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ABSTRACT. In this paper, we investigate the oscillatory behavior of solutions
of conformable differential equations of the form

Dα (a(t)Dαy(t))+q(t)y(t) = 0, t ≥ t0,

using the Riccati transformation and the integral average method. Examples are
given to illustrate the significance of the main results.

1. INTRODUCTION

In recent years fractional differential equations are usedin different fields such
as physics, biology, bio-medical sciences, etc., see for example [1,6,11,12,14,20].
There are many definitions for fractional derivatives such as Riemann-Liouville,
Caputo, Riesz, Riesz-Caputo, Weyl, Grunwald-Letnikov, and Chen derivative, etc.
In [9], the authors have suggested a new fractional derivative called the conformable
derivative, and this definition satisfies almost all properties of the usual derivative.

In this paper, we investigate the oscillatory behavior of solutions of conformable
differential equation of the form

Dα (a(t)Dαy(t))+q(t)y(t) = 0, t ≥ t0, (1.1)

whereDα denotes the conformable derivative of orderα with 0 < α ≤ 1. We as-
sume that

(H1) a(t) ∈C1([t0,∞),R+), andq(t) ∈C([t0,∞),R+);
(H2) y(t) andy′(t) are differentiable functions onR.

A nontrivial solutiony(t) of differential equation (1.1) is said to be oscillatory
if it has arbitrarily large zeros: nonoscillatory otherwise. The equation (1.1) is
oscillatory if all its solutions are oscillatory.

If α = 1, then we have the following second order differential equation

(a(t)y′(t))′+q(t)y(t) = 0. (1.2)
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In the literature, there are many papers dealing with the oscillatory behavior of
solutions of equation (1.2), see for example [7,10,18].

As a new research area, the oscillatory behavior of fractional differential equa-
tions received great attention by many authors, see for example [2–5, 8, 13, 17, 19]
and the references cited there in. From the review of literature one can see that
most of the oscillation criteria are obtained for fractional differential equations
with a forcing term, and very few oscillatory results are available for fractional
differential equations without a forcing term [2].

Therefore, in this paper, we obtain some new oscillation criteria for equation
(1.1) using the Riccati transformation technique. By applying some new properties
of this derivative, the classical oscillation problem of equation (1.2) can be ex-
tended to equation (1.1). The obtained results improve and complement the result
obtained in the literature for fractional differential equations. Examples are given
to show the importance of our main results.

2. PRELIMINARIES

In this section, we shall present some basic results on conformable derivatives.
First we shall start with the definition;

Definition 2.1. [9][Conformable Derivative] Let f: [t0,∞)→ R, and t≥ t0 > 0.
Then the conformable derivative of f of orderα is defined by

Dα f (t) = lim
ε→0

f (t + ε(t − t0)1−α)− f (t)
ε

for all t > 0, α ∈ (0,1].

Some Properties of Conformable Derivative

Lemma 2.1. [9] Let α ∈ (0,1] and f and g beα−differentiable at a point t≥ t0.
Then

(P1) Dα(tp) = ptp−α, for all p ∈ R;
(P2) Dα(λ) = 0, for all constant functions f(t) = λ;
(P3) Dα( f g) = f Dα(g)+gDα( f );

(P4) Dα

(

f
g

)

= gDα( f )− f Dα(g)
g2 ;

(P5) If f is differentiable, then
Dα f (t) = t1−α f ′(t).

Lemma 2.2. Let 0< α ≤ 1. Then the conformable integral of orderα starting at
t0 is defined by

Iα f (t) =
∫ t

t0
(s− t0)

α−1 f (s)ds:=
∫ t

t0
f (s)dα(s, t0).

If the conformable integral of a given function f exists, we can f isα− integrable.
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Lemma 2.3. [1] If 0< α ≤ 1 and f∈C1([t0,∞),R) then for all t> t0, we have

Iα(Dα f (t)) = f (t)− f (t0)

and
Dα(Iα f (t)) = f (t).

3. OSCILLATION RESULTS

In this section, we established some new oscillation conditions for the equation
(1.1). In the following, for convenience we denote

δ(t) =
∫ ∞

t

1
a(s)

dα(s, t0). (3.1)

We study the oscillation of equation (1.1) under the following two cases;∫ t

T

1
a(s)

dα(s, t0) = ∞ when t → ∞ (3.2)

and ∫ ∞

T

1
a(s)

dα(s, t0)< ∞ when t → ∞ (3.3)

whereT ≥ t0+1. We begin with the following lemma.

Lemma 3.1. Assume that condition(3.2) holds. If y(t) is an eventually positive
solution of equation(1.1), then

y(t)> 0, Dαy(t) > 0, Dα(a(t)Dαy(t)) ≤ 0.

Proof. Let y(t) be an eventually positive solution of equation (1.1). Then from
(1.1), we have

Dα(a(t)Dαy(t)) =−q(t)y(t) ≤ 0 (3.4)

for all t ≥ t1 ≥ t0. Since by(H1) and (H2), a(t)Dαy(t) is differentiable, we can
write (3.4) as

t1−α(a(t)Dαy(t))′ =−q(t)y(t) ≤ 0

or
a(t)Dαy(t) is nonincreasing for allt ≥ t1.

Thereforea(t)Dαy(t) > 0 ora(t)Dαy(t)< 0 for all t ≥ t1. Assume that
a(t)Dαy(t) < 0 for all t ≥ t1. Then fort ≥ t1, we have

a(t)Dαy(t)≤ a(t1)Dαy(t1)≤−M

for someM > 0, and

Dαy(t) ≤−
M

a(t)
(3.5)

or
y(t)≤−M

∫ t

t1

1
a(s)

dα(s, t0).
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Integrating the last inequality fromt1 to t and lettingt → ∞ we obtain a contradic-
tion to the positivity ofy(t). HenceDαy(t) > 0 for all t ≥ t1. This completes the
proof. �

Lemma 3.2. Assume that condition(3.3) holds. If y(t) is an eventually positive
solution of equation(1.1), then y(t) satisfies one of the following two cases:

(i) y(t) > 0, Dαy(t)> 0, Dα(a(t)Dαy(t)) ≤ 0;
(ii) y(t) > 0, Dαy(t)< 0, Dα(a(t)Dαy(t)) ≤ 0.

Proof. Let y(t) be an eventually positive solution of equation (1.1). Then from
(1.1), we have

Dα(a(t)Dαy(t)) =−q(t)y(t) ≤ 0 (3.6)

for all t ≥ t1 ≥ t0. Since by(H1) and (H2), a(t)Dαy(t) is differentiable, we can
write (3.6) as

t1−α(a(t)Dαy(t))′ =−q(t)y(t) ≤ 0

or
a(t)Dαy(t) is nonincreasing for allt ≥ t1.

Thereforea(t)Dαy(t)> 0 ora(t)Dαy(t)< 0 for all t ≥ t1. This completes the proof.
�

Theorem 3.1. Assume that(H1), (H2), q(t) ∈ C([t0,∞),R+) and condition(3.2)
hold. If there exists a real valued functionρ(t) ∈C1([t0,∞),R) such that

lim
t→∞

sup
∫ t

T

(

ρ(s)q(s)−
a(s)(Dαρ(s))2

4ρ(s)

)

dα(s, t0) = ∞ (3.7)

for T ≥ t0+1, then every solution of equation(1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of equation (1.1) on the interval [t1,∞).
Without loss of generality one can assume thaty(t) > 0 on [t1,∞), and by Lemma
3.1, we haveDαy(t)> 0 for all t ≥ t1. Define

w(t) =
ρ(t)a(t)Dαy(t)

y(t)
. (3.8)

Thenw(t) > 0 for t ≥ t1. Differentiating (3.8)α times with respect tot, and then
using (1.1) and the properties of conformable derivative, we have

Dαw(t) = Dα

(

ρ(t)a(t)Dαy(t)
y(t)

)

=
y(t)Dα(ρ(t)a(t)Dαy(t))−ρ(t)a(t)Dαy(t)Dαy(t)

(y(t))2

=
Dα(ρ(t))a(t)Dαy(t)

y(t)
+

ρ(t)Dα(a(t)Dαy(t))
y(t)

−
ρ(t)a(t)Dαy(t)Dαy(t)

(y(t))2

≤−ρ(t)q(t)+
Dαρ(t)

ρ(t)
w(t)−

1
ρ(t)a(t)

w2(t).
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By using the inequalityAu−Bu2 ≤ A2

4B, with A= Dαρ(t)
ρ(t) , andB= 1

ρ(t)a(t) , we obtain

Dαw(t) ≤ −ρ(t)q(t)+
a(t)(Dαρ(t))2

4ρ(t)
.

Integrating the last inequality fromT to t, we obtain
∫ t

T

(

ρ(s)q(s)−
a(s)(Dαρ(s))2

4ρ(s)

)

dα(s, t0)< w(T).

This inequality holds forT = t0+1, which means
∫ t

t0+1

(

ρ(s)q(s)−
a(s)(Dαρ(s))2

4ρ(s)

)

dα(s, t0)< w(t0+1).

Taking limit supremum ast → ∞, the right hand side is bounded, which is a con-
tradiction to (3.7). This completes the proof of the theorem. �

Theorem 3.2. Assume that(H1), (H2), q(t) ∈ C([t0,∞),R+) and condition(3.3)
hold. If

lim
t→∞

sup
∫ t

T

(

δ(s)q(s)−
1

4a(s)δ(s)

)

dα(s, t0) = ∞ (3.9)

for T ≥ t0+1, then every solution of equation(1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of equation (1.1) on the interval [t1,∞).
Without loss of generality we may assume thaty(t) > 0 for all t ≥ t1 and case(i)
and (ii) of Lemma 3.2 hold. First consider case(i) of Lemma 3.2. Define

w(t) =
a(t)Dαy(t)

y(t)
.

Thenw(t)> 0 and

Dαw(t) =
Dα(a(t)Dαy(t))

y(t)
−

a(t)Dαy(t)Dαy(t)
y2(t)

≤−q(t).

Integrating the last inequality fromt1 to t, we have

w(t)≤−
∫ t

t1
q(s)dα(s, t0). (3.10)

From condition (3.9), we have

lim
t→∞

sup
∫ t

T

(

δ(s)q(s)−
1

4a(s)δ(s)

)

dα(s, t0)≤ lim
t→∞

sup
∫ t

T
δ(s)q(s)dα(s, t0)

≤ δ(t)
∫ t

T
q(s)dα(s, t0) = ∞, (3.11)

ast → ∞. Using (3.11) and (3.10), we see that limt→∞ w(t) is negative, which is a
contradiction to the positivity ofw(t). Hence case (i) cannot happen.
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Next consider case (ii) of Lemma 3.2. Define the functionv(t) by

v(t) =
a(t)Dαy(t)

y(t)
. (3.12)

Thenv(t)< 0 for t ≥ t1. Sincea(t)Dαy(t) is nonincreasing, we have

a(s)Dαy(s)≤ a(t)Dαy(t), for s≥ t.

Dividing the last inequality bya(s) and then integrating fromt to l , we have

y(l)≤ y(t)+a(t)Dαy(t)
∫ l

t

1
a(s)

dα(s, t0).

Letting l → ∞ in the above inequality and using (3.1), we obtain

0≤ y(t)+a(t)Dαy(t)δ(t), t ≥ t1. (3.13)

From (3.12) and (3.13), we get

v(t)δ(t) ≥−1, t ≥ t1. (3.14)

Differentiating (3.12)α times with respect tot, we have

Dαv(t) = Dα

(

a(t)Dαy(t)
y(t)

)

=

[

y(t)Dα(a(t)Dαy(t))−a(t)Dαy(t)Dα(y(t))
(y(t))2

]

. (3.15)

By (3.15), the fact thatDα(a(t)Dαy(t)) ≤ 0, (1.1) and (3.12), we obtain

Dαv(t) ≤ −q(t)−
v2(t)
a(t)

. (3.16)

Multiplying by δ(t) the above inequality and integrating the resulting inequality
from t1 to t, we see that

δ(t)v(t)−δ(t1)v(t1)+
∫ t

t1

v(s)
a(s)

dα(s, t0)≤−
∫ t

t1
δ(s)q(s)dα(s, t0)−

∫ t

t1

δ(s)v2(s)
a(s)

dα(s, t0)

which yields
∫ t

t1

[

δ(s)q(s)−
1

4a(s)δ(s)

]

dα(s, t0)≤ 1+δ(t1)w(t1)< ∞

when using (3.14), which contradicts (3.9). This completesthe proof of the theo-
rem. �



OSCILLATION THEOREMS FOR CONFORMABLE DIFFERENTIAL EQUATIONS 197

4. EXAMPLES

In this section, we provide two examples to verify our main results.

Example 4.1. Consider the following conformable differential equation

D 1
2

(√
tD 1

2
y(t)

)

+
1
√

t
y(t) = 0, t ≥ 1. (4.1)

Comparing with equation (1.1), we haveα = 1
2, a(t) =

√
t andq(t) = 1√

t
. It is

easy to verify that all conditions of Theorem 3.1 are satisfied. Hence all solutions
of equation (4.1) are oscillatory.

Example 4.2. Consider the following conformable differential equation

D 1
2

(

tD 1
2
y(t)

)

+ t2y(t) = 0, t ≥ 1. (4.2)

Compared with equation (1.1), we haveα = 1
2, a(t) = t andq(t) = t2. It is easy

to verify that all conditions of Theorem 3.2 are satisfied. Hence all solutions of
equation (4.2) are oscillatory.

5. CONCLUSION

In this paper, we have obtained some new sufficient conditions for the oscilla-
tion of all solutions of the studied equation. The established results are new and
complement the results reported for fractional differential equations.
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