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KOROVKIN TYPE APPROXIMATION FOR DOUBLE SEQUENCES
VIA µ-STATISTICAL

A-SUMMATION PROCESS IN MODULAR SPACES

SEL̇IN ÇINAR AND KAM İL DEMİRCİ

ABSTRACT. In the present paper, we extend the Korovkin type approximation
theorem viaµ−statisticalA-summation process onto the double sequences of
positive linear operators in a modular space. We apply our new result to bivariate
Mellin-type operators in Orlicz spaces. Then we discuss thereduced results
which are obtained by special choices and the matrix sequences.

1. INTRODUCTION

Summability theory often is the theory used in approximation theory to cor-
rect the lack of convergence of real or complex term sequences. Since there are
many series (or sequences) where ordinary convergence fails, we consider more
general types of convergence using the methods of summability theory. Some of
these types of convergence are statistical convergence,µ−statistical convergence
(see more details, [12], [14], [15]). The concept of statistical convergence was pre-
sented by Fast [13] and this concept was studied by many authors. In partıcular,
in [7] and [8] Connor stated two expansions of the concepts ofstatistical con-
vergence using a complete{0,1} valued measureµ defined on algebra of sub-
sets of N, natural numbers. The notion of statistical convergence wasintroduced
for multiple sequences by Móricz [20]. Das and Bhunia in [10] introduced the
notion ofµ−statistical convergence and convergence inµ−density (following the
line of Connor [7]) using a two valued measureµ defined on the algebra of sub-
sets of N2 = N×N and mainly investigated the inter-relationship between these
two concepts. Since the concept of statistical convergenceis stronger than the
classical meaning, it played an important role in the expansion of many theorems
( [16], [17], [25]). Among the most important of these are Korovkin theorems
which allow us to check the convergence with minumum computations. In this

2010Mathematics Subject Classification.40A30, 41A36, 46E30, 47610.
Key words and phrases.Positive linear operators, modular spaces, double sequences, matrix

summability, statistical convergence,µ−statistical convergence.
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paper, our main purpose is to study a further generalizationof the classical Ko-
rovkin theorem by considering a certain matrix summabilityprocess in the frame
of µ−statistical convergence in modular spaces for double sequences.

First, for the basis of this paper, we begin by recalling the concepts of Pring-
sheim convergence and statistical convergence for double sequences.

A double sequencex =
{

xi, j
}

of real numbers, is said to be convergent in the
Pringsheim’s sense if for eachε > 0 there existsN ∈ N such that

∣

∣xi, j −L
∣

∣ < ε
wheneveri, j >N andL is called the Pringsheim limit and denoted byP− lim

i, j
xi, j =

L . More briefly, we will say that such anx is P−convergent toL ( [28]).
The double sequencex=

{

xi, j
}

is statistically convergent toL provided that for
everyε > 0,

P− lim
m,n

1
mn

∣

∣

{

i ≤ m, j ≤ n :
∣

∣xi, j −L
∣

∣≥ ε
}
∣

∣= 0,

where the vertical bars indicate the cardinality of the enclosed set. In that case we
write st2− lim

i, j
xi, j = L (see [20]).

It can be easily seen that aP−convergent double sequence is statistically con-
vergent to the same value but its converse is not always true.Also, it is crucial to
state that a convergent single sequence needs to be bounded even though this ne-
cessity does not always hold for double sequences. A statistical convergent double
sequence does not need to be bounded. For example, take into consideration the
double sequencex=

{

xi, j
}

defined by

xi, j =

{

i j i and j are squares
1, otherwise.

Then, clearlyst2− lim
i, j

xi, j = 1 butx is notP−convergent and also, it is not bounded.

The characterization of the statistical convergence for double sequences is given
in [20] as indicated below:

A double sequencex=
{

xi, j
}

is statistically convergent toL if and only if there
exists a setS⊂ N2 such that the natural density ofS is 1 and

P− lim xi, j
i, j→∞

and(i, j)∈S

= L.

Let
A=

(

ak,l ,i, j
)

, k, l , i, j ∈ N,

be a four-dimensional infinite matrix. TheA−transform ofx=
{

xi, j
}

denoted by
Ax := {(Ax)k,l} is defined by

(Ax)k,l = ∑
(i, j)∈N2

ak,l ,i, j xi, j , k, l ∈ N,

provided the double series converges in Pringsheim’s sensefor every(k, l) ∈N2.
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Then the double sequencex is A−summable toL if the A-transform ofx exists
for all k, l ∈ N and convergent in the Pringsheim’s sense i.e.,

P− lim
k,l

∑
(i, j)∈N2

ak,l ,i, j xi, j = L.

Recall that a four-dimensional matrixA=
(

ak,l ,i, j
)

is said to beRH−regular if it
maps every boundedP−convergent sequence into aP−convergent sequence with
the sameP−limit. The Robison-Hamilton conditions (see also [29]) state that a
four-dimensional matrixA=

(

ak,l ,i, j
)

is RH−regular if and only if

(i) P− lim
k,l

ak,l ,i, j = 0 for each(i, j) ∈ N2,

(ii) P− lim
k,l

∑
(i, j)∈N2

ak,l ,i, j = 1,

(iii ) P− lim
k,l

∑
i∈N

∣

∣ak,l ,i, j
∣

∣= 0 for each j ∈N,

(iv) P− lim
k,l

∑
j∈N

∣

∣ak,l ,i, j
∣

∣= 0 for eachi ∈N,

(v) ∑
(i, j)∈N2

∣

∣ak,l ,i, j
∣

∣ is P−convergent for every(k, l) ∈ N2,

(vi) there exist finite positive integersA andB such that

∑
i, j>B

∣

∣ak,l ,i, j
∣

∣< A

for every (k, l) ∈ N2. Now let A :=
{

A(m,n)
}

=
{

a(m,n)
k,l ,i, j

}

be a sequence of four-

dimensional infinite matrices with non-negative real entries. For a given double
sequence of real numbers,x=

{

xi, j
}

is said to beA−summable toL if

P− lim
k,l

∑
(i, j)∈N2

a(m,n)
k,l ,i, j xi, j = L

uniformly in m andn. If A(m,n) = A, a four-dimensional infinite matrix, thenA−
summability is theA−summability for that four-dimensional infinite matrix.
If a(m,n)

k,l ,i, j =
1
kl , for m≤ i ≤ m+k−1, n≤ j ≤ n+ l −1, (m,n= 1,2, ..) and

a(m,n)
k,l ,i, j = 0 otherwise, thenA−summability reduces to almost convergence of dou-

ble sequences introduced by Móricz [20].Some results concerning the matrix sum-
mability method for double sequences may be reached in [16],[27], [31].

Now, we recall some definitions and notations required for this paper.
Throughout the paperµwill denote a complete{0,1} valued finite additive mea-

sure defined on an algebraΓ of subsetsN2 that contains all subsets ofN2 that are

contained in the union of a finite number of rows and columns ofN2 andµ(K) = 0
if K is contained in the union of a finite number of rows and columnsof N2.

Das and Bhunia in [10] also introduced the following two definitions:
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Definition 1.1. [10] A double sequence x=
{

xi j
}

of real numbers is said to be
µ−statistically convergent to L∈R if and only if for anyε > 0,

µ
({

(i, j) ∈ N2 :
∣

∣xi, j −L
∣

∣≥ ε
})

= 0.

Definition 1.2. [10] A double sequence x=
{

xi j
}

of real numbers is said to be
convergent to L∈ R in µ−density if there exists an K∈ Γ with µ(K) = 1 such that
x=

{

xi j
}

i, jεA is convergent to L.

If Cµ andC∗
µ denote respectively the sets of all double sequences which are

µ−statistically convergent and convergent inµ−density then [7] (see also [9]) it is
easy to prove thatC∗

µ is a dense subset ofCµ which again is closed inl∞
2 ( the set of

all bounded double sequences of real numbers endowed with the sup metric).

If B=
(

bk,l ,i, j
)

is a nonnegativeRH−regular summability matrix, thenB can be
used to generate a measure as follows:

for eachk, l ∈ N, set
µk,l (K) = ∑

(i, j)∈N2

bk,l ,i, j χK (i, j)

for each(i, j) ∈ N2 andK ⊆ N2. Let

Γ :=
{

K ⊆ N2 : P− lim
k,l

µk,l (K) = 0 orP− lim
k,l

µk,l (K) = 1
}

.

DefineµB : Γ →{0,1} by

µB (K) = P− lim
k,l

µk,l (K) = P− lim
k,l

∑
(i, j)∈N2

bk,l ,i, j χK (i, j) . (1.1)

ThenµB andΓ satisfy the requirements of the preceding definitions. Obviously,
µB−statistical convergence coincides with the notion ofB−statistical convergence
for double sequences. IfB is the double Cesáro matrix of order one, thenµB−statis-
tical convergence is equivalent to statistical convergence for double sequences.

Now, we recall some definitions and notations on modular spaces.
Let I = [a,b] be a bounded interval of the real lineR provided with the

Lebesgue measure. Then, letX
(

I2
)

we denote the space of all real-valued measur-
able functions onI2 = [a,b] × [a,b] provided with equalitya.e.As usual, letC

(

I2
)

denote the space of all continuous real-valued functions, and C∞ (I2
)

denote the
space of all infinitely differentiable functions onI2. A functional

ρ : X
(

I2)→ [0,+∞]

is called a modular onX
(

I2
)

provided that the following conditions hold:

(i) ρ( f ) = 0 if and only if f = 0 a.e. in I2,
(ii) ρ(− f ) = ρ( f ) for every f ∈ X

(

I2
)

,
(iii ) ρ(α f +βg) ≤ ρ( f )+ρ(g) for every f ,g∈ X(I2) and for anyα,β ≥ 0 with

α+β = 1.
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A modularρ is said to beN−quasi convex if there exists a constantN≥ 1 such that
ρ(α f +βg)≤ Nαρ(N f)+Nβρ(Ng) holds for everyf ,g∈ X

(

I2
)

, α,β ≥ 0 with
α+β = 1. In particular, ifN = 1, thenρ is called convex. A modularρ is said to be
N−quasi semiconvex if there exists a constantN ≥ 1 such thatρ(a f) ≤ Naρ(N f)
holds for everyf ∈ X

(

I2
)

anda ∈ (0,1]. It is clear that everyN−quasi convex
modular isN−quasi semiconvex. Bardaro et. al. introduced and worked through
the above two concepts in [4,6].

We now present some obtained vector subspaces ofX(I2) via a modularρ as
follows:

The modular spaceLρ (I2
)

generated byρ is defined by

Lρ (I2) :=
{

f ∈ X(I2) : lim
λ→0+

ρ(λ f ) = 0
}

and the space of the finite elements ofLρ (I2
)

is given by

Eρ (I2) :=
{

f ∈ Lρ (I2) : ρ(λ f )<+∞ for all λ > 0
}

.

Observe that ifρ is N−quasi semiconvex, then the space
{

f ∈ X
(

I2) : ρ(λ f )<+∞ for someλ > 0
}

coincides withLρ (I2
)

. The notions about modulars are introduced in [21] and
widely discussed in [4] (see also [18,22]).

Bardaro and Mantellini in [5] introduced some Korovkin typeapproximation
theorems via the notions of modular convergence and strong convergence. After-
wards Karakuş et al. [17] investigated the modular Korovkin-type approximation
theorem via statistical convergence and then, Orhan and Demirci [25] extended
these types of approximations to the spaces of double sequences of positive linear
operators.

Now we recall the convergence methods in modular spaces.

Definition 1.3. [25] Let
{

fi, j
}

be a double function sequence whose terms belong
to Lρ (I2

)

. Then,
{

fi, j
}

is modularly convergent to a function f∈ Lρ (I2
)

if

P− lim
i, j

ρ(λ0( fi, j − f )) = 0 for someλ0 > 0. (1.2)

Also,
{

fi, j
}

is statistically F-norm convergent (or, strongly convergent) to f if

P− lim
i, j

ρ(λ( fi, j − f )) = 0 for everyλ > 0. (1.3)

It is known from [21] that (1.2) and (1.3) are equivalent if and only if the modular
ρ satisfies the∆2-condition, i.e.
there exists a constant M> 0 such thatρ(2 f )≤ Mρ( f ) for every f∈ X(I2).

Recently, Orhan and Demirci [24] have introduced the notionof A−summation
process on the one dimensional modular spaceX (I) and then, Orhan and Kolay
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[26] introducedA−summation process for double sequences on a modular space.
Now, the definition of theA−summation process for double sequences as follows:

A sequenceT :=
{

Ti, j
}

of positive linear operators ofD into X
(

I2
)

is called
an A−summation process onD if

{

Ti, j f
}

is A−summable tof (with respect to
modularρ) for every f ∈ D, i.e.,

P− lim
k,l

ρ
(

λ
(

AT
k,l ,m,n ( f )− f

))

= 0, uniformly in m,n (1.4)

for someλ > 0, where for allk, l ,m,n∈ N, f ∈ D the series

AT
k,l ,m,n ( f ) := ∑

(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j f (1.5)

is absolutely convergent almost everywhere with respect toLebesgue measure and
we denote the value ofTi, j f at a point(x,y) ∈ I2 by Ti, j( f (u,v);x,y) or briefly,
Ti, j( f ;x,y).

Our goal in the present work is to give the Korovkin theorem for double se-
quences of positive linear operators using theµ−statisticalA−summation process
on the modular space. Some results concerning summation processes in the space
Lp [a,b] of Lebesgue integrable functions on a compact interval may be founded
in [23], [30].

It is required to give the following assumptions on a modularρ :
A modularρ ismonotoneif ρ( f )≤ ρ(g) for | f | ≤ |g| , ρ is said to befinite if χK ∈

Lρ (I2
)

wheneverK is a measurable subset ofI2 such that|K|<∞. If ρ is finite and,
for everyε > 0, λ > 0, there exists aδ > 0 such thatρ(λχB)< ε for any measurable
subsetB⊂ I2 with |B| < δ, thenρ is absolutely finiteand if χI2 ∈ Eρ (I2

)

, thenρ
is strongly finite. A modularρ is absolutely continuousprovided that there exists
anα > 0 such that, for everyf ∈ X

(

I2
)

with ρ( f )< +∞, the following condition
holds:

for everyε > 0 there isδ > 0 such thatρ(α f χB)< ε wheneverB is any measur-
able subset ofI2 with |B|< δ.

Observe now that (see [5, 6]) if a modularρ is monotone and finite, then we
haveC(I2)⊂ Lρ (I2

)

. Similarly, if ρ is monotone and strongly finite, thenC(I2)⊂

Eρ (I2
)

. Also, if ρ is monotone, absolutely finite and absolutely continuous, then

C∞ (I2) = Lρ (I2
)

(See [3,4,19,22] for more details ).

2. KOROVKIN TYPE THEOREMS

Let ρ be a monotone and finite modular onX
(

I2
)

. Assume thatD is a set satis-
fying C∞ (I2

)

⊂ D ⊂ Lρ (I2
)

(Such a subsetD can be constructed whenρ is mono-
tone and finite, see [5]). Also, assume thatT :=

{

Ti, j
}

is a sequence of positive
linear operators fromD into X

(

I2
)

for which there exists a subsetXT ⊂ D with
C∞ (I2

)

⊂ XT such that
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µ
({

(k, l) ∈N2 : ρ
(

λ
(

AT
k,l ,m,n (h)

))

> ε
})

≤ Sρ(λh) , uniformly in m,n, (2.1)

holds for everyh∈ XT, λ > 0 and for an absolute positive constantS.
We will use the test functionsfr (r = 0,1,2,3) defined byf0 (x,y) = 1, f1(x,y) =

x, f2 (x,y) = y and f3(x,y) = x2+y2 throughout the paper.
We now prove our following main theorem.

Theorem 2.1. Let A =
{

A(m,n)
}

be a sequence of four dimensional infinite non-
negative real matrices and letρ be a monotone, strongly finite, absolutely contin-
uous and N-quasi semiconvex modular on X

(

I2
)

. LetT :=
{

Ti, j
}

be a sequence
of positive linear operators from D into X

(

I2
)

satisfying (2.1) for each f∈ D.
Suppose that

µ
({

(k, l) ∈ N2 : ρ
(

λ
(

AT
k,l ,m,n ( fr)− fr

))

> ε
})

= 0, uniformly in m,n (2.2)

for everyλ > 0 and r= 0,1,2,3. Now let f be any function belonging to Lρ (I2
)

such that f−g∈ XT for every g∈C∞ (I2
)

. Then we have

µ
({

(k, l) ∈N2 : ρ
(

λ0

(

AT
k,l ,m,n ( f )− f

))

> ε
})

= 0, uniformly in m,n (2.3)

for someλ0 > 0.

Proof. We first claim that

µ
({

(k, l) ∈N2 : ρ
(

η
(

AT
k,l ,m,n (g)−g

))

> ε
})

= 0, uniformly in m,n (2.4)

for everyg∈C(I2)∩D andη > 0 where

AT
k,l ,m,n (g) = ∑

(i, j)∈N2

a(m,n)
k,l ,i, j Ti, jg.

To see this assume thatg belongs toC
(

I2
)

∩D andη is any positive number.
By the continuity ofg on I2 and from the linearity and positivity of the operators
Ti, j , we can easily see that (see, for instance [25]), for a givenε > 0, there exists a
numberδ > 0 such that for all(u,v) ,(x,y) ∈ I2

|g(u,v)−g(x,y)| < ε+
2M
δ2

{

(u−x)2+(v−y)2
}

whereM := sup
(x,y)∈I2

|g(x,y)| . SinceTi, j is linear and positive, we get

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j (g;x,y)−g(x,y)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j (g(., .)−g(x,y) ; x,y)

+g(x,y)

(

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

)
∣

∣

∣

∣

∣
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≤ ∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j (|g(., .)−g(x,y)| ; x,y)

+ |g(x,y)|

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

∣

∣

∣

∣

∣

≤ ∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j

(

ε+
2M
δ2

{

(.−x)2+(.−y)2
}

;x,y

)

+ |g(x,y)|

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

∣

∣

∣

∣

∣

= ε+(ε+M)

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

∣

∣

∣

∣

∣

+
2M
δ2

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f3;x,y)− f3(x,y)

∣

∣

∣

∣

∣

+
4M
δ2

(

| f1(x,y)|

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f1;x,y)− f1(x,y)

∣

∣

∣

∣

∣

+ | f2(x,y)|

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f2;x,y)− f2(x,y)

∣

∣

∣

∣

∣

)

+
2M
δ2 | f3(x,y)|

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

∣

∣

∣

∣

∣

for everyx,y∈ I andm,n∈N. Therefore, from the last inequality we get
∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j (g;x,y)−g(x,y)

∣

∣

∣

∣

∣

≤ ε+
(

ε+M+
4Mc
δ2

)

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

∣

∣

∣

∣

∣

+
4Mc
δ2

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f1;x,y)− f1(x,y)

∣

∣

∣

∣

∣

+
4Mc
δ2

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f2;x,y)− f2(x,y)

∣

∣

∣

∣

∣

+
2M
δ2

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f3;x,y)− f3(x,y)

∣

∣

∣

∣

∣
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wherec := max{| f1 (x,y)| , | f2 (x,y)|} . So, if we denote

K := max

{

ε+M+ 4Mc2

δ2 ,
4Mc
δ2 ,

2M
δ2

}

,

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j (g;x,y)−g(x,y)

∣

∣

∣

∣

∣

≤ ε+K

{∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f1;x,y)− f1(x,y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f2;x,y)− f2(x,y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f3;x,y)− f3(x,y)

∣

∣

∣

∣

∣

}

.

Hence, we obtain, forη > 0, that

η

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j (g;x,y)−g(x,y)

∣

∣

∣

∣

∣

≤ηε+ηK

{
∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f0;x,y)− f0(x,y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f1;x,y)− f1(x,y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f2;x,y)− f2(x,y)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j ( f3;x,y)− f3(x,y)

∣

∣

∣

∣

∣

}

Now we apply the modularρ to both-sides of the above inequality, sinceρ is mono-
tone, we get

ρ
(

η
(

AT
k,l ,m,n (g)−g

))

≤ ρ
(

ηε+ηK
(

AT
k,l ,m,n ( f0)− f0

)

+ηK
(

AT
k,l ,m,n ( f1)− f1

)

+ηK
(

AT
k,l ,m,n ( f2)− f2

)

+ηK
(

AT
k,l ,m,n ( f3)− f3

))

.

So, we may write that

ρ
(

η
(

AT
k,l ,m,n (g)−g

))

≤ ρ(5ηε)+ρ
(

5ηK
(

AT
k,l ,m,n ( f0)− f0

))

+ρ
(

5ηK
(

AT
k,l ,m,n ( f1)− f1

))

+ρ
(

5ηK
(

AT
k,l ,m,n ( f2)− f2

))

+ρ
(

5ηK
(

AT
k,l ,m,n ( f3)− f3

))

.
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Sinceρ is N-quasi semiconvex and strongly finite, we have, assuming 0< ε ≤ 1,

ρ
(

η
(

AT
k,l ,m,n (g)−g

))

≤ Nερ(5ηε)+ρ
(

5ηK
(

AT
k,l ,m,n ( f0)− f0

))

+ρ
(

5ηK
(

AT
k,l ,m,n ( f1)− f1

))

+ρ
(

5ηK
(

AT
k,l ,m,n ( f2)− f2

))

+ρ
(

5ηK
(

AT
k,l ,m,n ( f3)− f3

))

.

For a givenε∗ > 0, choose anε ∈ (0,1] such thatNερ
(

5ηN
σ

)

< ε∗. Now we define

the following sets:

Gη :=
{

k : ρ
(

η
(

AT
k,l ,m,n (g)−g

))

≥ ε∗
}

,

Gη,r :=







k : ρ
(

5ηK
(

AT
k,l ,m,n ( fr)− fr

))

≥
ε∗−Nερ

(

5ηN
σ

)

4







, r = 0,1,2,3.

Then, it is easy to see thatGη ⊆
3⋃

r=0
Gη,r . So, we can write that

µ
({

(k, l) ∈N2 : ρ
(

η
(

AT
k,l ,m,n (g)−g

))

> ε
})

≤
3

∑
r=0

µ
({

(k, l) ∈ N2 : ρ
(

η
(

AT
k,l ,m,n ( fr)− fr

))

> ε
})

.

Using the hypothesis (2.2), we get

µ(Gη) = 0,

which proves our claim (2.4). Observe that (2.4) also holds for everyg∈C∞(I2).
Now let f ∈ Lρ (I2

)

satisfy f −g∈ XT for everyg∈C∞ (I2
)

. Since
∣

∣I2
∣

∣< ∞ andρ
is strongly finite and absolutely continuous, it can be seen thatρ is also absolutely
finite on X(I2) (see [3]). Using these properties of the modularρ, it is known
from [4,19] that the spaceC∞(I2) is modularly dense inLρ (I2

)

, i.e., there exists a
sequence(gk,l )⊂C∞ (I2

)

such that

P− lim
k,l

ρ(3λ∗
0 (gk,l − f )) = 0 for someλ∗

0 > 0.

This means that, for everyε > 0, there is a positive numberk0 = k0(ε) so that

ρ(3λ∗
0 (gk,l − f ))< ε for everyk, l ≥ k0. (2.5)

On the other hand, by the linearity and positivity of the operatorsTi, j , we may write
that
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λ∗
0

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j( f ;x,y)− f (x,y)

∣

∣

∣

∣

∣

≤ λ∗
0

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j( f −gk0,k0;x,y)

∣

∣

∣

∣

∣

≤ λ∗
0

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j( f −gk0,k0;x,y)

∣

∣

∣

∣

∣

+λ∗
0

∣

∣

∣

∣

∣

∑
(i, j)∈N2

a(m,n)
k,l ,i, j Ti, j(gk0,k0;x,y)−gk0,k0(x,y)

∣

∣

∣

∣

∣

+λ∗
0 |gk0,k0(x,y)− f (x,y)| ,

holds for everyx,y∈ I andm,n∈ N. Applying the modularρ and moreover con-
sidering the monotonicity ofρ, we have

ρ
(

λ∗
0

(

AT
k,l ,m,n ( f )− f

))

≤ ρ
(

3λ∗
0

(

AT
k,l ,m,n ( f −gk0,k0)

))

+ρ
(

3λ∗
0

(

AT
k,l ,m,n (gk0,k0)−gk0,k0

))

+ρ(3λ∗
0 (gk0,k0 − f )) . (2.6)

Then, it follows from (2.5) and (2.6) that

ρ
(

λ∗
0

(

AT
k,l ,m,n ( f )− f

))

≤ ε+ρ
(

3λ∗
0

(

AT
k,l ,m,n ( f −gk0,k0)

))

+ρ
(

3λ∗
0

(

AT
k,l ,m,n (gk0,l0)−gk0,k0

))

. (2.7)

So, taking theµ−statistical limit as(k, l) ∈ N2 on both sides of (2.7) and using the
fact thatgk0,k0 ∈C∞(I2) and f −gk0,k0 ∈ XT, we obtained from (2.1) that

µ
({

(k, l) ∈ N2 : ρ
(

λ∗
0

(

AT
k,l ,m,n ( f )− f

))

> ε
})

≤ ε+µ
({

(k, l) ∈N2 : ρ
(

3λ∗
0

(

AT
k,l ,m,n ( f −gk0,k0)

))

> ε
})

+µ
({

(k, l) ∈ N2 : ρ
(

3λ∗
0

(

AT
k,l ,m,n (gk0,k0)−gk0,k0

))

> ε
})

,

which gives

µ
({

(k, l) ∈ N2 : ρ
(

λ∗
0

(

AT
k,l ,m,n ( f )− f

))

> ε
})

≤ ε(S+1)+µ
({

(k, l) ∈ N2 : ρ
(

3λ∗
0

(

AT
k,l ,m,n (gk0,k0)−gk0,k0

))

> ε
})

. (2.8)

By (2.4), since

µ
({

(k, l) ∈ N2 : ρ
(

η
(

AT
k,l ,m,n (g)−g

))

= 0> ε
})

= 0, uniformly in m,n,

we get

µ
({

(k, l) ∈N2 : ρ
(

3λ∗
0

(

AT
k,l ,m,n (gk0,k0)−gk0,k0

))

> ε
})

= 0, uniformly in m,n.

(2.9)
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Combining (2.8) with (2.9), we conclude that

µ
({

(k, l) ∈ N2 : ρ
(

λ∗
0

(

AT
k,l ,m,n ( f )− f

))

> ε
})

≤ ε(S+1).

Since ε > 0 was arbitrary, furthermore, sinceρ
(

λ∗
0

(

AT
k,l ,m,n ( f )− f

))

is non-

negative for allk, l ,m,n∈ N, we can easily see that

µ
({

(k, l) ∈ N2 : ρ
(

λ
(

AT
k,l ,m,n ( f )− f

))

> ε
})

= 0, uniformly in m,n,

which completes the proof. �

Theorem 2.2. Let A =
{

A(m,n)
}

be a sequence of four dimensional infinite non-
negative real matrices. Letρ andT :=

{

Ti, j
}

be the same as in Theorem 2.1. Ifρ
satisfies the∆2-condition, then the statements(i) and(ii) are equivalent:

(i) µ
({

(k, l) ∈N2 : ρ
(

λ
(

AT
k,l ,m,n ( fr)− fr

))

> ε
})

= 0, uniformly in m,n, for

everyλ > 0 and r= 0,1,2,3,

(ii) µ
({

(k, l) ∈N2 : ρ
(

λ
(

AT
k,l ,m,n ( f )− f

))

> ε
})

= 0, uniformly in m,n, for

everyλ > 0 provided that f is any fuction belonging to Lρ (I2
)

such that
f −g∈ XT for every g∈C∞ (I2

)

.

3. APPLICATION

In this section, we give an example of positive linear operators which satisfies
the conditions of Theorem 2.1.

Example 3.1. Take I= [0,1] and letϕ : [0,∞) → [0,∞) be a continuous function
for which the following conditions hold:

• ϕ is convex,
• ϕ(0) = 0, ϕ(u)> 0 for u> 0 and lim

u→∞
ϕ(u) = ∞.

Hence, consider the functionalρϕ on X(I2) defined by

ρϕ( f ) :=

1∫

0

1∫

0

ϕ(| f (x,y)|)dxdy for f∈ X
(

I2) . (3.1)

In this case,ρϕ is a convex modular on X
(

I2
)

, which satisfies all assumptions
listed in Section 1 (see [5]). Let us consider the Orlicz space generated byϕ as
follows:

Lρ
ϕ(I

2) :=
{

f ∈ X
(

I2) : ρϕ (λ f )<+∞ for someλ > 0
}

.

Then consider the following bivariate Mellin-type operator M :=
{

Mi, j
}

on the
space Lρϕ

(

I2
)

which is defined by:
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Mi, j( f ;x,y) =

1∫

0

1∫

0

Ki, j (t1,t2) f (t1x, t2y)dt1dt2 (3.2)

for x,y, t1,t2 ∈ I and i, j ∈N where Ki, j (t1,t2) defined by

Ki, j (t1,t2) = (i +1)( j +1) t i
1t

j
2.

Observe that the operators Ui, j map the Orlicz space Lρϕ
(

I2
)

into itself. Recall that
from Lemma16 in [2], we obtain that for every f∈ Lρ

ϕ
(

I2
)

and i, j ≥ 2

ρϕ (Ui, j f )≤ 32ρϕ( f ).

Then, we know that, for any function f∈ Lρ
ϕ
(

I2
)

such that f− g ∈ XU for every
g∈C∞ (I2

)

, (Ui, j f ) is modularly convergent to f, with the choice of XU := Lρ
ϕ(I2).

Let K∈ Γ be such that µ(K) = 0, andN2�K is infinite element set. Now define
{

si, j
}

by

si, j =

{

1, (i, j) ∈ K
0, (i, j) /∈ K.

(3.3)

Since µ
(

N2�K
)

= 1 and P− lim si, j
(i, j)∈N2�K

= 0, now observe that

µ
({

(i, j) ∈ N2 :
∣

∣si j −0
∣

∣> ε
})

= 0.

Also, assume that A:=
{

A(m,n)
}

=
{

a(m,n)
k,l ,i, j

}

is a sequence of four dimensional

infinite matrices defined by a(m,n)
k,l ,i, j =

1
kl if 1 ≤ i ≤ k, 1 ≤ j ≤ l , (m,n= 1,2, ...)

and a(m,n)
k,l ,i, j = 0 otherwise. Then, using the operators Ui, j , we define the sequence of

positive linear operatorsV :=
{

Vi, j
}

on Lρ
ϕ
(

I2
)

as follows:

Vi, j ( f ;x,y) = (1+si, j)Mi, j ( f ;x,y) for f ∈ Lρ
ϕ
(

I2) , x,y∈ [0,1] and i, j ∈ N.
(3.4)

We get, for every h∈ XV := Lρ
ϕ
(

I2
)

, λ > 0 and for any positive constant M, that

µ
({

(k, l) ∈ N2 : ρ
(

λ
(

AT
k,l ,m,n (h)

))

> ε
})

≤ Mρ(λh) , uniformly in m,n,

where AVk,l ,m,n (h) =
∞
∑

(i, j)∈N2
a(m,n)

k,l ,i, jVi, jh as in (1.5). Therefore the condition (2.1)

works for our operators Vi, j given by (3.4) with the choice of XV = XU = Lρ
ϕ
(

I2
)

.
We now claim that

µ
({

(k, l) ∈ N2 : ρ
(

λ
(

AT
k,l ,m,n ( fr)− fr

))

> ε
})

= 0, uni f ormly in

m,n; r = 0,1,2,3. (3.5)
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Observe that Mi, j ( f0;x,y) = 1, Mi, j ( f1;x,y)≤ 1
i+2+ f1(x,y) ,Mi, j ( f2;x,y)≤ 1

j+2+

f2 (x,y) and Mi, j ( f3;x,y) ≤ 2
i+3 +

2
j+2 + f3(x,y) . So, we can see,

ρ
ϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)−1

))

=

1∫

0

1∫

0

ϕ

(∣

∣

∣

∣

∣

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)−1

)∣

∣

∣

∣

∣

)

dxdy

= ϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)−1

))

,

because of

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j) =

{

2 (i, j) ∈ K
1, (i, j) /∈ K

, m,n= 1,2, . . . ,

µ
(

N2�K
)

= 1 and P− lim
(i, j)∈N2�K

ρ

(

λ

(

k
∑

i=1

l
∑
j=1

1
kl (1+si, j)−1

))

= 0, and also

using continuity ofϕ, we get get

µ

({

(k, l) ∈ N2 : ϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)−1

))

> ε

})

= 0, uniformly in m,n

(3.6)
and hence

µ
({

(k, l) ∈ N2 : ρϕ
(

λ
(

AV
k,l ,m,n( f0)− f0

))

> ε
})

= 0, uniformly in m,n

which guarantees that (3.5) holds true for r= 0. Also, since

ρϕ
(

λ
(

AV
k,l ,m,n( f1)− f1

))

= ρϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)Mi, j ( f1;x,y)−x

))

≤ ρϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)

(

1
i +2

+ f1(x,y)

)

− f1(x,y)

))

= ρϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)

(

1
i +2

+x

)

−x

))

≤ ρϕ

(

2λ

(

k

∑
i=1

l

∑
j=1

1
kl

(1+si, j)

i +2

))

+ρϕ

(

2λ

(

k

∑
i=1

l

∑
j=1

1
kl

(1+si, j)−1

))

.
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We know that (3.6) is

µ

({

(k, l) ∈ N2 : ρϕ

(

2λ

(

k

∑
i=1

l

∑
j=1

1
kl

(1+si, j)−1

))

> ε

})

= 0.

And because of

k

∑
i=1

l

∑
j=1

1
kl

(1+si, j)

i +2
=















k
∑

i=1

l
∑
j=1

1
kl

2
i+2, (i, j) ∈ K

k
∑

i=1

l
∑
j=1

1
kl

1
i+2, (i, j) /∈ K

, m,n= 1,2, . . . ,

µ
(

N2�K
)

= 1 and P− lim
(i, j)∈N2�K

ρ

(

2λ

(

k
∑

i=1

l
∑
j=1

1
kl

1
i+2

))

= 0, also using continu-

ity of ϕ, we get

µ

({

(k, l) ∈ N2 : ρϕ

(

2λ

(

k

∑
i=1

l

∑
j=1

1
kl

(1+si, j)

i +2

))

> ε

})

= 0.

We have

µ
({

(k, l) ∈ N2 : ρϕ
(

λ
(

AV
k,l ,m,n( f1)− f1

))

> ε
})

= 0, uniformly in m,n.

So (3.5) holds true for r= 1. Similarly, we have

µ
({

(k, l) ∈ N2 : ρϕ
(

λ
(

AV
k,l ,m,n( f2)− f2

))

> ε
})

= 0, uniformly in m,n.

Finally, since

ρϕ
(

λ
(

AV
k,l ,m,n( f3)− f3

))

= ρϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)Mi, j ( f3;x,y)− f3(x,y)

))

≤ ρϕ

(

λ

(

k

∑
i=1

l

∑
j=1

1
kl
(1+si, j)

(

2
i +3

+
2

j +2
+x2+y2

)

−
(

x2+y2)
))

≤ ρϕ

(

4λ

(

1
kl

k

∑
i=1

l

∑
j=1

(1+si, j)
2

i +3

))

+ρϕ

(

4λ

(

1
kl

k

∑
i=1

l

∑
j=1

(1+si, j)−1

))

+ ρϕ

(

4λ

(

1
kl

k

∑
i=1

l

∑
j=1

(1+si, j)
2

j +3

))

+ρϕ

(

4λ

(

1
kl

k

∑
i=1

l

∑
j=1

(1+si, j)−1

))

.

Hence we can easily see that

µ
({

(k, l) ∈ N2 : ρϕ
(

λ
(

AV
k,l ,m,n( f3)− f3

))

> ε
})

= 0, uniformly in m,n.
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So, our claim (3.5) holds true for each r= 0,1,2,3.
{

Vi, j
}

satisfies all the hypoth-
esis of Theorem 2.1 and we immediately see that,

µ
({

(k, l) ∈ N2 : ρ
(

λ
(

AT
k,l ,m,n( f )− f

))

> ε
})

= 0, uniformly in m,n,

on I2 = [0,1]× [0,1] for all f ∈ Lρ
ϕ(I2).

4. CONCLUSIONS

Now, we give some reduced results showing the importance of Theorem 2.1 and
Theorem 2.2 in approximation theory with special choices:

1. We know from the condition (1.1) thatµB−sta tistical convergence andB−sta-
tistical convergence are equivalent. IfB is the double Cesáro matrix, then from our
Theorem 2.1 and Theorem 2.2 we immediately get the Korovkin type theorems
of the statisticalA−summation process for double sequences on modular spaces
given by Orhan and Kolay [26] and in addition, if one replacesthe matricesA(m,n)

by the identity matrix, then we get the statistical Korovkintype theorems for double
sequences given by Demirci and Orhan [25].

2. If one replaces the matricesA(m,n) by the identity matrix, then from our The-
orem 2.1 and Theorem 2.2 we immediately get theµ−statistical Korovkin type
theorems for double sequences on modular spaces.

3. As it is well-known(X,‖.‖) is a normed space so then,ρ(.) = ‖.‖ is a convex
modular inX. So, by choosingρ(.) = ‖.‖ , from our Theorem 2.1 and Theorem
2.2, the following reductions are obtained on normed spaces:

i. We get theµ−statisticalA−summation process for double sequences on nor-
med spaces by choosingρ(.) = ‖.‖ .

ii . If we consider the condition (1.1), then we immediately get theB−statistical
A−summation process for double sequences on normed spaces andin addition,
if one replaces the matricesA(m,n) by the identity matrix, we immediately get the
B−statistical Korovkin type theorems for double sequences inthe normed spaces
in [11].

iii . If we take the double identity matrix, instead ofB in condition (1.1), then
we immediately get theA−summation process for double sequences on normed

spaces given by [16] and in addition,A= A(m,n) =
{

a(m,n)
k,l ,i, j

}

wherea(m,n)
k,l ,i, j =

1
kl , for

m≤ i ≤ m+ k− 1, n ≤ j ≤ n+ l − 1, (m,n= 1,2, ..) and a(m,n)
k,l ,i, j = 0 otherwise,

we immediately get the almost Korovkin type approximation theorem for double
sequences in [1].



µ−STATISTICAL A-SUMMATION PROCESS FOR DOUBLE SEQUENCES 215

REFERENCES

[1] G. A. Anastassiou, M. Mursaleen and S. A. Mohiuddine,Some approximation theorems for
functions of two variables through almost convergence of double sequences, J. Math. Anal.
Appl. 13(2011), 37-46.

[2] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini and S. OrhanKorovkin Type Theorems for
Modular ψ−A−Statistical Convergence, J. Funct. Spaces. Article ID 160401, 11 (2015).

[3] C. Bardaro, I. Mantellini,Approximation properties in abstract modular spaces for a class of
general sampling-type operators, Appl. Anal., 85(2006), 383-413.

[4] C. Bardaro, J. Musielak and G. Vinti,Nonlinear integral operators and applications, de Gruyter
Series in Nonlinear Analysis and Appl., (9) Walter de Gruyter Publ., Berlin, (2003).

[5] C. Bardaro, I. Mantellini,Korovkin’s theorem in modular spaces, Commentationes Math.,
47(2007), 239-253.

[6] C. Bardaro, I. Mantellini,A Korovkin theorem in multivariate modular function spaces, J. Funct.
Spaces Appl., 7(2)(2009), 105-120.

[7] J. Connor,Two valued measure and summability, Analysis 10(1990), 373-385.
[8] J. Connor,R-type summability methods, Cauchy criterion, P-sets and statistical convergence,

Proc. Amer. Math. Soc., 115(1992), 319-327.
[9] P. Das, P. Kostyrko, P. Wilczyński and Malik,I and I∗− convergence of double sequences,

Math. Slovaca, 58(2008), 605-620.
[10] P. Das, S. Bhunia and W. Bengal,two measure and summability of double sequences, J. Math

Czechoslovak 59(134) (2009), 1141-1155.
[11] F. Dirik, and K. Demirci,Korovkin type approximation theorem for functions of two variables

in statistical sense, Turkish Journal of Mathematics 34(1)(2010), 73-84.
[12] O. Duman and C. Orhan,µ−statistically convergent function sequences, Czechislovak Math. J.

54(2004), 413-422.
[13] H. Fast,Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
[14] J. A. Fridy and C. Orhan,Statistical limit superior and limit inferior, Proc. Amer. Math. Soc.

125(1997), no.12, 3625-3631.
[15] J. A. Fridy,On Statistical Convergence, Analysis 5(1985), 301-313.
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[30] İ. Sakaoğlu and C. Orhan,Strong summation process in Lp spaces, Nonlinear Analysis
86(2013), 89-94.
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