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PROJECTIVE CURVES WITH NICE NORMAL BUNDLES AND
CONTAINING A PRESCRIBED SUBSET OF A HYPERPLANE

EDOARDO BALLICO

ABSTRACT. Fix a hyperplaneH ⊂ Pn, n> 3, and a finite setS⊂ H. We give
conditions on the integersd, g and ♯(S) such that there exists a smooth and
connected curveX ⊂ Pn with deg(X) = d, pa(X) = g andS⊂ X ∩H. When
d = ♯(S) we may takeg up to order 2d/n, d ≫ 0, whenS is in linear general
position. We also prove the existence ofX with h1(NX(−1)) = 0 if n≥ 8, g is
odd and 2d ≥ (n−3)g+n+11.

1. INTRODUCTION

Let X ⊂ Pn be a smooth, connected and non-degenerate curve. Fix a hyperplane
H ⊂ Pn. Setd := deg(X) andg := pa(X). Let NX denote the normal bundle ofX
in Pn. If h1(NX) = 0 the Hilbert scheme Hilb(Pn) of Pn is smooth at[X]. Let Γ
be the unique irreducible component of Hilb(Pn) containing[X]. Fix a hyperplane
H ⊂ Pn. It is natural to ask the following question.

Question 1.1. Fix a set S⊂ H such that♯(S) ≤ d. Is there some W∈ Γ such that
S⊂W∩H and no irreducible component of W is contained in H? Is it possible to
find an irreducible W? A smooth W?

There is an obvious necessary condition if♯(S)≥ d−n+3: the linear span ofS
in H must have codimension at mostd−♯(S) in H. If this condition is satisfied and
g= 0 the answer is yes (withW a smooth rational curve), even for certain zero-di-
mensional schemes ([7, Theorem 1.6]). We would like to raisesimilar questions in
a range ofd,g,n for which there are no curves withh1(NX) = 0 (although all the
results proved in this paper are in the range when there are such curves), because
whenn> 3 if h1(NX) = 0 g has a linear upper bound in terms ofd, while Casteln-
uovo’s upper bound for the genus of curves inPn is quadratic ind ( [11, Theorem
3.7]).

Question 1.1 is natural, but we also had in mind a technical motivation. In many
papers (e.g. in [6]) we needed to add a curveE ⊂ H such thatX ∪E has certain
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properties. For instance, we need to add a lineE such thatX ∪E is nodal and
pa(X∪E) = pa(X)+2, i.e. we needX such thatX∩H has 3 collinear points, say
{p1, p2, p3}, while X∩H \{p1, p2, p3} has the Hilbert function of a general union
of deg(X)−3 points ofH.

Assume that allX ∈ Γ are smooth and non-degenerate curves of degreed and
genusg. Fix an integerσ> 0 such thatσ≤d and consider setsS⊂H with ♯(S)=σ.
We explain in Remark 2.3 the well-known fact that to answer Question 1.1 (as in
Theorem 1.2 below) not just for a single setS with cardinality σ but for a set∆
of subsets ofH with cardinalityσ containing the general unions ofσ points ofH
(maybe a differentW ∈ Γ for a differentS∈ ∆) we also need a very strong nu-
merical assumption. We recall that a zero-dimensional scheme Z ⊂ Pr is said to
becurvilinear if its connected components have Zariski tangent spaces of dimen-
sion either 0 or 1. The schemeZ is curvilinear if and only if it is contained in the
smooth locus of a curve. Any zero-dimensional subscheme of asmooth curve is
curvilinear. Thus to find a smoothW such thatW∩H ⊇ S we must require that
S is curvilinear. In this case we extend [7, Theorem 1.6] to thecaseg> 0 (under
certain assumptions ond,g,n). We prove the following result.

Theorem 1.2. Fix integers n≥ 3, g≥ g′ ≥ 0, b≥ 0, a≥ n, d≥ d′. Set s:= ⌊(d−
d′)/2⌋, w := ⌊g/(n+ 1)⌋ and w′ := ⌈g/(n+ 1)⌉. Assume d′ ≥ a+ nw′, b−w′ ≤
d′−a−nw′ and g−g′ ≤ 2s+d−d′. Fix a hyperplane H⊂ Pn, a curvilinear zero-
dimensional scheme A⊂ H and a finite set B⊂ H such that A∩B= /0, deg(A) = a,
♯(B) = b, A spans H. Then there is a smooth, connected and non-degenerate curve
X ⊂ Pn such that A∪B⊂ X, deg(X) = d, pa(X) = g and h1(NX(−A−B)) = 0.

By a theorem of Kleppe ( [20, Theorem 1.8], [25]) the vanishing of the integer
h1(NX(−A−B)) is important for the interpolation problem for general deforma-
tions ofA∪B in H (or in Pn).

Then we prove a stronger result (A= /0, butb= d) under a geometrical assump-
tion on the setX∩H. A finite setS⊂ H is said to be inlinear general positionif
anyS′ ⊆ Sspans a linear space of dimension min{♯(S′),n−1}. If ♯(S) ≤ n Sis in
linear general position if and only if it is linearly independent, while if♯(S) ≥ n S
is in linear general position if and only if any subset ofX with cardinalityn spans
H. For a setS⊂H to be in linear general position is an easy to check property with
strong geometric consequences ( [11, §7.12], [21, Lemma 1.1and Corollary 1.6]).
These sets are the main actors of [9]. We prove the following result.

Theorem 1.3. Fix integers n, d and g such that n≥ 3, g≥ 0 and d≥ n+ gn/2
(case g even) or d≥ n+1+n(g−1)/2 (case g odd). Let H⊂ Pn be a hyperplane.
Fix S⊂ H such that♯(S) = d and S is in linear general position. Then there exists
a smooth and connected curve X⊂ Pn such thatdeg(X) = d, pa(X)= g, S=X∩H
and h1(NX) = 0.
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Since points in Uniform Position in the sense of [11, Chapter3] are in linear
general position, Theorem 1.3 may be applied to them.

The casesn= 3 andn> 3 are quite different, even taking a general subset ofH
asS( [10,20]; see Remark 2.2 for more details). Forn= 3 Theorem 1.3 is known
when 2g≤ d−2 ( [7, Theorem 2.1]).

Now we describe the third result of this paper. Assumeh1(NX(−1)) = 0. Since
0= h1(NX(−1))≥ h1(NX), the Hilbert scheme Hilb(Pn) of Pn is smooth at[X]. Let
Γ be the unique irreducible component of Hilb(Pn) containing[X]. The assumption
h1(NX(−1)) = 0 implies that for a general subsetSof H with cardinalityd there is
C ∈ Γ such thatC∩H = S. There is no information on how general the setSmust
be for the existence of someC. Nevertheless, we think that a statement for general
S⊂ H is very interesting and many papers proved it under some restrictions on the
triple (n,d,g) ( [1,2,4,5,10,15–17,19,20,24,25]). The casesn= 3 andn> 3 are
very different (compare [10, 20] and [25, Theorem 5]). The following theorem is
the third result of this paper.

Theorem 1.4. For all integers n≥ 8, g ≥ 3 and 2d ≥ (n− 3)g+ n+ 11, with
g odd there is a smooth, connected and non-degenerate curve X⊂ Pn such that
deg(X) = d, pa(X) = g, h1(NX(−1)) = 0 and X has general moduli.

We put the restriction “g odd ” in the statement of Theorem 1.4, because for
g even a statement similar to Theorem 1.4 holds [4, Theorem 1].The last as-
sertion of Theorem 1.4 means that the isomorphism classes ofthe curvesX with
h1(NX(−1)) = 0 produced in the proof of the theorem cover a non-empty open
subset of the moduli spaceMg. The proof covers the caseg= 1, where however a
stronger result is known and used in the proof of Theorem 1.4 ([8, Theorem 4.1]).

Theorem 1.4 (and the corresponding statement for eveng proved in [4]) are
almost optimal, because Ch. Walter proved that 2d ≥ (n− 3)g+ 4 if any suchX
exists ( [25, Theorem 5]). There are well-known triples(d,g,n) with 2d ≥ (n−
3)g+4, n≥ 4, and without curvesX with h1(NX(−1)) = 0, e.g. general canonical
curvesC ⊂ P4 of degree 8 and genus 5, which are the complete intersection of
3 quadric hypersurfaces and soh1(NC(−1)) = 3. Forn = 4 all exceptional cases
in the Brill-Noether range are classified and their geometryis explained in [19,
Corollary 2]. We do not know how much Walter’s bound 2d ≥ (n− 3)g+ 4 is
optimal forn> 3. In the same paper he pointed out not only the quoted example
of the canonical curves ofP4, but that for very lowg there are no integral and
non-degenerate curvesC ⊂ Pn with degreed, arithmetic genusg and 2d very near
to (n−3)g+4 by Castelnuovo’s upper bound for the genus ( [11, Theorems 3.6,
3.11, 315]) and that for almost minimal degrees the existingcurves are contained
in many quadric hypersurfaces and hence their general hyperplane section has a
nongeneral Hilbert function. For a fixedn only finitely manyd,g are excluded for
this reason and so we wonder if the following is true.
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Question 1.5. Fix an integer n≥ 4. Is there an integer a(n) ≥ 4 such that for all
integers d with2d ≥ (n−3)g+a(n) there is a smooth and non-degenerate curve
X ⊂ Pn such thatdeg(X) = d, pa(X) = g and h1(NX(−1)) = 0?

Fix integersn ≥ 4 and 0< t < d. Let u(n, t,d) ∈ Z be the minimum of all
integers(n+ 1)d− (n− 3)g− (n− 1)t, whereg has the following property. Let
S⊂ H be any subset with♯(S) = σ andS in linear general position. Then there
exists a smooth, connected and non-degenerateX ⊂ Pn such thatX is transversal
to H, X∩H ⊇ S, deg(X) = d andpa(X) = g. We raise the following question (we
have no idea on how to solve it).

Question 1.6. Give upper and/lower bounds for the function u(n, t,d).

In Remark 2.3 we explain why to get a very strong and very interesting result for
all t (even restricting to general subsets ofH) it is not sufficient to take asu(n, t,d)
a function depending only onn.

For all n≥ 4 even the conditionh1(NX) = 0 gives a linear upper bound for the
genus ofX in term of the degree ofX. We wonder if with different techniques
one can control the Hilbert function of a general hyperplanesection outside this
range. Fix an integern ≥ 4. For every integerd ≥ n let en(d) (resp. e′n(d)) be
the maximal integerγ such that for all integersg with 0≤ g≤ γ there is a smooth
(resp. integral) non-degenerate curveX ⊂Pn such that a general hyperplane section
of X has the Hilbert function of a general subset ofPn−1 with cardinality d, i.e.
h0(H,IX∩H,H(t)) = max{0,

(n+t−1
n−1

)

−d} for all t ∈ N. For every integerd ≥ n let
fn(d) (resp. f ′n(d)) be the maximal integerg such that there is a smooth (resp.
integral) non-degenerate curveX ⊂ Pn such that a general hyperplane section ofX
has the Hilbert function of a general subset ofPn−1 with cardinalityd.

Question 1.7. Fix an integer n≥ 4. Is en(d) = e′n(d) for all (or almost all) d?

Is lim
d→+∞

en(d)
d

= lim
d→+∞

e′n(d)
d

=+∞ ?

Is lim
d→+∞

fn(d)
en(d)

= lim
d→+∞

f ′n(d)
e′n(d)

= 1 ?

Theorems 1.2 and 1.3 concern non-general subsets of a hyperplane H ⊂ Pn,
n≥ 4. We think that the bounds obtained in this paper are far fromoptimal.

We thank the referee for several important comments and suggestions.

2. REMARKS AND LEMMAS

Remark2.1. Fix a reduced and connected curveY ⊂ Pn. Setd := deg(Y). Let
H ⊂ Pn be a hyperplane containing no irreducible component ofY. ThusY∩H is
a zero-dimensional scheme and deg(Y∩H)= d. SinceY is reduced and connected,
we haveh1(IY) = 0. The exact sequence

0→ IY → IY(1)→ IY∩H,H(1)→ 0
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shows that the zero-dimensional schemeY∩H spansH. For any zero-dimensional
schemeE ⊂ H let 〈E〉 denote its linear span, i.e. the intersection of all hyperplanes
of H containingE, with the convention〈E〉 = H if there is no such hyperplane.
If F ⊂ E we have dim〈E〉 ≤ dim〈F〉+deg(E)−deg(F). Thus dim〈S〉 ≥ n−1+
deg(S)−d for any zero-dimensional schemeS⊆Y∩H.

Remark2.2. Let H ⊂ Pn be a hyperplane. LetΓ be an irreducible component of
the Hilbert scheme Hilb(Pn) of Pn whose general element is a smooth and non-
degenerate curve of degreed and genusg with h1(NX) = 0. Sinceh1(NX) = 0,
we have dimΓ = (n+1)d+(n−3)(g−1). Hence if(n+1)d+(n−3)(1−g) <
d(n−1) for a generalS⊂H with ♯(S) = d there is noX ∈ Γ such thatS=X∩H. If
n> 3, this condition gives a linear upper bound for the maximum genus allowable.
If 0 < t < d and(n+1)d+(n−3)(1−g)< t(n−1), then the same holds for the
inclusion inS of t general points ofH. For n = 3 the upper bound for the genus
for curvesX satisfyingh1(NX(−2)) = 0 (or h1(NX(−1)) = 0 or h1(NX) = 0) is of
orderd3/2 ( [10,20]).

Lemma 2.1. Let Y ⊂ Pn be a smooth and connected curve and Z⊂ Y a zero-
dimensional scheme. Assume h1(NY(−Z)) = 0. Fix o∈ Pn \Y and a line L⊂ Pn

such that o∈ L, ♯(Y∩L) = 1, L∩Z = /0 and L is not tangent to Y . Then Y∪L is
smoothable in a family of curves containing Z∪{o} and h1(NY∪L(−Z−o)) = 0.

Proof. Set{q} := Y∩ L. SinceNL(−o) ∼= OL, L intersects quasi-transversallyY,
♯(Y∩L) = 1, o /∈Y, andL∩Z= /0, NY∪L(−Z−o)|Y is obtained fromNY(−Z) mak-
ing a positive elementary transformation atq andNY∪L(−Z−o)|L is obtained from
NL(−o) making a positive elementary transformation atq ( [13, §2], [23]). Thus
h1(NY∪L(−Z−o)|Y) = 0 andNY∪L(−Z−o)|L is a direct sum of one line bundle of
degree 1 andn−2 line bundles of degree 0. Thush1(NY∪L(−Z−o)|L) = 0 and the
restriction mapH0(NY∪L(−Z− o)|L) → H0(NY∪L(−Z− o)|{q}) is surjective. The
Mayer-Vietoris exact sequence

0→ NY∪L(−Z−o)→ NY∪L(−Z−o)|Y ⊕NY∪L(−Z−o)|L
→ NY∪L(−Z−o)|Y∩L → 0 (2.1)

givesh1(NY∪L(−Z−o)) = 0. Setd := deg(Y), g := pa(Y) andz := deg(Z). Since
h1(NY(−Z)) = 0, the familyB ⊂Hilb(Pn) formed by all smooth curves containing
Z is smooth and of dimension(n+ 1)d+(3− n)(g− 1)− z(n− 1) at [Y] ( [20]).
Let A denote the closed subset of Hilb(Pn) formed by the nodal curves containing
Z∪ {o}. Sinceh1(NY∪L(−Z− o)) = 0, deg(Y ∪ L) = d+ 1, pa(Y ∪ L) = g and
deg(Z∪{o}) = z+ 1, A is smooth and of dimension dim[Y]B + 2 atY∪ L. The
singular elements ofA nearY∪L are formed by lines througho meeting a curve
nearY. Such a family of singular curves has dimension dim[Y]B +1 and hence it
does not contain a neighborhood of[Y∪L] in A . �
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Lemma 2.2. Let Y⊂Pn, n≥ 3, be a smooth and connected curve and Z⊂Y a zero-
dimensional scheme. Assume h1(NY(−Z)) = 0. Fix non-negative integers x,y such
that 0≤ x+y≤ n+3 and y≤ n. Assume the existence of a rational normal curve
L ⊂ Pn such that L intersects quasi-transversally Y , L∩Z = /0 and ♯(Y∩ L) = x.
Fix a set E⊂ L\Y∩L such that♯(E) = y. Then h1(NY∪L(−Z−E)) = 0 and Y∪L
is smoothable in a family of curves ofPn containing Z∪E.

Proof. The normal bundleNL of Y in Pn is a direct sum ofn− 1 line bundles of
degreen+2. By assumption the curveY∪L is nodal. Ifx= 0, thenY∪L is smooth
with two connected components and the lemma is trivial. Thuswe may assumex>
0. By [13] or [23] the restrictionNY∪L|Y (resp.NY∪L|L) toY (resp.L) of the normal
bundleNY∪L of Y∪L is obtained fromNY (resp.NL) makingx positive elementary
transformations, one for each point ofY∩L. Thush1(NY∪L|Y)= h1(NY∪L|L)= 0 and
the restriction mapH0(NY∪L|L) → H0(NY∪L|E) is surjective. The exact sequence
(2.1) withE instead ofo givesh1(NY∪L(−Z−E)) = 0.

Now we prove thatY∪L is smoothable in a family of curves ofPn containing
Z∪E. Setz := deg(Z), d := deg(Y) andg := pa(Y). Sinceh1(NY(−Z)) = 0, the
only irreducible component,Γ, of the set of all curves nearY containingZ has
dimension(n+1)d+(3−n)(1−g)− (n−1)z ( [20, Theorem 1.8]). LetA denote
the closed subset of Hilb(Pn) formed by the nodal curves containingZ∪E. Since
h1(NY∪L(−Z−E)) = 0, deg(Y ∪L) = d+ n, pa(Y∪ L) = g+ x− 1 and deg(Z∪
{o}) = z+ y, A is smooth and of dimension dimΓ+n(n+1)+ (3−n)(x−1)−
(n−1)y atY∪L ( [20, Theorem 1.8]). For any integert such that 1≤ t ≤ x let At

denote the set of allX ∈ A with exactlyt nodes. Near[Y∪ L] all elements ofAt

are obtained fixing a subsetS⊂Y∩ L such that♯(S) = t, smoothing all nodes in
Y∩L\Sand considering only deformations ofY∪L equisingular at each point of
S. To conclude the proof of the lemma it is sufficient to prove that dim[Y∪L] At <
dim[Y∪L] A for all t = 1, . . . ,x. The set of all rational normal curves containingE
has dimension(n− 1)(n+ 3− y). A dimensional count gives that dim[Y∪L] Ax =
dim[Y∪L] A − x. Thus a general element ofA near[Y∪ L] is irreducible. Fix an
integert such that 1≤ t < x. Fix anyq∈Y∩L and callA(q) the set of allA∈ A

with a node nearq. Sinceh1(NL(−E−q)) = 0, we set that locally around[Y∪L]
in the spaceA smooth atq the setA(q) is given by a single local equation. Since
dim[Y∪L] Ax = dim[Y∪L] A − x, all these equations are independent. We only need
that all these equations are non-trivial, so that dim[Y∪L] At<dim[Y∪L] A for t>0. �

Lemma 2.3. Let H ⊂ Pn, n≥ 2, be a hyperplane. Fix o∈ Pn \H and a rational
normal curve D⊆H. Letℓo :Pn\{o}→H denote the linear projection from o. For
any integral curve Y⊂ X, Y not a line, such that o is a smooth point of Y letℓ(Y)
denote the closure ofℓo(Y \{o}) in H. Let∆ denote the set of all rational normal
curves Y⊂ Pn such that o∈ Y andℓ(Y) = D. Then∆ 6= 0 and ∆ is a non-empty
irreducible algebraic variety of dimension n+2.
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Proof. Note that in the casen= 2 we haveD = H and so∆ is the set of all smooth
conics ofP2 containingo. Thus the lemma is trivial whenn= 2 and so we may
assumen> 2.

Let Fn−1 denote the Hirzebruch surface with a section,h, of its ruling with self-
intersectionh2 = 1−n ( [12, §V.2]). We takeh and a fiberf of the rulingπ of Fn−1

as a basis of Pic(Fn−1) ∼= Z2. We haveh · (h+(n−1) f ) = 0 andπ∗(OFn−1(h)) ∼=
OP1⊕OP1(1−n). Thus the projection formula givesh0(OFn−1(h+x f)) = 2x+3−n
for all x ≥ n− 2. We get that the complete linear system|OFn−1(h+ (n− 1) f )|
induces a morphismφ : Fn−1 → Pn which is an embedding outsideh, φ(h) is a
point, o′, andφ(Fn−1) is a degreen−1 cone with vertexo′ over a rational normal
curve of a hyperplaneH ′ ⊂ Pn such thato′ /∈ H ′. Up to a projective transformation
we may assumeo′ = o andH ′ = H. Fixing D ando is equivalent to fixing the cone
φ(Fn−1) (here we use thatn> 2). The irreducible elements of|OFn−1(h+(n−1) f )|
are projectively equivalent toD. Since(h+n f) · (h+(n−1) f ) = n, we get that∆
is the set of all irreducible (or equivalently, all smooth) elements of|OFn−1(h+n f)|.
Thus∆ 6= /0, ∆ is irreducible and dim∆ = n+2. �

Lemma 2.4. Take o, D,∆ as in the statement of Lemma 2.3 and the linear pro-
jection ℓo and the coneφ(Fn−1) as in the proof of Lemma 2.3. Fix a finite set
B⊂ φ(Fn−1) \{o} such that♯(B) = n+2, no two points of B are contained in the
same line ofφ(Fn−1) and B is in linear general position. Then there exists Y∈ ∆
such that B⊂Y.

Proof. Sinceo /∈ B, there is a uniqueE ⊂ Fn−1 \ h such thatφ(E) = B. Since
dim|OFn−1(h+ n f)| = n+ 2, there isC ∈ |IE(h+ n f)|. We need to check thatC
is smooth and irreducible (indeed it is even unique). This istrue, because the
singular elements of|OFn−1(h+n f)| have the following description. One type are
the reducible curves of the formF∪Y′ with Y′ a smooth element of|OFn−1(h+(n−
1) f )| andF ∈ |OFn−1( f )|. Sinceφ(F) is a line ofφ(Fn−1), it contains at most one
element ofB. Sinceφ(Y′) is a hyperplane section ofφ(Fn−1), it contains at mostn
elements ofB. ThusF ∪Y′ + B.

The other type of singular elements of|OFn−1(h+n f)| are of the formh∪G with
G ∈ |OFn−1(n f)|. Sinceφ(h) = {o} and each line ofφ(Fn−1) contains at most 1
element ofB, at most finitely manyφ(h∪G) contain an element ofB. �

Lemma 2.5. Let Y⊂ Pr , r ≥ 2, be an integral and non-degenerate curve. Assume
that Y is not a rational normal curve. LetA denote the set of all subsets S⊂Y such
that ♯(S) = r +3 and S is in linear general position. For each S∈ A let CS denote
the only rational normal curve ofPr containing S. SetB := ∩S∈ACS. ThenB = /0.

Proof. The caser = 2 is trivial, because every non-empty open subset of|OP2(2)|
has no base points. Now assumer ≥ 3 and that the lemma is true inPr−1. Since
Y is integral and not a rational normal curve, we haveY * B . Henceo /∈ B for
a generalo∈Y. Let ℓ : Pr \{o} → Pr−1 denote the linear projection fromo. Let
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D ⊂ Pr be the closure ofℓ(X \ {o} in Pr−1. If D is not a rational normal curve
of Pr−1 we may use the inductive assumption. IfD is a rational normal curve,
thenℓ|X\{o} is not birational onto its image and this does not occur for a general
o∈Y. �

Lemma 2.6. Let Y ⊂ Pr , r ≥ 3, be an integral and non-degenerate curve. Fix
q∈ Pr \Y and callA the set of all subsets S⊂Y such that♯(S) = r +2 and S∪{q}
is in linear general position. For each S∈ A let CS denote the only rational normal
curve ofPr containing S∪{q}. SetB := ∩S∈ACS. ThenB = {q}.

Proof. Let ℓ : Pr \ {q} → Pr denote the linear projection fromq. If ℓ(Y) is not a
rational normal curve we may apply Lemma 2.5 toℓ(Y)⊂ Pr−1. Now assume that
D is a rational normal curve. Sinceo is a smooth point ofY, we have deg(Y)−1=
xdeg(D), wherex is the degree of the rational mapY 99K D induced byℓ|Y\{o}.
SinceY is not a rational normal curve, we getx≥ 2, i.e.ℓ|Y\{o} is not birational onto
its image. This possibility may occur only for finitely manyo ∈Y, contradicting
the generality ofY. �

Lemma 2.7. Let Y⊂ Pn, n≥ 2, be an integral and non-degenerate curve. Fix a
finite set S⊂ Pn in linear general position and set x:= ♯(S∩Y) and y:= ♯(S∩(Pn\
Y)). Assume x+ y≤ n+ 2. If Y is a rational normal curve assume y> 0. Let Γ
denote the set of all A⊂Y such that♯(A) = n+3−x−y, A∩S= /0 and A∪S is in
linearly general position. For any A∈ Γ let CA denote the unique rational normal
curve ofPn containing A. Then∩A∈ΓCA = S.

Proof. SinceY is integral and spansPn, we haveΓ 6= /0. Increasingy if necessary
we may assumex+y= n+2.

(a) Assumen= 2. Any setF ⊂ P2 such that♯(F) = 4 and no 3 of the points
of F are collinear is the complete intersection of 2 smooth conics and a general
C ∈ |IF(2)| is smooth and transversal toY (note that in this case if deg(Y) > 0 we
have♯(Y∩C)> 4).

(b) Assumen> 2 and that the lemma is true inPn−1.
(b1) Assumex > 0. Fix o ∈ S∩Y and letℓo : Pn \ {o} → Pn−1 denote the

linear projection fromo. SetS′ := ℓo(S\ {o}). Let T ⊂ Pn−1 denote the closure
of ℓo(Y \{o}) in Pn−1. T is an integral and non-degenerate curve ofPn−1. Since
S is in linear general position, we have♯(S′) = n+1 andS′ is in linearly general
position. We have♯(S′∩T) = x−1 and♯(S′∩(Pn−1\T)) = y= n+2−x. Assume
∩A∈ΓCA 6= Sand fixq∈ ∩A∈ΓCA\S. Sinceo∈ Sandq /∈ S, the pointq′ = ℓo(q) is
well-defined.

First assume that eithery> 0 or thatT is not a rational normal curve ofPn−1.
By the inductive assumption there is a rational normal curveD ⊂ Pn−1 such thatD
containsS′ and a pointq′′ of D\S′. To apply Lemma 2.4 it is sufficient to observe
thatq′′ is the image of a point ofY \{o}.
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Now assumey= 0 and thatT is a rational normal curve. In this case we assumed
thatY is not a rational normal curve. In this caseT0 is an injective (at least forn≥ 4)
projection of a degreen coneJ ⊂ Pn+1. With the notation of the proof of Lemma
we haveJ = φ(Fn), whereφ : Fn → Pn+1 is the morphism induced by the linear
system|OFn(h+ n f)|. Let D ⊂ Fn be the curve such thatY is an injective linear
projection ofφ(D) ⊂ J. Take positive integersa,b such thatD ∈ |OFn(ah+ b f)|
with a> 0 andb≥ na. Sinceo∈Y, φ(D) contains the vertex ofJ, i.e. b> na. We
havex= n+2 and to apply the inductive assumption we may take any other point
of S∩Y. We see thatY cannot be contained inn+2 cones likeT0, concluding the
proof in this case.

(b2) Assumex = 0. We havey = n+ 2. We fix o ∈ S, consider the linear
projection fromo and use the inductive assumption. Sincey≥ 2 inPn−1 we do not
need to distinguish the case in whichℓo(Y) is a rational normal curve to apply the
inductive assumption. �

Lemma 2.8. Let Y⊂ Pn, n≥ 3, be an integral and non-degenerate curve. Assume
that Y is not a rational normal curve. Let E⊂ Y be a general subset of Y with
cardinality n+ 3. Let D⊂ Pn be the only rational normal curve containing E.
Then D meets Y quasi-transversally and Y∩D = E.

Proof. SinceY is integral and non-degenerate andE ⊂ Y is general, there is one
and only one rational normal curveD ⊂ Y containingE. SinceE is general in
Y, no point ofE is a singular point ofY. SinceY is not a rational normal curve,
Z := D∩Y (scheme-theoretic intersection) is a zero-dimensional scheme. We need
to prove thatZ = E as schemes. It is sufficient to prove thatZ = E for a specific
setE (of course, in linearly general position, otherwiseD is not defined). We use
induction onn. Setd := deg(Y). Fix q ∈ E and letℓq : Pn \ {q} → Pn−1 denote
the linear projection fromq. SetG := E \ {q}. SinceE ⊂ Y is general,q is a
general point ofY. Henceℓq|Y\{q} is birational onto its image whose closure,W,
in Pn−1 is an integral and non degenerate curve of degreed− 1. SinceE is in
linear general position,A := ℓq(G) is a subset ofPn−1 with cardinalityn+ 2 and
in linear general position. Thus there is a unique rational normal curveC ⊂ Pn−1

containingA. For a fixedq we may moveG among the subsets ofY with cardinality
n+2. ThusA is a general subset ofW with cardinalityn+2. Let T ⊂ Pn be the
cone with vertexq andC as a basis. SinceT is a cone and a minimal degree
surface, its minimal desingularizationu : Fn−1 → T is the Hirzebruch surface with
a minimal degree section,h, with self-intersection 1−n. SetG′ := u−1(G). Since
q is a smooth point ofY, ℓq|Y\{q} extends to a surjective and birational morphism
µ : Y → W. Since (after fixingq) G is general inY, we haveG = µ−1(A) andµ
is a local isomorphism at each point ofG. We will take asD a curveu(D′) with
D′ ∈ |OFn(h+n f)| andG′ ⊂D′. Sinceh0(OFn(h+n)) = (n+1)+2, there is at least
one suchD′. Every irreducible element ofX ∈ |OFn(h+n f)| is smooth andu(X)
is a rational normal curve containingq. SinceG is in linearly general position, we
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haveh0(Fn−1,IG′(h+n f)) = 1 and the only element of|IG′(h+n f)| is irreducible.
ThusD = u(D′).

(a) First assumen= 3. In this caseC is a smooth conic. By Bertini’s theorem
a general conic is transversal toW. SinceA is general inW, C may be seen (even
after fixingW) as a general conic. ThusC is transversal toW. SinceG= µ−1(A)
andµ : Y → W is a local isomorphism at each point ofY, D andY meet quasi-
transversally andD∩Y = E.

(b) Now assumen> 3 and that the lemma is true inPn−1 for all non-degenerate
curves, different from the rational normal curve ofPn−1. ThusC andW inter-
sect quasi-transversally andC∩W = A sinceG= µ−1(A) andµ : Y → W is a lo-
cal isomorphism at each point ofY. ThusD andY meet quasi-transversally and
D∩Y = E. �

Lemma 2.9. Let Y⊂ Pn, n≥ 3, be a smooth, connected and non-degenerate curve.
Set d′ := deg(Y) and g′ := pa(Y). Fix a finite set S⊂ X and integers d≥ d′, g≥ g′

and set s:= ⌊(d−d′)/n⌋. Assume g−g′ ≤ 2s+d−d′−sn and h1(NY(−S)) = 0;
if g = g′ + 2s and d= d′ + sn assume that d′ 6= n. Then there exists a smooth,
connected and non-degenerate curve X⊂Pn such that X⊃S,deg(X)= d, pa(X)=
g and h1(NX(−S)) = 0.

Proof. We may assume(d,g) 6= (d′,g′), i.e. d > d′. In steps (a), (b) and (c) we
will silently use the following observation. Letπ : Π → Pn denote the blowing
up of S. Let Y′ denote the strict transform ofY. SinceY is smooth at each point
of S, π induces an isomorphism betweenY′ andY and this isomorphism induces
an isomorphism betweenNY(−S) andNY′,Π. For any smooth curveL ⊂ Pn such
that L∩S= /0 setL′ := π−1(L). SinceS∩ L = /0, π induces an isomorphism be-
tweenY′ andY and this isomorphism induces an isomorphism betweenNL and
NL′,Π. If L′∪Y′ is smoothable insideΠ, thenπ shows the existence of a smoothing
of L∪Y with a family of curves containingS. Sinceπ induces an isomorphism
betweenNY∪L(−S) andNY′∪L′,Π, to prove thath1(NY∪L(−S)) = 0 (and then to con-
clude by the semicontinuity theorem for cohomology) it is sufficient to prove that
h1(NY′∪L′) = 0.

(a) Assumed = d′ +1 andg = g′. We take asX a smoothing with fixedS
of Y∪L, whereL is a general line meetingY at exactly one point. The proof that
Y∪L is smoothable among curves fixingS is easier than the one of Lemma 2.1.

(b) Assumed = d′+1 andg= g′+1. We take asX a smoothing with fixedS
of Y∪L, whereL is a general secant line ofY. The proof thatY∪L is smoothable
among curves fixingS is similar (insideΠ) to the proof of Lemma 2.1.

(c) Assumed= d′+n, g= g′+n+2 andd′ 6= n. LetE⊂Y be a general subset
with cardinalityn+3. In particularE is in linear general position andE∩S= /0.
Let L ⊂ Pn a general rational normal curve containingE. Sinced′ 6= n we have
L 6= Y. As in the proof of Lemma 2.8 we see thatL∩S= /0, L∩Y = E and that
Y∪ L is nodal. SetX′ := Y′ ∪ L′ andF := π−1(E). Consider the Mayer-Vietoris
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exact sequence of the normal bundle ofX′ in Π:

0→ NX′,Π → NX′,Π|Y′ ⊕NX′,Π|L′ → NX′,Π|F → 0. (2.2)

The rankn−1 vector bundleNX′,Π|Y′ (resp.NX′,Π|L′ ) onY′ (resp. onL′) is obtained
from NY′,Π (resp.NL′|Π) makingn+3 positive elementary transformations, one for
each point ofF ( [?, §2]). Sinceh1(NY′,Π) = 0, we haveh1(NX′,Π|Y′) = 0. SinceNL

is a direct sum ofn−1 line bundles of degreen+2 andL∩S= /0, NL′,Π is a direct
sum ofn− 1 line bundles of degreen+ 2. ThusNX′,Π|L′ is a direct sum of line
bundles of degree at leastn+ 2. Thush1(NX′,Π|L) = 0 andh1(NX′,Π|L(−F)) = 0.
Thus the restriction mapH0(L′,NX′,Π|L′ → H0(F,NX′,Π|F) is surjective. From (2.2)
we geth1(NX′,Π) = 0. To see thatX′ is smoothable it is sufficient to observe that
h1(NL′,Π(−F)) = 0 ( [13, Th. 4.1 and Rem. 4.1.1]).

(d) Assumed = d′+n andg= g++n+1. Adapt the proof of part (c) to this
easier case takingE with ♯(E) = n+2.

(e) If g−g′ ≤ s+d−d′ we applys times step (d), theng−g′−s(n+1) times
step (b) and thend−d′−g+g′−stimes step (a). Ifs+d−d′ < g−g′ ≤ 2s+d−d′

we apply several times step (c) and then if necessary steps (a) and (b). �

Remark2.3. Let H ⊂ Pn, n ≥ 4, be a hyperplane. LetΓ be a family of smooth,
connected and non-degenerate curves whose closure in Hilb(Pn) is an irreducible
component of Hilb(Pn). Setd := deg(X) andg := pa(X). Fix a positive integer
σ ≤ d and call∆ the set of subsets ofH with cardinalityσ. Fix S∈ ∆ and letWS

denote the set ofX ∈W such thatX∩H ⊇ S. AssumeWS 6= /0. J. Kleppe proved
that for eachX ∈WS the vector spaceH0(NX(−S)) is the Zariski tangent space of
WS at [X], while H1(NX(−S)) may be used as an obstruction space ( [20, Theorem
1.8], [25]). Hence ifWS 6= /0 we haveh0(NX(−S)) ≥ 0. We haveχ(NX(−S)) =
(n+1)d+(3−n)(g−1)− (n−1)σ. In many cases (but not in all cases!) we have
h0(NX(−S)) = h0(NX)− (n−1)σ. Thus the inequality

(n−3)(g−1)≤ (n+1)d− (n−1)σ (2.3)

(equivalent toh1(NX(−S)) = 0) is often a necessary condition to haveWS 6= /0 for
a generalS∈ ∆. Whenσ = d, we haveNX(−S) ∼= NX(−1). Ch. Walter proved in
this case thath0(NX(−1))≥ n+1 and hence that ifh1(NX(−1)) = 0 we have

(n−3)g+4≤ 2d (2.4)

( [25, Theorem 5]). Just applying (2.4) in the caseσ = d−1 gives an upper bound
for g better than (2.3). But neither (2.3) nor the improved byn+1 bound hopefully
obtained generalizing [25, Theorem 5] to someσ < d (a task we do not know how
to do) would be very good for lowσ. For instance take anyσ ≤ n+1. Hence in this
case anyS in linear general position is realized by any smooth and non-degenerate
curveY ⊂ Pn. Hence forσ ≤ n+1, the maximal possibleg is the maximal genus
π(n,d) of all smooth and non-degenerate degreed curves ofPn. Sinceπ(n,d) is
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quadratic ind ( [11, Theorems 3.7 and 3.11]) (2.3) is not satisfied whenσ ≤ n+1.
Somewhere betweenn+1 andd the upper bound forg must go from quadratic in
d to linear ind, but we have no guess on this matter.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.4:LetY ⊂ Pn, n≥ 4, be a linearly normal elliptic curve. Thus
Y is smooth,pa(Y) = 1 and deg(Y) = n+1.

Claim 1: We haveh1(NY(−1)) = 0.
Proof of Claim 1: We have deg(NY(−1)) = 2(n+ 1). By [8, Theorem 4.1]

NY(−1) is polystable. We have deg(NY(−1))= deg(NY)−(n+1)(n−1)= degTPn−
(n+1)(n−1)= 2(n+1)> 0. The definition of semistability, impliesh0(NY(−1)∨)=
0. SinceY is an elliptic curve, duality impliesh1(NY(−1)) = 0.

Claim 2: Assumen≥ 5. For any 3 general pointsp1, p2, p3 ∈ Pn and general
lines L1,L2,L3 ⊂ Pn such thatpi ∈ Li for all i there is a smooth linearly normal
elliptic curveY ⊂ Pn containing{p1, p2, p3} with Li as its tangent line at eachpi .

Proof of Claim 2:By a theorem of Kleppe ( [20, Theorem 1.8]) it is sufficient
to prove thath1(NY(−Z)) = 0, whereZ is any zero-dimensional scheme ofY with
deg(Z) = 6. This is true by the semistablity ofNY ( [8, Theorem 4.1]), because
6(n−1)< (n+1)2, NY has degree degTPn|Y = (n+1)2 and rankn−1.

Then we continue the proof of the theorem as in the proof of [4,Theorem 1]. �

Proof of Theorem 1.2:Until step (d) we assumed= d′ andg= g′. Wheng= 0 it is
sufficient to do the caseb= 0, which is [7, Theorem 1.6]. Assumeg> 0. We order
the pointsp1, . . . , pb of B. For any integert let Γ(t) denote the set of allE ⊂Y such
that ♯(E) = t. Fix a general(S1, . . . ,Sw) ∈ Γ(n+ 2)w. We haveh1(NY(−Z)) = 0
for any degreen+2 effective divisorZ of Y by the possible splitting types of the
normal bundles of smooth and non-degenerate rational curves ( [22]). Thus for
eachi ∈ {1, . . . ,w} the generality ofSi ∈ Γ(n+2) impliesbi /∈ Si and thatSi ∪{bi}
is in linear general position inPn. Thus there is a unique rational normal curve
Ci ⊂ Pn containingSi ∪Bi. We haveCi ∩Cj = /0 for all i, j ∈ {1, . . . ,w} such that
i 6= j andCi ∩Y = Si for all i by Lemma 2.6 and the generality of(S1, . . . ,Sw).

(a) We first do the caseb= w, d = a+nwandg= w(n+1).
Claim 1: For generalSi , 1≤ i ≤ w, we haveb j /∈Ci for all j 6= i and the curve

E :=Y∪C1∪ ·· ·∪Cb is nodal and withpa(E) = w(n+1).
Proof of Claim 1: SinceCi ∩Si = Si for all i, to prove thatE is nodal with

arithmetic genusw(n+ 1) it is sufficient to prove that eachCi meetsY quasi-
transversally . Assume the existence ofi ∈ {1, . . . ,w} such thatCi is tangent to
Y at somep ∈ Si . A monodromy argument gives thatCi is tangent toY at all
points ofSi . Write Si = J∪{o} with ♯(J) = n+1 and take a generalq∈Y. Since
J∪{q}∪{bi} is in linear general position, there is a unique rational normal curve
C ⊃ J∪{q}∪ {bi}. Sinceo is a limit of the family{q}q∈Y, we may take allCj ,
j 6= i, andC instead ofC1, . . . ,Cw. By the generality ofC1, . . . ,Cw, we see that
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C is tangent toY at all points ofJ∪ {q}. Thus deg(C∩Ci) ≥ 2(n+ 1). Since
2(n+1)≥ n+3, we getC=Ci for a generalq∈Y, absurd.

(b) Assumew′ = w. Increasingb if necessary we may assumed = a+ b+
(n−1)w. TakeB′ := {b1, . . . ,bw} andF as in step (a). The curveF is a smoothing
(with fixed A∪B′) of Y∪C1∪ ·· ·∪Cw with eachCi a rational normal curve. Since
g > 0 andw = w′, we havew > 0. By step (a)F is smooth, connected and non-
degenerate, deg(F) = a+wn, A∪B′ ⊂ F andh1(NF(−A−B′)) = 0. Take general
linesLi, b−nw+1≤ i ≤ b containingbi and meetingF.

Claim 2: We may takeF so that eachLi meetsF quasi-transversally at a
unique point andLi ∩L j = /0 for all i 6= j.

Proof of Claim 2:Let Ri, b−nw+1 ≤ i ≤ b, be a general line containingbi

and intersectingCw. Sincebi 6= b j , any two meeting lines are coplanar andCw spans
Pn, we haveRi ∩Rj = /0 for all i 6= j. SinceF is a smoothing ofY∪C1∪·· ·∪Cw, it is
sufficient to prove that for alli Ri ∩Ch = /0 for all h< w, Ri ∩Y = /0, ♯(Ri ∩Cw) = 1,
Ri meets quasi-transversallyCw. Fix i. Let T0 be the cone with vertexbi andY as
a basis. For 1≤ h< w let Th be the cone with vertexbi and baseCh. To get all the
statements it is sufficient to prove that in step (a) we may findCw with the additional
property thatCw * ∪0≤h<wTw. Assume that this is false and takeh∈ {0, . . . ,w−1}
such thatCw ⊂ Th. SinceCw contains a general point ofCw−1, varyingCw we see
thatCw−1 ⊂ Th. Taking the firstw (for some data) for which this occurs we get
h = w−1. Assume eitherw≥ 2 or thatY is a rational normal curve. With these
assumptionsTw−1 is a degreen cone which is a linear projection from one point of
Pn+1 of a degreen coneT ⊂ Pn+1 over a rational normal curve ofPn and the linear
projectionη : T → Tw−1 is injective and an isomorphism outside the vertex ofT.
With the notation of the proof of Lemma 2.3T is the image of the complete linear
system|OFn(h+ n f)| on the Hirzebruch surfaceFn andCw−1, Cw are isomorphic
linear projections of two elementsA1,A2 ∈ |OFn(h+n f)|. SinceCw−1∪Cw is nodal
and η is injective, we get♯(Cw−1 ∩Cw) = deg(A1 ∩A2) = OFn(h+ n f) ·OFn(h+
n f) = n, a contradiction. Now assumew = 1 and deg(Y) > n. We see thatT0 is
the cone with baseC1 and vertexbi . ThusT0 is an injective linear projection of the
degreen+1 coneT ⊂ Pn+1 just described. Since deg(Y) > n andY ⊂ T0, we see
thatY is an isomorphic linear projection of a curveD ∈ |OFn(xh+b f)| with x≥ 2
andb≥ xb. We get deg(Y∩C)≥ OFn(xh+b f) ·OFn(h+n f) = b≥ 2n> n+2, a
contradiction.

Applying d− a− nw times Lemma 2.1 we geth1(NG(−A−B)) = 0, where
G= F ∪Lb−w+1∪·· ·∪Lb. By Lemmas 2.1 and 2.2 we may deformG to a smooth
curve in a family of curves containingA∪B. Apply the semicontinuity theorem for
cohomology.

(c) Assumew′ 6= w. Thusw′ = w+1. Take a smoothF as in step (a) (hence
deg(F) = a+nw, pa(F) =w(n+1) andF ⊃A∪{b1, . . . ,bw}). First assumeb≤w.
Increasing if necessaryb we may assumeb= w. TakeE as in step (a) containing
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b1, . . . ,bw. Set E′′ := F ∪D, whereD is a general rational curve containing a
general subset ofF with cardinalityg− (n+ 1)w+ 1. As in Claim 1 we get that
♯(F ∩D) = g− (n+1)w+1 andF ′ is nodal. As in Lemmas 2.1 and 2.2 we seeF ′

is smoothable in a family of curves ofPn containingA∪B. Now assumeb>w. By
assumption we haved≥ nw′+a, (n+1)w< g< (n+1)w′ andb−w′ ≤ d−a−nw′.
Increasing if necessaryb we may assumed = a+b+(n−1)w′. As in step (a) we
takeF ∪C with C rational normal curve ofPn, ♯(C∩E) = g− (n+ 1)w+ 1 and
bw+1 ∈ C. SetB′ := {b1, . . . ,bw+1}. As in step (a) the curveF ∪C is nodal, of
degreea+nw′, pa(F ∪C) = g, F ∪C⊃ A∪B′, h1(NF∪C(−A−B′)) = 0 andF ∪C
is smoothable in a family of curves containingA∪B′. Call F ′ one such smooth
curve. Then as in step (b) we addb−w′ general linesRi, w′ + 1 ≤ i ≤ b with
bi ∈ Ri andRi intersectingF ′. We conclude as in step (b) usingF ′ instead of the
curveF used in step (b).

(d) Assume(d,g) 6= (d′,g′). Apply Lemma 2.9 withS:= A∪B. �

Proof of Theorem 1.3:Setw := ⌊g/2⌋. WriteS=S0∪S1 · · ·∪Sw∪A with ♯(Si) = n
for 1≤ i ≤ w, ♯(S0) = n if g is even,♯(S0) = n+1 if g is odd,Si ∩Sj = /0 for all
i 6= j, and♯(A) = d−nw− ♯(S0).

(a) Assumeg is even andd= n+ng/2. LetC0 ⊂Pn be a rational normal curve
such thatC0∩H = S0 (it exists, because any two subsets ofH with cardinalityn
spanningH are projectively equivalent). For 1≤ i ≤ w let Ci be a general rational
normal curve ofPn containingSi and with ♯(Ci ∩Ci−1) = 3. As in the proof of
Theorem 1.2 we see thatE := ∪w

i=0Ci is a connected nodal curve of degreed and
genusg

(b) Assumeg is odd andd = n+1+n(g−1)/2. In this case we start taking
asC0 a smooth and linearly normal elliptic curve such thatC0∩H = S0 (it exists,
because any two subsets ofH with cardinalityn+1 in linear general position are
projectively equivalent). Then we continue as in the proof of Theorem 1.2.

(c) Assume eitherg is even andd > n+ ng/2 or g is odd andd > n+ 1+
n(g− 1)/2, i.e. assumeA 6= /0. TakeE := C0 ∪C1∪ ·· · ∪Cw as in step (a) or as
in step (b), respectively. Order the pointsp1, . . . , pz, z= ♯(A), of A. As in Claim
2 in the proof of Theorem 1.2 take the union ofE andz lines L1, . . . ,Lz with Li a
general line containingpi and intersectingCw.

Note that ifX∩H =Swe haveNX(−S) =NX(−1). Hence the proof of Theorem
1.4 (or [4, Theorem 1]) givesh1(NX(−S)) = 0. �

Remark3.1. For all n ≥ 8, g ≥ 0 even (resp.g > 0 odd) andd ≥ (n− 3)g/2+
n+3 (resp.d ≥ (g−1)/2+n+4) [3, Theorem 1] (resp. Theorem 1.4) there is a
smooth, connected and non-degenerate curveX ⊂ Pn with degreed, genusg and
h1(NX(−1)) = 0. The lower bounds ford arising in these theorems just come from
their proofs (a game with linearly normal elliptic curves and rational normal curves
possibly in lower dimensional linear subspaces).
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