;
(2) F(w) = f(w)+o[d(z,w)q] forw — z;
(3) ARf(z) =

The distributionT has the value in [n] € P"(K) if and only if T1 has the value
inn e S4"A4-1 Moreover, ifT is equal in the sense of distributions to a continuous
functionF on a neighbourhood & thenT has the valué€(z) in z

4. FOURIER INVERSION ONP"(K).
GivenT € D'(P"(K)), My(T1) € SH,(S™9-1) isU (K)-invariant:
M(TH(U) =TH(n— Z(ug,n))
=T(Z(u, .))
—T(In] > / Z(uZ, kn) dK

i—>/ 7,(Z,ukn) dk)
H/ Z,(Z,kn)dK)

—T@E . )) = MTHQ)

(whereu € U (K), Z € S™d-1) using (2.1) and (3.1) for the fourth equality. Hence
we can define a functiog (T) on P"(K) by =(T) := (IM;(T1))J. Sincel,(T1)
is either 0 or an eigenfunction df, =(T) is either O or an eigenfunction @fs.
Moreover, ifl # m, Z(T) and =,(T) are orthogonal iL?(P"(K),dp,). This
justifies the naméourier-Laplace series of e give toy,") =(T); this series
converges td in the sense of distributions:

N

Jm 3 EM®) = m 3 [ M @eEdn)
e Zo/gdmdl M (T1)(Q01) dognia-1(0)

N
= Jm, 5 M)
=THO = T(@1)) = T(@)

if ¢ € D(P"(K)). From the above discussion and Theorem 2.1 we deduce:
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Theorem 4.1. Let T € 2'(P"(K)), ze P(K) andt € C. If T has the value in z,
then

r—1_

+0o0
lim S r=(T)(2 =1
=0
Remark4.L The theorem shows that if the valueDfin z exists, it is unique.
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