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POINTWISE FOURIER INVERSION OF DISTRIBUTIONS ON
PROJECTIVE SPACES

FRANCISCO JAVIER GONŹALEZ VIELI

ABSTRACT. Given a distributionT on the real, complex or quaternionic projec-
tive space we define, in analogy to the work of Łojasiewicz, the value ofT at a
point z of the projective space and we show that, ifT has the valueτ at z, then
the Fourier-Laplace series ofT at z is Abel-summable toτ.

1. INTRODUCTION.

Consider the periodic distributionT with period 2π defined by

T(ϕ) := lim
ε→0+

∫ 2π−ε

ε
cot(t/2)ϕ(t)dt,

for all test functionsϕ (T is the principal value of cot(t/2)). Its Fourier coefficients,
given byF T(k) := T(e−ikt)/2π, are equal to−i for k > 0, 0 for k = 0 andi for
k< 0. Hence the Fourier series ofT,

∑
k∈Z

F T(k)eikt ,

does not converge at anyt ∈ [−π,π]; generally one only reads that it converges
to T in the sense of distributions. In fact it is possible to reconstructT from F T
using pointwise convergence only (and no test functions); the Fourier series ofT
is Abel-summable to cot(t/2) at everyt 6= 0:

lim
r→1−

∑
k∈Z

r |k|F T(k)eikt = lim
r→1−

(−i)
+∞

∑
k=1

(r eit )k+ i
+∞

∑
k=1

(r e−it )k

= lim
r→1−

(−i)
r eit

1− r eit + i
r e−it

1− r e−it

= lim
r→1−

2r sint
1+ r2−2r cost

= cot(t/2).
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This result is general: Walter [8, p.146] proved that if a periodic distributionT
in one variable has the valueτ at a pointt (in the sense of Łojasiewicz [5]), then
the Fourier series ofT at t is Cesàro- and hence Abel-summable toτ. A complete
characterization for Fourier series and Fourier integralson R was given by [7].
Note that the pointwise convergence or summability of expansions of distributions
has been investigated with respect to other orthogonal systems, such as wavelets
(see [4], [8], [9]).

In [2] we have generalized Walter’s result to the spheresS
n−1 (n ≥ 2). For

that we had to define the notion of value at a point for distributions on the sphere
analogous to the one of Łojasiewicz; our definition only usesthe Laplace-Beltrami
operator and its iterates instead of more general differential operators. We have
then been able to show that, ifT has the valueτ at ξ ∈ S

n−1, the Fourier-Laplace
series ofT at ξ is Abel-summable toτ.

Here we will show in section 4 that from the result on the sphere we can obtain a
similar result about the Fourier-Laplace expansion of distributions on real, complex
and quaternionic projective spaces. In sections 2 and 3 we introduce the necessary
tools on spheres and on projective spaces, respectively.

2. POINTWISE FOURIER INVERSION ON THE SPHERE.

The restriction toSn−1, the unit sphere inRn, of the non-radial part of the
Laplace operator∆ on R

n is the Laplace-Beltrami operatoron S
n−1, ∆S. It is

self-adjoint with respect to the scalar product ofL2(Sn−1,dσn−1) and commutes
with rotations (we choosedσn−1 normalized).

A spherical harmonic of degree l onSn−1 (l ∈ N0) is the restriction toSn−1

of a polynomial onRn which is harmonic and homogeneous of degreel . We
write SH l (S

n−1) the set of spherical harmonics of degreel . Every non zero el-
ement ofSH l (S

n−1) is an eigenfunction of∆S with eigenvalue−l(n+ l −2). Let
(El

1, . . . ,E
l
dl
) be an orthonormal basis ofSH l (S

n−1). The functionZl (ζ,η) :=

∑dl
j=1El

j(ζ)El
j(η) is called thezonal of degree l. For all ζ, η ∈ S

n−1, Zl(ζ,η) =
Zl (η,ζ) ∈ R and

Zl(ρζ,η) = Zl(ζ,ρ−1η) (2.1)

if ρ ∈ O(n) [6, lemma 2.8 p.143].
We writeD(Sn−1) the set of test functions andD ′(Sn−1) the set ofdistributions

onS
n−1. The support ofT ∈ D ′(Sn−1) is written suppT. TheFourier-Laplace se-

riesof a distributionT onSn−1 is ∑+∞
l=0 Πl(T), whereΠl (T)(ζ) := T[η 7→ Zl (ζ,η)]

for ζ ∈ S
n−1; this series converges toT in the sense of distributions. In [2] we

introduced the following:

Definition 2.1. A distribution T∈ D ′(Sn−1) has the valueτ ∈C in ζ ∈ S
n−1 if there

exist p∈ N0, F ∈C(Sn−1) and f∈C2p(Sn−1) such that

(1) in the sense of distributions T= ∆p
S
F on a neighbourhood ofζ;
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(2) F(η) = f (η)+o[d(ζ,η)p] for η → ζ;
(3) ∆p

S
f (ζ) = τ.

We then obtained [2, theorem 3.1]:

Theorem 2.1. Let T ∈ D ′(Sn−1), ξ ∈ S
n−1 and τ ∈ C. If T has the valueτ in ξ,

then

lim
r→1−

+∞

∑
l=0

r l Πl (T)(ξ) = τ.

3. PROJECTIVE SPACES.

Here we will writeK for eitherR, C or H (the algebra of quaternions) and
let d := dimR K. We also defineU(K) := {k ∈ K : ‖k‖ = 1} and notedk the
normalized Haar measure ofU(K).

For x, y ∈ K
n+1 \ {0}, we write x ∼ y if there existsk ∈ K

∗ such thatx = ky
and let[x] the equivalence class ofx. Theprojective space of dimension n onK is
Pn(K) := K

n+1 \ {0}/ ∼; it is a compact symmetric space of rank one (see [3]).
Identifying K

n+1 with R
dn+d, we see thatPn(K) = S

dn+d−1/ ∼. The connected
component of the identity in the group of isometries ofPn(K) is a group we denote
SK(n+1); in fact SK(n+1) = SO(n+1), SU(n+1) or Sp(n+1) for K = R, C
orH respectively (see [1]). Moreover, the action ofSK(n+1) onPn(K) is the one
induced by the action onSdn+d−1 of SK(n+1) as a subgroup ofSO(dn+d). We
also have, from the action ofU(K) onKn+1,

U(K)< O(dn+d). (3.1)

If g is aU(K)-invariant function onSdn+d−1, we can define a functiong↓ on
Pn(K) by g↓([η]) := g(η). Conversely, if f is a function onPn(K), we get, by
putting f ↑(η) := f ([η]), aU(K)-invariant function f ↑ on S

dn+d−1 with ( f ↑)↓=
f . Now, given an arbitrary functiong on S

dn+d−1, we define aU(K)-invariant
functiong♯ onSdn+d−1 by g♯(η) :=

∫
U(K)g(kη)dk (wheng isU(K)-invariant,g♯ =

g). We then putg♭ := (g♯)↓. If T is a distribution onPn(K), we let, for ϕ ∈

D(Sdn+d−1), T↑(ϕ) := T(ϕ♭). ThenT↑ is a distribution onSdn+d−1 of the same
order asT and suppT↑= {η ∈ S

dn+d−1 : [η] ∈ suppT}.
We writedpn the unique normalized Radon measure onPn(K) which isSK(n+

1)-invariant. The link betweendpn anddσdn+d−1 is:∫
Sdn+d−1

g(ζ)dσdn+d−1(ζ) =
∫

Pn(K)
g♭(z)dpn(z)

for everyg ∈ D(Sdn+d−1). Finally, we can define the Laplace-Beltrami operator
∆P on Pn(K) by ∆P( f ) := (∆S( f ↑))↓, using (3.1) and the facts thatf ↑ is U(K)-
invariant and∆S commutes with all rotations. Then∆P commutes with all elements
of SK(n+1).
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In analogy to the case of the sphere, we now introduce the following

Definition 3.1. A distribution T∈ D ′(Pn(K)) has the valueτ ∈ C in z∈ Pn(K) if
there exist q∈ N0, F ∈C(Pn(K)) and f∈C2q(Pn(K)) such that

(1) in the sense of distributions T= ∆q
PF on a neighbourhood of z;

(2) F(w) = f (w)+o[d(z,w)q] for w→ z;
(3) ∆q

P f (z) = τ.

The distributionT has the valueτ in [η]∈Pn(K) if and only if T↑ has the valueτ
in η ∈ S

dn+d−1. Moreover, ifT is equal in the sense of distributions to a continuous
functionF on a neighbourhood ofz, thenT has the valueF(z) in z.

4. FOURIER INVERSION ONPn(K).

GivenT ∈ D ′(Pn(K)), Πl (T↑) ∈ SH l (S
dn+d−1) isU(K)-invariant:

Πl(T↑)(uζ) = T↑(η 7→ Zl (uζ,η))

= T(Zl(uζ, . )♭)

= T([η] 7→
∫

U(K)
Zl (uζ,kη)dk)

= T([η] 7→
∫

U(K)
Zl (ζ,u−1kη)dk)

= T([η] 7→
∫

U(K)
Zl (ζ,kη)dk)

= T(Zl(ζ, . )♭) = Πl (T↑)(ζ)

(whereu∈U(K), ζ∈ S
dn+d−1), using (2.1) and (3.1) for the fourth equality. Hence

we can define a functionΞl (T) on Pn(K) by Ξl (T) := (Πl (T↑))↓. SinceΠl (T↑)
is either 0 or an eigenfunction of∆S, Ξl (T) is either 0 or an eigenfunction of∆P.
Moreover, if l 6= m, Ξl (T) and Ξm(T) are orthogonal inL2(Pn(K),dpn). This
justifies the nameFourier-Laplace series of Twe give to∑+∞

l=0 Ξl (T); this series
converges toT in the sense of distributions:

lim
N→+∞

N

∑
l=0

Ξl(T)(ϕ) = lim
N→+∞

N

∑
l=0

∫
Pn(K)

Ξl(T)(z)ϕ(z)dpn(z)

= lim
N→+∞

N

∑
l=0

∫
Sdn+d−1

Πl (T↑)(ζ)ϕ↑(ζ)dσdn+d−1(ζ)

= lim
N→+∞

N

∑
l=0

Πl (T↑)(ϕ↑)

= T↑(ϕ↑) = T((ϕ↑)♭) = T(ϕ)

if ϕ ∈ D(Pn(K)). From the above discussion and Theorem 2.1 we deduce:
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Theorem 4.1. Let T∈ D ′(Pn(K)), z∈ Pn(K) andτ ∈C. If T has the valueτ in z,
then

lim
r→1−

+∞

∑
l=0

r l Ξl (T)(z) = τ.

Remark4.1. The theorem shows that if the value ofT in zexists, it is unique.
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