POINTWISE FOURIER INVERSION OF DISTRIBUTIONS ON PROJECTIVE SPACES

FRANCISCO JAVIER GONZÁLEZ VIELI

ABSTRACT. Given a distribution T on the real, complex or quaternionic projective space we define, in analogy to the work of Łojasiewicz, the value of T at a point z of the projective space and we show that, if T has the value τ at z, then the Fourier-Laplace series of T at z is Abel-summable to τ .

1. INTRODUCTION.

Consider the periodic distribution T with period 2π defined by

$$T(\mathbf{\phi}) := \lim_{\epsilon \to 0+} \int_{\epsilon}^{2\pi-\epsilon} \cot(t/2) \phi(t) dt,$$

for all test functions $\varphi(T)$ is the principal value of $\cot(t/2)$. Its Fourier coefficients, given by $\mathcal{F}T(k) := T(e^{-ikt})/2\pi$, are equal to -i for k > 0, 0 for k = 0 and i for k < 0. Hence the Fourier series of T,

$$\sum_{k\in\mathbb{Z}}\mathcal{F}T(k)\,\mathrm{e}^{ikt},$$

does not converge at any $t \in [-\pi, \pi]$; generally one only reads that it converges to *T* in the sense of distributions. In fact it is possible to reconstruct *T* from $\mathcal{F}T$ using pointwise convergence only (and no test functions); the Fourier series of *T* is Abel-summable to $\cot(t/2)$ at every $t \neq 0$:

$$\lim_{r \to 1_{-}} \sum_{k \in \mathbb{Z}} r^{|k|} \mathcal{F}T(k) e^{ikt} = \lim_{r \to 1_{-}} (-i) \sum_{k=1}^{+\infty} (re^{it})^k + i \sum_{k=1}^{+\infty} (re^{-it})^k$$
$$= \lim_{r \to 1_{-}} (-i) \frac{re^{it}}{1 - re^{it}} + i \frac{re^{-it}}{1 - re^{-it}}$$
$$= \lim_{r \to 1_{-}} \frac{2r \sin t}{1 + r^2 - 2r \cos t}$$
$$= \cot(t/2).$$

2010 Mathematics Subject Classification. 42C10, 46F12.

Key words and phrases. Abel means, distribution, Fourier-Laplace series, projective space.

This result is general: Walter [8, p.146] proved that if a periodic distribution T in one variable has the value τ at a point t (in the sense of Łojasiewicz [5]), then the Fourier series of T at t is Cesàro- and hence Abel-summable to τ . A complete characterization for Fourier series and Fourier integrals on \mathbb{R} was given by [7]. Note that the pointwise convergence or summability of expansions of distributions has been investigated with respect to other orthogonal systems, such as wavelets (see [4], [8], [9]).

In [2] we have generalized Walter's result to the spheres \mathbb{S}^{n-1} $(n \ge 2)$. For that we had to define the notion of value at a point for distributions on the sphere analogous to the one of Łojasiewicz; our definition only uses the Laplace-Beltrami operator and its iterates instead of more general differential operators. We have then been able to show that, if *T* has the value τ at $\xi \in \mathbb{S}^{n-1}$, the Fourier-Laplace series of *T* at ξ is Abel-summable to τ .

Here we will show in section 4 that from the result on the sphere we can obtain a similar result about the Fourier-Laplace expansion of distributions on real, complex and quaternionic projective spaces. In sections 2 and 3 we introduce the necessary tools on spheres and on projective spaces, respectively.

2. POINTWISE FOURIER INVERSION ON THE SPHERE.

The restriction to \mathbb{S}^{n-1} , the unit sphere in \mathbb{R}^n , of the non-radial part of the Laplace operator Δ on \mathbb{R}^n is the *Laplace-Beltrami operator* on \mathbb{S}^{n-1} , $\Delta_{\mathbb{S}}$. It is self-adjoint with respect to the scalar product of $L^2(\mathbb{S}^{n-1}, d\sigma_{n-1})$ and commutes with rotations (we choose $d\sigma_{n-1}$ normalized).

A spherical harmonic of degree l on \mathbb{S}^{n-1} $(l \in \mathbb{N}_0)$ is the restriction to \mathbb{S}^{n-1} of a polynomial on \mathbb{R}^n which is harmonic and homogeneous of degree l. We write $S\mathcal{H}_l(\mathbb{S}^{n-1})$ the set of spherical harmonics of degree l. Every non zero element of $S\mathcal{H}_l(\mathbb{S}^{n-1})$ is an eigenfunction of $\Delta_{\mathbb{S}}$ with eigenvalue -l(n+l-2). Let $(E_1^l, \ldots, E_{d_l}^l)$ be an orthonormal basis of $S\mathcal{H}_l(\mathbb{S}^{n-1})$. The function $Z_l(\zeta, \eta) :=$ $\sum_{j=1}^{d_l} E_j^l(\zeta) \overline{E_j^l(\eta)}$ is called the *zonal of degree l*. For all ζ , $\eta \in \mathbb{S}^{n-1}$, $Z_l(\zeta, \eta) =$ $Z_l(\eta, \zeta) \in \mathbb{R}$ and

$$Z_l(\rho\zeta,\eta) = Z_l(\zeta,\rho^{-1}\eta) \tag{2.1}$$

if $\rho \in O(n)$ [6, lemma 2.8 p.143].

We write $\mathcal{D}(\mathbb{S}^{n-1})$ the set of test functions and $\mathcal{D}'(\mathbb{S}^{n-1})$ the set of *distributions* on \mathbb{S}^{n-1} . The support of $T \in \mathcal{D}'(\mathbb{S}^{n-1})$ is written supp *T*. The *Fourier-Laplace series* of a distribution *T* on \mathbb{S}^{n-1} is $\sum_{l=0}^{+\infty} \Pi_l(T)$, where $\Pi_l(T)(\zeta) := T[\eta \mapsto Z_l(\zeta, \eta)]$ for $\zeta \in \mathbb{S}^{n-1}$; this series converges to *T* in the sense of distributions. In [2] we introduced the following:

Definition 2.1. A distribution $T \in \mathcal{D}'(\mathbb{S}^{n-1})$ has the value $\tau \in \mathbb{C}$ in $\zeta \in \mathbb{S}^{n-1}$ if there exist $p \in \mathbb{N}_0$, $F \in C(\mathbb{S}^{n-1})$ and $f \in C^{2p}(\mathbb{S}^{n-1})$ such that (1) in the sense of distributions $T = \Delta_{\mathbb{S}}^{\mathbb{P}}F$ on a neighbourhood of ζ ;

(2)
$$F(\eta) = f(\eta) + o[d(\zeta, \eta)^p]$$
 for $\eta \to \zeta$;
(3) $\Delta^p_{\mathbb{S}} f(\zeta) = \tau$.

We then obtained [2, theorem 3.1]:

Theorem 2.1. Let $T \in \mathcal{D}'(\mathbb{S}^{n-1})$, $\xi \in \mathbb{S}^{n-1}$ and $\tau \in \mathbb{C}$. If T has the value τ in ξ , then

$$\lim_{r\to 1_{-}}\sum_{l=0}^{+\infty}r^{l}\Pi_{l}(T)(\xi)=\tau.$$

3. PROJECTIVE SPACES.

Here we will write \mathbb{K} for either \mathbb{R} , \mathbb{C} or \mathbb{H} (the algebra of quaternions) and let $d := \dim_{\mathbb{R}} \mathbb{K}$. We also define $U(\mathbb{K}) := \{k \in \mathbb{K} : ||k|| = 1\}$ and note dk the normalized Haar measure of $U(\mathbb{K})$.

For $x, y \in \mathbb{K}^{n+1} \setminus \{0\}$, we write $x \sim y$ if there exists $k \in \mathbb{K}^*$ such that x = kyand let [x] the equivalence class of x. The *projective space of dimension n on* \mathbb{K} is $P^n(\mathbb{K}) := \mathbb{K}^{n+1} \setminus \{0\} / \sim$; it is a compact symmetric space of rank one (see [3]). Identifying \mathbb{K}^{n+1} with \mathbb{R}^{dn+d} , we see that $P^n(\mathbb{K}) = \mathbb{S}^{dn+d-1} / \sim$. The connected component of the identity in the group of isometries of $P^n(\mathbb{K})$ is a group we denote $S\mathbb{K}(n+1)$; in fact $S\mathbb{K}(n+1) = SO(n+1)$, SU(n+1) or Sp(n+1) for $\mathbb{K} = \mathbb{R}$, \mathbb{C} or \mathbb{H} respectively (see [1]). Moreover, the action of $S\mathbb{K}(n+1)$ on $P^n(\mathbb{K})$ is the one induced by the action on \mathbb{S}^{dn+d-1} of $S\mathbb{K}(n+1)$ as a subgroup of SO(dn+d). We also have, from the action of $U(\mathbb{K})$ on \mathbb{K}^{n+1} ,

$$U(\mathbb{K}) < O(dn+d). \tag{3.1}$$

If g is a $U(\mathbb{K})$ -invariant function on \mathbb{S}^{dn+d-1} , we can define a function $g \downarrow$ on $P^n(\mathbb{K})$ by $g \downarrow ([\eta]) := g(\eta)$. Conversely, if f is a function on $P^n(\mathbb{K})$, we get, by putting $f \uparrow (\eta) := f([\eta])$, a $U(\mathbb{K})$ -invariant function $f \uparrow$ on \mathbb{S}^{dn+d-1} with $(f \uparrow) \downarrow = f$. Now, given an arbitrary function g on \mathbb{S}^{dn+d-1} , we define a $U(\mathbb{K})$ -invariant function g^{\sharp} on \mathbb{S}^{dn+d-1} by $g^{\sharp}(\eta) := \int_{U(\mathbb{K})} g(k\eta) dk$ (when g is $U(\mathbb{K})$ -invariant, $g^{\sharp} = g$). We then put $g^{\flat} := (g^{\sharp}) \downarrow$. If T is a distribution on $P^n(\mathbb{K})$, we let, for $\varphi \in \mathcal{D}(\mathbb{S}^{dn+d-1}), T \uparrow (\varphi) := T(\varphi^{\flat})$. Then $T \uparrow$ is a distribution on \mathbb{S}^{dn+d-1} of the same order as T and supp $T \uparrow = \{\eta \in \mathbb{S}^{dn+d-1} : [\eta] \in \text{supp } T\}$.

We write dp_n the unique normalized Radon measure on $P^n(\mathbb{K})$ which is $S\mathbb{K}(n+1)$ -invariant. The link between dp_n and $d\sigma_{dn+d-1}$ is:

$$\int_{\mathbb{S}^{dn+d-1}} g(\zeta) d\sigma_{dn+d-1}(\zeta) = \int_{P^n(\mathbb{K})} g^{\flat}(z) dp_n(z)$$

for every $g \in \mathcal{D}(\mathbb{S}^{dn+d-1})$. Finally, we can define the Laplace-Beltrami operator Δ_P on $P^n(\mathbb{K})$ by $\Delta_P(f) := (\Delta_{\mathbb{S}}(f\uparrow))\downarrow$, using (3.1) and the facts that $f\uparrow$ is $U(\mathbb{K})$ -invariant and $\Delta_{\mathbb{S}}$ commutes with all rotations. Then Δ_P commutes with all elements of $S\mathbb{K}(n+1)$.

In analogy to the case of the sphere, we now introduce the following

Definition 3.1. A distribution $T \in \mathcal{D}'(P^n(\mathbb{K}))$ has the value $\tau \in \mathbb{C}$ in $z \in P^n(\mathbb{K})$ if there exist $q \in \mathbb{N}_0$, $F \in C(P^n(\mathbb{K}))$ and $f \in C^{2q}(P^n(\mathbb{K}))$ such that (1) in the sense of distributions $T = \Delta_P^q F$ on a neighbourhood of z; (2) $F(w) = f(w) + o[d(z,w)^q]$ for $w \to z$; (3) $\Delta_P^q f(z) = \tau$.

The distribution *T* has the value τ in $[\eta] \in P^n(\mathbb{K})$ if and only if $T\uparrow$ has the value τ in $\eta \in \mathbb{S}^{dn+d-1}$. Moreover, if *T* is equal in the sense of distributions to a continuous function *F* on a neighbourhood of *z*, then *T* has the value F(z) in *z*.

4. FOURIER INVERSION ON $P^n(\mathbb{K})$.

Given
$$T \in \mathcal{D}'(P^n(\mathbb{K})), \Pi_l(T\uparrow) \in \mathcal{SH}_l(\mathbb{S}^{dn+d-1})$$
 is $U(\mathbb{K})$ -invariant:
 $\Pi_l(T\uparrow)(u\zeta) = T\uparrow(\eta \mapsto Z_l(u\zeta, \eta))$
 $= T(Z_l(u\zeta, .)^{\flat})$
 $= T([\eta] \mapsto \int_{U(\mathbb{K})} Z_l(u\zeta, k\eta) dk)$
 $= T([\eta] \mapsto \int_{U(\mathbb{K})} Z_l(\zeta, u^{-1}k\eta) dk)$
 $= T([\eta] \mapsto \int_{U(\mathbb{K})} Z_l(\zeta, k\eta) dk)$
 $= T(Z_l(\zeta, .)^{\flat}) = \Pi_l(T\uparrow)(\zeta)$

(where $u \in U(\mathbb{K})$, $\zeta \in \mathbb{S}^{dn+d-1}$), using (2.1) and (3.1) for the fourth equality. Hence we can define a function $\Xi_l(T)$ on $P^n(\mathbb{K})$ by $\Xi_l(T) := (\Pi_l(T\uparrow))\downarrow$. Since $\Pi_l(T\uparrow)$ is either 0 or an eigenfunction of $\Delta_{\mathbb{S}}$, $\Xi_l(T)$ is either 0 or an eigenfunction of Δ_P . Moreover, if $l \neq m$, $\Xi_l(T)$ and $\Xi_m(T)$ are orthogonal in $L^2(P^n(\mathbb{K}), dp_n)$. This justifies the name *Fourier-Laplace series of* T we give to $\sum_{l=0}^{+\infty} \Xi_l(T)$; this series converges to T in the sense of distributions:

$$\lim_{N \to +\infty} \sum_{l=0}^{N} \Xi_{l}(T)(\varphi) = \lim_{N \to +\infty} \sum_{l=0}^{N} \int_{P^{n}(\mathbb{K})} \Xi_{l}(T)(z)\varphi(z) dp_{n}(z)$$
$$= \lim_{N \to +\infty} \sum_{l=0}^{N} \int_{\mathbb{S}^{dn+d-1}} \Pi_{l}(T\uparrow)(\zeta)\varphi\uparrow(\zeta) d\sigma_{dn+d-1}(\zeta)$$
$$= \lim_{N \to +\infty} \sum_{l=0}^{N} \Pi_{l}(T\uparrow)(\varphi\uparrow)$$
$$= T\uparrow(\varphi\uparrow) = T((\varphi\uparrow)^{\flat}) = T(\varphi)$$

if $\phi \in \mathcal{D}(P^n(\mathbb{K}))$. From the above discussion and Theorem 2.1 we deduce:

220

Theorem 4.1. Let $T \in \mathcal{D}'(P^n(\mathbb{K}))$, $z \in P^n(\mathbb{K})$ and $\tau \in \mathbb{C}$. If T has the value τ in z, then

$$\lim_{r \to 1_{-}} \sum_{l=0}^{+\infty} r^l \,\Xi_l(T)(z) = \mathfrak{r}.$$

Remark 4.1. The theorem shows that if the value of T in z exists, it is unique.

REFERENCES

- [1] A. T. Fomenko, Symplectic Geometry, Gordon and Breach Science Publishers, New York, 1988.
- F. J. González Vieli, Pointwise Fourier inversion of distributions on spheres, Czechoslovak Math. J., 67 (2017), 1059–1070.
- [3] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [4] S. Kostadinova, J. Vindas, Multiresolution expansions of distributions: pointwise convergence and quasiasymptotic behavior, Acta Appl. Math., 138 (2015), 115–134.
- [5] S. Łojasiewicz, Sur la fixation des variables dans une distribution, Studia Math., 17 (1958), 1–64.
- [6] E. M. Stein, G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton University Press, Princeton, 1971.
- [7] J. Vindas, R. Estrada, *Distributional point values and convergence of Fourier series and inte*grals, J. Fourier Anal. Appl., 13 (2007), 551–576.
- [8] G. Walter, Pointwise convergence of distribution expansions, Studia Math., 26 (1966), 143–154.
- [9] G. G. Walter, X. Shen, Wavelets and other orthogonal systems, Chapman & Hall/CRC, Boca Raton, 2001.

(Received: February 2, 2018) (Revised: July, 28, 2021) Francisco Javier González Vieli Montoie 45 1007 Lausanne Switzerland e-mail: *francisco-javier.gonzalez@gmx.ch*