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KOROVKIN TYPE APPROXIMATION FOR DOUBLE SEQUENCES
VIA pu-STATISTICAL
A-SUMMATION PROCESS IN MODULAR SPACES

SELIN CINAR AND KAM IL DEMIRCI

ABSTRACT. In the present paper, we extend the Korovkin type approtkima
theorem viau—statistical 2-summation process onto the double sequences of
positive linear operators in a modular space. We apply ouresult to bivariate
Mellin-type operators in Orlicz spaces. Then we discussréueiced results
which are obtained by special choices and the matrix segsenc

1. INTRODUCTION

Summability theory often is the theory used in approximatibeory to cor-
rect the lack of convergence of real or complex term sequengence there are
many series (or sequences) where ordinary convergensg \igel consider more
general types of convergence using the methods of sumnyathiéory. Some of
these types of convergence are statistical convergenrestatistical convergence
(see more detalils, [12], [14], [15]). The concept of statstconvergence was pre-
sented by Fast [13] and this concept was studied by many rsutho particular,
in [7] and [8] Connor stated two expansions of the conceptstatistical con-
vergence using a complet®,1} valued measur@ defined on algebra of sub-
sets of N, natural numbers. The notion of statistical convergenceimtesduced
for multiple sequences by Méricz [20]. Das and Bhunia in][i@roduced the
notion of p—statistical convergence and convergencg-tuensity (following the
line of Connor [7]) using a two valued measyrelefined on the algebra of sub-
sets of N> = N x N and mainly investigated the inter-relationship betweersé¢h
two concepts. Since the concept of statistical convergénstronger than the
classical meaning, it played an important role in the exjpensf many theorems
( [16], [17], [25]). Among the most important of these are &wakin theorems
which allow us to check the convergence with minumum contjra. In this
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paper, our main purpose is to study a further generalizaifotme classical Ko-
rovkin theorem by considering a certain matrix summabititgcess in the frame
of yu—statistical convergence in modular spaces for double segse

First, for the basis of this paper, we begin by recalling tbhecepts of Pring-
sheim convergence and statistical convergence for doellessices.

A double sequence = {x;;} of real numbers, is said to be convergent in the
Pringsheim’s sense if for eagh> 0 there existdN € N such that|x j —L| <&
whenevei, j > N andL is called the Pringsheim limit and denoted®y- Iiirjnxm =

L . More briefly, we will say that such axis P—convergent td. ( [28]).
The double sequence= {XLJ‘} is statistically convergent to provided that for
everye > 0,

N .
P—lim— |{i<m j<n: |x;-L[>¢e}|=0,

where the vertical bars indicate the cardinality of the esetl set. In that case we
write st — limx; j = L (see [20]).
i

It can be easily seen thatR-convergent double sequence is statistically con-
vergent to the same value but its converse is not always Alse, it is crucial to
state that a convergent single sequence needs to be bowatetheugh this ne-
cessity does not always hold for double sequences. A atatisbnvergent double
sequence does not need to be bounded. For example, takeirgigleration the
double sequence= {x; ; } defined by

~__J ij iandjare squares
Xi= ) 1, otherwise.

Then, clearlyst, —limx; ; = 1 butx is notP—convergent and also, it is not bounded.
ij

The characterization of the statistical convergence fabte sequences is given
in [20] as indicated below:
A double sequence= {XLJ‘} is statistically convergent tb if and only if there
exists a seB C N2 such that the natural density 8is 1 and
P—limxj=L.

l,]—00

and(i,j)eS
Let

A= (ak.|’i’j) , k,|,i,j eN,

be a four-dimensional infinite matrix. The-transform ofx = {x; j} denoted by
Ax:= {(AX)k } is defined by

(Al = > a&lijXj, KlI€EN,
(i, N2

provided the double series converges in Pringsheim’s denswery (k,|) € N2,
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Then the double sequengaés A—summable td. if the A-transform ofx exists
for all k,I € N and convergent in the Pringsheim’s sense i.e.,

(i.fjene

Recall that a four-dimensional matrix= (ax,, j) is said to beRH—regular if it
maps every boundeld—convergent sequence intdPa-convergent sequence with
the sameP—Ilimit. The Robison-Hamilton conditions (see also [29])tstthat a
four-dimensional matridA = (a ;) is RH—regular if and only if

(i) P— limay i j = O for each(i, j) € N2,

(ii) P—Ilim z Al =1
kl (i, jene
(i) P—lim 3y |ayj| =0 foreachjeN,
klieN
(iv) P—lim 5 |axyj| =0 foreach €N,
k7| JGN '
(V) Y |akij| is P—convergent for everyk,l) € N2,
(i,j)en?
(vi) there exist finite positive integefsandB such that
> e <A
i,]>B

for every (k,1) € N2. Now let 4 := {AM"} — {af(TI”}} be a sequence of four-
dimensional infinite matrices with non-negative real esri For a given double
sequence of real numbess= {x; ; } is said to bed—summable td. if

. m.n
P—lim % A = L
i, fJene

uniformly in mandn. If A™"Y = A a four-dimensional infinite matrix, theA—
summability is theA—summability for that four-dimensional infinite matrix.

If a7 = & form<i<mtk-1n<j<n+l-1(mn=12.)and

af(TI”} = 0 otherwise, therl —summability reduces to almost convergence of dou-
ble sequences introduced by Méricz [20]. Some resultsemitog the matrix sum-
mability method for double sequences may be reached in[[28], [31].

Now, we recall some definitions and notations required fisr plaper.

Throughout the papegrwill denote a complet¢0, 1} valued finite additive mea-
sure defined on an algebFaof subsetdN? that contains all subsets d@f? that are

contained in the union of a finite number of rows and column¥oandu(K) =0
if K is contained in the union of a finite number of rows and coluofris?.
Das and Bhunia in [10] also introduced the following two ditifoms:
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Definition 1.1. [10] A double sequence= {x;j} of real numbers is said to be
p—statistically convergent to £ R if and only if for anye > O,

n({(G,j) eN?: |xj—L|>€})=0.

Definition 1.2. [10] A double sequence x {ij} of real numbers is said to be
convergent to L& R in p—density if there exists an K I' with p(K) = 1 such that
X = {Xj }; e IS CONVergent to L

If C, andC; denote respectively the sets of all double sequences which a
p—statistically convergent and convergeniundensity then [7] (see also [9]) it is
easy to prove that; is a dense subset 6f, which again is closed itf’ ( the set of
all bounded double sequences of real numbers endowed wiughmetric).

If B= (byy,,j) is a nonnegativlH—regular summability matrix, the can be
used to generate a measure as follows:

for eachk,l € N, set

Wt (K) =5 biijXe (i, 1)
e

for each(i, j) € N? andK C N2, Let
r {K_N P limpu (K) = 0 orP—limi (K) 1}

Definepg : ' — {0,1} by
bs (K) =P —limp (K) =P—lim % byijXk (i, ])- (1.1)
k| kI e

Thenpg andl satisfy the requirements of the preceding definitions. Guosliy,
U —statistical convergence coincides with the notioBefstatistical convergence
for double sequences. Bfis the double Cesaro matrix of order one, tpgna-statis-
tical convergence is equivalent to statistical convergdonc double sequences.

Now, we recall some definitions and notations on modularepac

Let | =[ab] be a bounded interval of the real liri¢ provided with the
Lebesgue measure. Then, Yef12) we denote the space of all real-valued measur-
able functions om? = [a, b] x [a, b] provided with equality.e. As usual, leC (12)
denote the space of all continuous real-valued functiond,G¥ (1%) denote the
space of all infinitely differentiable functions ¢A A functional

p: X (1%) = [0,+oo]
is called a modular o (12) provided that the following conditions hold:
(i) p(f)=0ifand onlyif f =0 a.e.in 12,
(i) p(—f)=p(f) foreveryf € X (12),
(i) p(af+Bg) < p(f)+p(g) for every f,g € X(1?) and for anya, B > 0 with
a+pB=1
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A modularp is said to beN —quasi convex if there exists a constéht 1 such that
p(af +Bg) < Nap(Nf)+NBp(Ng) holds for everyf,g € X (12), a,B > 0 with
o +B =1 Inparticular, ifN = 1, thenp is called convex. A modulgr is said to be
N—quasi semiconvex if there exists a constidnt 1 such thap(af) < Nap(N f)
holds for everyf € X (12) anda € (0,1]. It is clear that everyN—quasi convex
modular isN—quasi semiconvex. Bardaro et. al. introduced and workealitr
the above two concepts in [4, 6].

We now present some obtained vector subspace§(idf via a modularp as
follows:

The modular spack® (12) generated by is defined by

LP (12) := {f eX(1?): lim p(AT) = o}
and the space of the finite elements.8f(12) is given by
EP(1?) :={f € LP(1%) : p(Af) <+ for all A > 0}.
Observe that ip is N—quasi semiconvex, then the space
{f eX(1?) : p(Af) <+ for someA > 0}

coincides withLP (12). The notions about modulars are introduced in [21] and
widely discussed in [4] (see also [18, 22]).

Bardaro and Mantellini in [5] introduced some Korovkin typpproximation
theorems via the notions of modular convergence and strongecgence. After-
wards Karakus et al. [17] investigated the modular Korowiyipe approximation
theorem via statistical convergence and then, Orhan andirDief25] extended
these types of approximations to the spaces of double segsi@h positive linear
operators.

Now we recall the convergence methods in modular spaces.

Definition 1.3. [25] Let { fm‘} be a double function sequence whose terms belong
to LP (1%). Then,{ f; ; } is modularly convergent to a functionef L (12) if

P—limp(Ao(fij—f))=0 for somerg > 0. (1.2)
i

Also, { fi j } is statistically F-norm convergent (or, strongly convereo f if
P—limp(A(fij—f)) =0 for everyA > 0. a.3)
L
It is known from [21] that (1.2) and (1.3) are equivalent ifdaanly if the modular

p satisfies thé,-condition, i.e.
there exists a constant M 0 such thatp (2f) < Mp(f) for every fe X(12).

Recently, Orhan and Demirci [24] have introduced the notibA—summation
process on the one dimensional modular spé¢k) and then, Orhan and Kolay
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[26] introduced4—summation process for double sequences on a modular space.

Now, the definition of thea—summation process for double sequences as follows:
A sequenceT := {T;;} of positive linear operators d into X (12) is called

an 4—summation process dn if {TLJ' f} is 4—summable tof (with respect to

modularp) for everyf €D, i.e.,

. ’]T o . .
P— Ilkn|1 p ()\ (AK,’m’n(f) - f)) =0, uniformly inm,n a.4)
for someA > 0, where for allk,|,m,n € N, f € D the series
AE,I.m.n (f) = al(<nl]7|niT'»J f (1.5)
(i,j)eN2

is absolutely convergent almost everywhere with respelceb@esgue measure and
we denote the value oF j f at a point(x,y) € 12 by Ti,j (f(u,v);x,y) or briefly,
Tii(fixy).

Our goal in the present work is to give the Korovkin theorem double se-
quences of positive linear operators using|thestatistical-2—summation process
on the modular space. Some results concerning summaticegs®es in the space
Lp[a,b] of Lebesgue integrable functions on a compact interval neajobnded
in [23], [30].

It is required to give the following assumptions on a modglar

A modularp ismonotonef p(f) <p(g) for |f| <|g|, pis said to bdiniteif xx €
LP (12) wheneveK is a measurable subsetl8fsuch thatK | < . If pis finite and,
for everye > 0, A > 0, there exists & > 0 such thap (Axg) < € for any measurable
subsetB C 12 with |B| < 3, thenp is absolutely finiteand ifx,> € EP (12), thenp
is strongly finite. A modularp is absolutely continuouprovided that there exists
ana > 0 such that, for every € X (12) with p(f) < +, the following condition
holds:

for everye > 0 there id > 0 such thap (a fxg) < € wheneveB is any measur-
able subset of? with |B| < 3.

Observe now that (see [5, 6]) if a modularis monotone and finite, then we
haveC(12) C LP (12). Similarly, if p is monotone and strongly finite, th€l?) c
EP (12). Also, if p is monotone, absolutely finite and absolutely continucsnt

C=(12) = LP(1?) (See [3,4, 19, 22] for more details ).

2. KOROVKIN TYPE THEOREMS

Let p be a monotone and finite modular ¥r{12) . Assume thab is a set satis-
fying C* (12) € D C LP (12) (Such a subsdd can be constructed wheris mono-
tone and finite, see [5]). Also, assume tffat= {T;;} is a sequence of positive
linear operators fronD into X (12) for which there exists a subskt C D with
C® (12) C Xr such that
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u({(k,l) eN?: p()\ (AElmn(h)» >s}> < Sp(Ah), uniformly inm,n, (2.1)

holds for everyh € Xr, A > 0 and for an absolute positive constént

We will use the test function§ (r =0, 1,2,3) defined byfo (x,y) =1, f1 (X,y) =
x, f2(x,y) =y and fz(x,y) = x2 +y? throughout the paper.

We now prove our following main theorem.

Theorem 2.1. Let 4 = {A™"} be a sequence of four dimensional infinite non-
negative real matrices and Igtbe a monotone, strongly finite, absolutely contin-
uous and N-quasi semiconvex modular oi% . LetT := {T; j} be a sequence
of positive linear operators from D into ¥?) satisfying (2.1) for each & D.
Suppose that

u({(k,l) eN?: p()\ (AE,m(fr)— fr)> > s}) — 0, uniformlyinmn (2.2)

for everyA > 0and r=0,1,2,3. Now let f be any function belonging t® (12)
such that f— g € Xr for every ge C* (1?) . Then we have

u({(k,l) eN2: p ()\0 (AELmn(f) - f)) > s}) — 0, uniformly inmn  (2.3)
for someig > 0.

Proof. We first claim that
p({(k,l) eN?: p (r] (AE.Lm’n (9) —g>> > s}) =0, uniformly inmn (2.4)
for everyg € C(1?) D andn > 0 where
Al mn (9) = > aliTjir.]}Ti,J'g'

(i,j)eN?

To see this assume thgtbelongs taC (I2) N D andn is any positive number.
By the continuity ofg on |2 and from the linearity and positivity of the operators
Ti j, we can easily see that (see, for instance [25]), for a géverD, there exists a
numberd > 0 such that for al(u,v), (x,y) € |2

0uY) — gty < e+ o {(u—0%+ (v—y)?)

whereM := sup |g(x,y)|. SinceT, ; is linear and positive, we get
(xy)€l?

> za(kT.’f}Ti.j (@xy) —g(xy)| =
(i,))eN

Y za(iji’T}Ti.j (90 =g06y); %Y)

(i,j)eN

+9(X7Y)< > aliTji'?}'ﬁ.j(fo;x,y)—fo(x,y)>'

(i,j)eN
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< Y aMTi(g(.) — gyl xy)
(Lj)eN2

+19(%,y)| (i J_%Nzaﬁﬂf}m (forx,y) — fo (x,y)'

< (L%Nza'(‘m“’j <s+ 26—'\2{' {(=%2+(-y?} ;x,Y>
+1g(xy)| (i %Nza(kf?:{?}m (forxy) — fo(x,Y)

=g+ (e+M) (i jéNzaﬁT’f}'ﬁJ(fo:X,)’)—fo(XaY)'
+26—,\2/| > zaﬂ’m'ﬁ,j(fs;X,y)— fa(x.y)

(i,))eN

aM
+7<|f1<x,y>| > Al T (fuxy) - fi(xy)

(i,j)eN?

+[f2(x )

> ZaﬁT:S}Tu (faixy) — f2<x,y>D
(i,])eN

Y AT (foxy) — fo(xy)

M
+ 2 |f3(X,y)|
o L
(i,j)en?

for everyx,y € | andm,n € N. Therefore, from the last inequality we get

S AT (gxy) - g(x,y)'

(i,j)eN2
4Mc
<er(eemeiF)| S a&T:i’?}TLj(fo:x,y)—fo<x,y>'
(i,j)eN2
4Mc
T > aliT’mTLj(fl:XJ)—fl(X’)’)
(i,j)eN2
4Mc
ts | D BT (f2i%y) = fa (x,Y)

(i,j)eN?

2M
| Y AT (faxy) = fa(xy)
(i,j)eN2
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wherec := max{|f1 (x,y)|,|f2 (X, y)|}. So, if we denote

A

§8+K{

K:= max{s+M+

S AT (@xy) —g(xy) Y AT (feixy) — fo(xy)

(i.)en (.o
Y AT (fuxy) —faxy)| +| Y aﬁTf}Tw(fz;x,y)_fz(x,y)'
(i,j)en? (i,j)eN2
Ny
(i,j)eN2

Hence, we obtain, fon > 0, that

Ny AT @xy) - gxy)
i,/)ene
< (Mn)o+ ¢
<ne+nk Z A Ti (fox,y) — fo(xy)
(i,j)en?
+| Y AT (fuxy) = iy +| T &l T (fxy) - fa(xy)
(i.j)eN? (i.f)ene

(i,j)eN2

}

Now we apply the modulas to both-sides of the above inequality, sicis mono-
tone, we get

( (Aklmn() ))<p(n8+nK<Aklmn( )_f0)+nK(AE,I,m,n(fl)_fl>
1K (AT ma (f2) = f2) + MK (A o () = T3))

So, we may write that
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Sincep is N-quasi semiconvex and strongly finite, we have, assumiag 1,
p(n (Adima(9)~9)) < Nep(5n8)+p(5nK (A% mn (o) — To))
IR
0 (51K (Ao ()~ 1)
+p (51K (A ma (fa) — ).

For a givere* > 0, choose ai € (0,1] such thalNep ( ) < €*. Now we define
the following sets:

Gy = {k: p(r] (A“kﬂ,mn(g)—g)) > 8*}>
s*—Nep(@)
Gy = {k:p(Sr]K(AELmn(fr)fr» > 4},r0,1,2,3.

3
Then, itis easy to see th&, C | Gy . So, we can write that
r=0

u({3(k,|)eN2 (1 (A (@ 9)) >2))
ér;u({(k,l) eNZ: p (1 (AL ma(F) ~ 1)) 2 2}).

Using the hypothesis (2.2), we get

H(Gp) =0,

which proves our claim (2.4). Observe that (2.4) also hotdseferyg € C*(12).
Now let f € LP (12) satisfy f —g € Xr for everyg € C* (12) . Since|I2| < « andp
is strongly finite and absolutely continuous, it can be shanhgis also absolutely
finite on X(12) (see [3]). Usmg these properties of the modydaiit is known
from [4,19] that the spadg™(1?) is modularly dense ihP (I ) i.e., there exists a
sequencégy ) C C* (12) such that

P— ILn|1 p (3§ (gk) — ) =0 for somer; > 0.

This means that, for every/> 0, there is a positive numbég = ko (€) so that
P3G (gk) — f) <& foreveryk,| > ko. (2.5)

On the other hand, by the linearity and positivity of the @persT; j, we may write
that
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M| Y ATy Ty A6 S AT Gokixy)
(.fjere -
<ho| > atinir?}Tti(f—gk@koix,y)'
(i,j)EN?

+Ao +20[Gko.ko (%) = TV,

> aﬁTF]Tu (Gokor X Y) — Gio ko (X, Y)
(i,j)eN2

holds for everyx,y € I andm,n € N. Applying the modulap and moreover con-
sidering the monotonicity gb, we have

p (7\6 (AE,I,m,n (f) - f)) <p (3)\8 (AE(I,I,m,n (f - gko7|<o)>>

0 (30 (Al mn (Goko) ~ Goko )
+ P (3N (Gio ko — T))- (2.6)
Then, it follows from (2.5) and (2.6) that
p (A (Afimn (1) = 1)) < &+ (30 (AL mn (T~ Got)))

+p (3)\6 (AELmn (gko,lo) - gkoJQJ)) . (2.7)

So, taking theu—statistical limit agk,|) € N2 on both sides of (2.7) and using the
fact thatgy, x, € C*(12) and f — gy, x, € Xr, we obtained from (2.1) that

({0 €N (36 (A (1) - 1)) > ¢})
<e+u({(k) €M1 p (3 (Al ma(f ~Gok)) ) > €})
({01 N2 p (3N (A mn (Goko) — ko)) > £})
which gives
n({ch) N2 p (A (Alimn ()~ 1)) ¢}
<e(S+1)+u({kD) eN?: p (3 (Allmn (Goko) ~ Gk )) > €} ). (28)
By (2.4), since
u({(k,l) eN?: p(r] (AE’Lm’n (9) —g)) =0> s}) =0, uniformly inm,n,
we get

u({(k,l) eN’: p (3)\23 <A£|7m7n (Gkoko) — gko’ko)) > s}) = 0, uniformly in m,n.
2.9)
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Combining (2.8) with (2.9), we conclude that
u({(k,l) eN?: p()\z‘, (AE.Lm’n(f) )) a}) g(S+1).

Sincee > 0 was arbitrary, furthermore, smqre()\g (AEI a () — >) IS non-
negative for allk,|,m,n € N, we can easily see that

u({(k,l) eN2: p ()\ (AEJmn(f) - f)) > s}) — 0, uniformly inm,n,
which completes the proof. O
Theorem 2.2. Let 4 = {A™"} be a sequence of four dimensional infinite non-

negative real matrices. LegtandT := {T; ;} be the same as in Theorem 2.1plf
satisfies thé,-condition, then the statementg and (ii) are equivalent:

(i) u({(k,l) eN2: p ()\ (Aﬂg,m (f,)— fr>> > s}) — 0, uniformly in mn, for
everyhA >0andr=0,1,2,3,

(ii) u({(k,l) eN?: p()\ (AEImn(f)— f)) >s}) — 0, uniformly in mn, for
everyA > 0 provided that f is any fuction belonging td® le) such that
f —g e X for every ge C* (12).

3. APPLICATION

In this section, we give an example of positive linear op@satvhich satisfies
the conditions of Theorem 2.1.

Example 3.1. Take 1= [0,1] and let¢ : [0,00) — [0,0) be a continuous function
for which the following conditions hold:

e ¢ is convex,

e $(0)=0, ¢ (u) >0foru>0and l!ian)(u) = oo,

Hence, consider the functiongf on X(12) defined by
11
p¢(f):://¢(|f(x,y)|)dxdy for fe X (12). 3.1)
00

In this case,p? is a convex modular on ¥?), which satisfies all assumptions
listed in Section 1 (see [5]). Let us consider the Orlicz gpgenerated by as
follows:

L§(12) := {f € X (1?) : p® (A f) < +oo for some > O} .

Then consider the following bivariate Mellin-type operatdl := {MH} on the
space § (12) which is defined by:
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1

1
M ;(f;x.y) =/ Kij (to,t2) f (t1x,t2y) dtzdty (3.2)
00

forx,y,tyt2 € I and i, j € N where K (t1 t) defined by
Kij (tutz) = (i+1) (j + 1) tit).

Observe that the operators Ymap the Orlicz space@_(l 2) into itself. Recall that
from Lemma16 in [2], we obtain that for everyefLy (12) and i, j > 2

p® (Ui f) < 320%(f).

Then, we know that, for any functioneng (I2) such that f— g e Xy for every
geC>(12), (Ui f) is modularly convergent to, fvith the choice of ¥ := L$(I 2).
Let K€ I be such that (iK) = 0, andN?\ K is infinite element set. Now define

{s.i} by
. _J L (i,j))ekK
s={o (K =
Since N\ K) = 1 and P—lims j = 0, now observe that
(i,))eN2\K

u({(i,j) eN?: |s;—0| >¢€}) =0.
Also, assume that A= {AM"] = {af(TI”}} is a sequence of four dimensional
infinite matrices defined by’ = 2 if 1<i<k 1<j<I, (mn=12..)

and ”lnlni = 0 otherwise. Then, using the operators;Uwe define the sequence of

positive linear operatord’ := {V; j} on L§ (12) as follows:

Vij(f;xy) = (1+s)Mi;(f;xy) for f e L§ (1?), x,y€ [0,1] and i, j € N.
(3.4)

We get, for every k& Xy :=L§ (1), A > 0 and for any positive constant Mhat
u({(k,l) eN2: p ()\ (A,E,mn (h))) > s}) < Mp (Ah), uniformly in mn,

where 4 o (h) = (_ _?Nzaﬁfﬂ‘ﬂ}\ﬁ,jh as in (1.5). Therefore the condition (2.1)
i,j)e
works for our operators f given by (3.4) with the choice of %= Xy = L§ (12).
We now claim that

p({(k,l) € N?: p()\ (AE’Lmn(fr) — fr>> > a}) =0, uniformly in
mn; r=0,1,23. (3.5
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Observe that ¥j; (fo; x,y) =1, M.J(fl;x y) < I+2+f1(x y), Mij (f2;xy) < %4—
f2(x,y) and M j (f3;xy) < ,+3+ J+2+ f3(x,y). So, we can see,

o’ <Al<_ZZ;<1+s,j> —1))
ol (g )
2 il

o (Bzaee ))’

(1+s) :{f ("J.)GK mn=12,...,

~

’\‘IH ,JVI*'

because of

55

H(N>\K)=1and P- Im ( <§

(uj)eNz\K i=1j=
using continuity ofp, we get get

u({(kl )eN?: ¢ ( (lekl 1+s) 1))%}):0, uniformly in mn

(3.6)

W||_\

» (L) ¢K?

\M—

%(14—5”-)—1)) =0, and also

and hence

u({(k,l) e N2: ()\ (Aﬁflmn(fo) - fo)) > s}) — 0, uniformly in mn

which guarantees that (3.5) holds true foer0. Also, since

k|
i=1j=1

(1+S,j)|\/|i’j (f1;xy) —x))

=l

>
= ~
M= T
_,TLM
Fa [
=
+
4
T
[ +‘H
N
+
—_
=
=
<
\_/
=
=
N———
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We know that (3.6) is

u({(k,l) eN?; p? (2)\ (f lel%(l+s7j)—1>> 28}) =0.

And because of

1(A+s) [} &

IZlZ kI i+2

k|
H(NAK)=1landP- lm p (2)\ <z )3 %ﬁ)) = 0, also using continu-
: i£1j=
ity of ¢, we get

(o (o380 o)

We have
u({(k,l) eN2: p? ()\ (Aﬁlmn(fl) - f1>> > s}) = 0, uniformly in mn.

So (3.5) holds true for £ 1. Similarly, we have

u({(k,l) e N?:p® ()\ (Aﬁfl’m’n(fg) — f2>> > s}) = 0, uniformly in mn.

Finally, since

p¢ ()\ (AE/J,m,n( f3) — f3>>
%(1+371)Mi7j(f3;xy f3xy>>
|4 )
A<i;J—1H(1+Sj)<+3+JT2+X y2> (2+y2)>>
¢ Ls 2 R k|
o (o (spz )] (o (g5 ))

¢4A1k|1--2 ¢4A1|1
+p Hi:,;( +s.1)1+3 +p E:; +sj)-1]]

Hence we can easily see that

u({(k,l) eN2:p? ()\ (Aﬁfl’m’n(fg) — f3>> > s}) = 0, uniformly in mn.
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So, our claim (3.5) holds true for each=0,1,2,3.{ V; j } satisfies all the hypoth-
esis of Theorem 2.1 and we immediately see that,

p({(k,l) e N2: p()\ (AEl’m’n(f) — f>> > a}) = 0, uniformly in mn,
on 12 =[0,1] x [0,1] for all f € L§(I?).
4. CONCLUSIONS

Now, we give some reduced results showing the importancéebiem 2.1 and
Theorem 2.2 in approximation theory with special choices:

1. We know from the condition (1.1) thas—sta tistical convergence aBd-sta-
tistical convergence are equivalentBlfs the double Cesaro matrix, then from our
Theorem 2.1 and Theorem 2.2 we immediately get the Koroukde theorems
of the statisticald—summation process for double sequences on modular spaces
given by Orhan and Kolay [26] and in addition, if one replatesmatricesA(™"
by the identity matrix, then we get the statistical Koroviipe theorems for double
sequences given by Demirci and Orhan [25].

2. If one replaces the matricé$™" by the identity matrix, then from our The-
orem 2.1 and Theorem 2.2 we immediately get fhestatistical Korovkin type
theorems for double sequences on modular spaces.

3. Asitis well-known(X, ||.||) is a normed space so then.) = ||.|| is a convex
modular inX. So, by choosing(.) = |.||, from our Theorem 2.1 and Theorem
2.2, the following reductions are obtained on normed spaces

i. We get theu—statistical-2—summation process for double sequences on nor-
med spaces by choosipgd.) = ||.]|.

ii. If we consider the condition (1.1), then we immediately ¢etB—statistical
A—summation process for double sequences on normed spaces addition,
if one replaces the matriceg§™" by the identity matrix, we immediately get the
B—statistical Korovkin type theorems for double sequencdhénnormed spaces
in [11].

iii . If we take the double identity matrix, instead Bfin condition (1.1), then
we immediately get theZ—summation process for double sequences on normed
(mn)

|

spaces given by [16] and in additiof,= A™" = {ak7,:-7j} whereaﬁm’f} = 4. for

m<i<m+k—1,n<j<n+l—-1 (mn=12.) anda‘((T:i'j} = 0 otherwise,
we immediately get the almost Korovkin type approximatibadrem for double
sequences in [1].



U—STATISTICAL A-SUMMATION PROCESS FOR DOUBLE SEQUENCES 215

REFERENCES

[1] G. A. Anastassiou, M. Mursaleen and S. A. Mohiuddi®me approximation theorems for
functions of two variables through almost convergence aibtio sequences). Math. Anal.
Appl. 13(2011), 37-46.

[2] C. Bardaro, A. Boccuto, K. Demirci, . Mantellini and Sri@nKorovkin Type Theorems for
Modular ¢ — A—Statistical Convergeng¢d. Funct. Spaces. Article ID 160401, 11 (2015).

[3] C. Bardaro, I. Mantellini Approximation properties in abstract modular spaces fotass of
general sampling-type operatorappl. Anal., 85(2006), 383-413.

[4] C.Bardaro, J. Musielak and G. Vintlonlinear integral operators and applicationge Gruyter
Series in Nonlinear Analysis and Appl., (9) Walter de Gruyrabl., Berlin, (2003).

[5] C. Bardaro, I. Mantellini,Korovkin's theorem in modular space€ommentationes Math.,
47(2007), 239-253.

[6] C.Bardaro, I. MantelliniA Korovkin theorem in multivariate modular function spacks$-unct.
Spaces Appl., 7(2)(2009), 105-120.

[7] J. Connor,Two valued measure and summabijliynalysis 10(1990), 373-385.

[8] J. Connor,R-type summability methods, Cauchy criterion, P-sets &atistical convergence
Proc. Amer. Math. Soc., 115(1992), 319-327.

[9] P. Das, P. Kostyrko, P. Wilczyhski and Malik,and I*— convergence of double sequences
Math. Slovaca, 58(2008), 605-620.

[10] P. Das, S. Bhunia and W. Bengalo measure and summability of double sequengellath
Czechoslovak 59(134) (2009), 1141-1155.

[11] F. Dirik, and K. Demirci,Korovkin type approximation theorem for functions of twoiatales
in statistical senseTurkish Journal of Mathematics 34(1)(2010), 73-84.

[12] O. Duman and C. Orhap,—statistically convergent function sequencégechislovak Math. J.
54(2004), 413-422.

[13] H. Fast,Sur la convergence statistigu€ollog. Math. 2(1951), 241-244.

[14] J. A. Fridy and C. OrharStatistical limit superior and limit inferigrProc. Amer. Math. Soc.
125(1997), no.12, 3625-3631.

[15] J. A. Fridy,On Statistical Convergencénalysis 5(1985), 301-313.

[16] S. Karakus and K. DemirciA-summation process and Korovkin-type approximation rdreo
for double sequences of positive linear operatdisthematica Slovaca, 62(2012), 281-292.

[17] S. Karakus, K. Demirci, O. Dumaigtatistical approximation by positive linear operators on
modular spacesPositivity 14(2010), 321-334.

[18] W. M. Kozlowski, Modular function space$ure Appl. Math., 122(1988), Marcel Dekker, Inc.,
New York.

[19] I. Mantellini, Generalized sampling operators in modular spacE®@mmentationes Math.,
38(1998), 77-92.

[20] F. Moricz, Statistical convergence of multiple sequendesh. Math., 81(2004), 82-89.

[21] J. Musielak,Orlicz spaces and modular spag¢dsecture Notes in Mathematics, 1034(1983)
Springer-Verlag, Berlin.

[22] J. Musielak, Nonlinear approximation in some modular function spacksMath. Japon,
38(1993), 83-90.

[23] C.Orhan and. SakaogluRate of convergence in Lp approximatiéteriodica Math.Hungarica,
68(2) (2014), 176-184.

[24] S. Orhan, K. DemirciStatistical A-Summation Process and Korovkin Type Approximation
Theorem on Modular SpaceBositivity 18(2014), 669-686.

[25] S. Orhan, K. DemirciStatistical approximation by double sequences of podiitiear opera-
tors on modular space®ositivity 19(2015), 23-36.



216 SELN CINAR AND KAM iL DEMIRCI

[26] S. Orhan and B. KolayKorovkin type approximation for double sequences via siatl
A—Summation Process on Modular Spad®3(1)(2018), 125-140.

[27] R.F. Patterson, E. Savadgniformly summable double sequenc8sudia Scientiarum Mathe-
maticarum Hungarica, 44(2007), 147-158.

[28] A. PringsheimZur theorie der zweifach unendlichen zahlenfolgdath. Ann. 53(1900), 289-
321.

[29] G.M. Robison,Divergent double sequences and seriémer. Math. Soc. Transl., 28(1926),
50-73.

[30] I. Sakaoglu and C. OrharStrong summation process inp Lspaces Nonlinear Analysis
86(2013), 89-94.

[31] E. Savas, B.E. RhoadeBpuble summability factor theorems and applicatidnath. Inequal.
Appl. 10 (2007), 125-149.

(Received: August 19, 2020) Selin Cinar

(Revised: October 21, 2021) Sinop University
Osmaniye Mahallesi
Universite Caddesi No:52G
Turkey
e-mail: scinar@sinop.edu.tr
and
Kamil Demirci
Sinop University
Osmaniye Mahallesi
Universite Caddesi N0:52G
Turkey
e-mail:kamild@sinop.edu.tr



