PROJECTIVE CURVES WITH NICE NORMAL BUNDLES AND CONTAINING A PRESCRIBED SUBSET OF A HYPERPLANE

EDOARDO BALLICO

ABSTRACT. Fix a hyperplane $H \subset \mathbb{P}^n$, n > 3, and a finite set $S \subset H$. We give conditions on the integers d, g and $\sharp(S)$ such that there exists a smooth and connected curve $X \subset \mathbb{P}^n$ with $\deg(X) = d$, $p_a(X) = g$ and $S \subset X \cap H$. When $d = \sharp(S)$ we may take g up to order 2d/n, $d \gg 0$, when S is in linear general position. We also prove the existence of X with $h^1(N_X(-1)) = 0$ if $n \ge 8$, g is odd and $2d \ge (n-3)g + n + 11$.

1. INTRODUCTION

Let $X \subset \mathbb{P}^n$ be a smooth, connected and non-degenerate curve. Fix a hyperplane $H \subset \mathbb{P}^n$. Set $d := \deg(X)$ and $g := p_a(X)$. Let N_X denote the normal bundle of X in \mathbb{P}^n . If $h^1(N_X) = 0$ the Hilbert scheme Hilb (\mathbb{P}^n) of \mathbb{P}^n is smooth at [X]. Let Γ be the unique irreducible component of Hilb (\mathbb{P}^n) containing [X]. Fix a hyperplane $H \subset \mathbb{P}^n$. It is natural to ask the following question.

Question 1.1. Fix a set $S \subset H$ such that $\sharp(S) \leq d$. Is there some $W \in \Gamma$ such that $S \subset W \cap H$ and no irreducible component of W is contained in H? Is it possible to find an irreducible W? A smooth W?

There is an obvious necessary condition if $\sharp(S) \ge d - n + 3$: the linear span of *S* in *H* must have codimension at most $d - \sharp(S)$ in *H*. If this condition is satisfied and g = 0 the answer is yes (with *W* a smooth rational curve), even for certain zero-dimensional schemes ([7, Theorem 1.6]). We would like to raise similar questions in a range of d, g, n for which there are no curves with $h^1(N_X) = 0$ (although all the results proved in this paper are in the range when there are such curves), because when n > 3 if $h^1(N_X) = 0$ *g* has a linear upper bound in terms of *d*, while Castelnuovo's upper bound for the genus of curves in \mathbb{P}^n is quadratic in *d* ([11, Theorem 3.7]).

Question 1.1 is natural, but we also had in mind a technical motivation. In many papers (e.g. in [6]) we needed to add a curve $E \subset H$ such that $X \cup E$ has certain

²⁰¹⁰ Mathematics Subject Classification. 14H50.

Key words and phrases. projective curve; hyperplane section; normal bundle; interpolation problem; twisted normal bundle.

properties. For instance, we need to add a line *E* such that $X \cup E$ is nodal and $p_a(X \cup E) = p_a(X) + 2$, i.e. we need *X* such that $X \cap H$ has 3 collinear points, say $\{p_1, p_2, p_3\}$, while $X \cap H \setminus \{p_1, p_2, p_3\}$ has the Hilbert function of a general union of deg(X) - 3 points of *H*.

Assume that all $X \in \Gamma$ are smooth and non-degenerate curves of degree d and genus g. Fix an integer $\sigma > 0$ such that $\sigma \leq d$ and consider sets $S \subset H$ with $\sharp(S) = \sigma$. We explain in Remark 2.3 the well-known fact that to answer Question 1.1 (as in Theorem 1.2 below) not just for a single set S with cardinality σ but for a set Δ of subsets of H with cardinality σ containing the general unions of σ points of H (maybe a different $W \in \Gamma$ for a different $S \in \Delta$) we also need a very strong numerical assumption. We recall that a zero-dimensional scheme $Z \subset \mathbb{P}^r$ is said to be *curvilinear* if its connected components have Zariski tangent spaces of dimension either 0 or 1. The scheme Z is curvilinear if and only if it is contained in the smooth locus of a curve. Any zero-dimensional subscheme of a smooth curve is curvilinear. Thus to find a smooth W such that $W \cap H \supseteq S$ we must require that S is curvilinear. In this case we extend [7, Theorem 1.6] to the case g > 0 (under certain assumptions on d, g, n). We prove the following result.

Theorem 1.2. Fix integers $n \ge 3$, $g \ge g' \ge 0$, $b \ge 0$, $a \ge n$, $d \ge d'$. Set $s := \lfloor (d - d')/2 \rfloor$, $w := \lfloor g/(n+1) \rfloor$ and $w' := \lceil g/(n+1) \rceil$. Assume $d' \ge a + nw'$, $b - w' \le d' - a - nw'$ and $g - g' \le 2s + d - d'$. Fix a hyperplane $H \subset \mathbb{P}^n$, a curvilinear zerodimensional scheme $A \subset H$ and a finite set $B \subset H$ such that $A \cap B = \emptyset$, deg(A) = a, $\sharp(B) = b$, A spans H. Then there is a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^n$ such that $A \cup B \subset X$, deg(X) = d, $p_a(X) = g$ and $h^1(N_X(-A - B)) = 0$.

By a theorem of Kleppe ([20, Theorem 1.8], [25]) the vanishing of the integer $h^1(N_X(-A-B))$ is important for the interpolation problem for general deformations of $A \cup B$ in H (or in \mathbb{P}^n).

Then we prove a stronger result $(A = \emptyset$, but b = d) under a geometrical assumption on the set $X \cap H$. A finite set $S \subset H$ is said to be in *linear general position* if any $S' \subseteq S$ spans a linear space of dimension $\min\{\sharp(S'), n-1\}$. If $\sharp(S) \leq n S$ is in linear general position if and only if it is linearly independent, while if $\sharp(S) \geq n S$ is in linear general position if and only if any subset of X with cardinality n spans H. For a set $S \subset H$ to be in linear general position is an easy to check property with strong geometric consequences ([11, §7.12], [21, Lemma 1.1 and Corollary 1.6]). These sets are the main actors of [9]. We prove the following result.

Theorem 1.3. Fix integers n, d and g such that $n \ge 3$, $g \ge 0$ and $d \ge n + gn/2$ (case g even) or $d \ge n + 1 + n(g-1)/2$ (case g odd). Let $H \subset \mathbb{P}^n$ be a hyperplane. Fix $S \subset H$ such that $\sharp(S) = d$ and S is in linear general position. Then there exists a smooth and connected curve $X \subset \mathbb{P}^n$ such that $\deg(X) = d$, $p_a(X) = g$, $S = X \cap H$ and $h^1(N_X) = 0$. Since points in Uniform Position in the sense of [11, Chapter 3] are in linear general position, Theorem 1.3 may be applied to them.

The cases n = 3 and n > 3 are quite different, even taking a general subset of *H* as *S* ([10, 20]; see Remark 2.2 for more details). For n = 3 Theorem 1.3 is known when $2g \le d - 2$ ([7, Theorem 2.1]).

Now we describe the third result of this paper. Assume $h^1(N_X(-1)) = 0$. Since $0 = h^1(N_X(-1)) \ge h^1(N_X)$, the Hilbert scheme Hilb (\mathbb{P}^n) of \mathbb{P}^n is smooth at [X]. Let Γ be the unique irreducible component of Hilb (\mathbb{P}^n) containing [X]. The assumption $h^1(N_X(-1)) = 0$ implies that for a general subset *S* of *H* with cardinality *d* there is $C \in \Gamma$ such that $C \cap H = S$. There is no information on how general the set *S* must be for the existence of some *C*. Nevertheless, we think that a statement for general $S \subset H$ is very interesting and many papers proved it under some restrictions on the triple (n, d, g) ([1, 2, 4, 5, 10, 15-17, 19, 20, 24, 25]). The cases n = 3 and n > 3 are very different (compare [10, 20] and [25, Theorem 5]). The following theorem is the third result of this paper.

Theorem 1.4. For all integers $n \ge 8$, $g \ge 3$ and $2d \ge (n-3)g + n + 11$, with g odd there is a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^n$ such that $\deg(X) = d$, $p_a(X) = g$, $h^1(N_X(-1)) = 0$ and X has general moduli.

We put the restriction "g odd" in the statement of Theorem 1.4, because for g even a statement similar to Theorem 1.4 holds [4, Theorem 1]. The last assertion of Theorem 1.4 means that the isomorphism classes of the curves X with $h^1(N_X(-1)) = 0$ produced in the proof of the theorem cover a non-empty open subset of the moduli space \mathcal{M}_g . The proof covers the case g = 1, where however a stronger result is known and used in the proof of Theorem 1.4 ([8, Theorem 4.1]).

Theorem 1.4 (and the corresponding statement for even g proved in [4]) are almost optimal, because Ch. Walter proved that $2d \ge (n-3)g+4$ if any such X exists ([25, Theorem 5]). There are well-known triples (d, g, n) with $2d \ge (n - 1)$ 3)g+4, $n \ge 4$, and without curves X with $h^1(N_X(-1)) = 0$, e.g. general canonical curves $C \subset \mathbb{P}^4$ of degree 8 and genus 5, which are the complete intersection of 3 quadric hypersurfaces and so $h^1(N_C(-1)) = 3$. For n = 4 all exceptional cases in the Brill-Noether range are classified and their geometry is explained in [19, Corollary 2]. We do not know how much Walter's bound $2d \ge (n-3)g+4$ is optimal for n > 3. In the same paper he pointed out not only the quoted example of the canonical curves of \mathbb{P}^4 , but that for very low g there are no integral and non-degenerate curves $C \subset \mathbb{P}^n$ with degree d, arithmetic genus g and 2d very near to (n-3)g+4 by Castelnuovo's upper bound for the genus ([11, Theorems 3.6, 3.11, 315]) and that for almost minimal degrees the existing curves are contained in many quadric hypersurfaces and hence their general hyperplane section has a nongeneral Hilbert function. For a fixed *n* only finitely many d, g are excluded for this reason and so we wonder if the following is true.

Question 1.5. Fix an integer $n \ge 4$. Is there an integer $a(n) \ge 4$ such that for all integers d with $2d \ge (n-3)g + a(n)$ there is a smooth and non-degenerate curve $X \subset \mathbb{P}^n$ such that $\deg(X) = d$, $p_a(X) = g$ and $h^1(N_X(-1)) = 0$?

Fix integers $n \ge 4$ and 0 < t < d. Let $u(n,t,d) \in \mathbb{Z}$ be the minimum of all integers (n+1)d - (n-3)g - (n-1)t, where *g* has the following property. Let $S \subset H$ be any subset with $\sharp(S) = \sigma$ and *S* in linear general position. Then there exists a smooth, connected and non-degenerate $X \subset \mathbb{P}^n$ such that *X* is transversal to $H, X \cap H \supseteq S$, deg(X) = d and $p_a(X) = g$. We raise the following question (we have no idea on how to solve it).

Question 1.6. *Give upper and/lower bounds for the function* u(n,t,d)*.*

In Remark 2.3 we explain why to get a very strong and very interesting result for all *t* (even restricting to general subsets of *H*) it is not sufficient to take as u(n,t,d) a function depending only on *n*.

For all $n \ge 4$ even the condition $h^1(N_X) = 0$ gives a linear upper bound for the genus of X in term of the degree of X. We wonder if with different techniques one can control the Hilbert function of a general hyperplane section outside this range. Fix an integer $n \ge 4$. For every integer $d \ge n$ let $e_n(d)$ (resp. $e'_n(d)$) be the maximal integer γ such that for all integers g with $0 \le g \le \gamma$ there is a smooth (resp. integral) non-degenerate curve $X \subset \mathbb{P}^n$ such that a general hyperplane section of X has the Hilbert function of a general subset of \mathbb{P}^{n-1} with cardinality d, i.e. $h^0(H, I_{X \cap H, H}(t)) = \max\{0, \binom{n+t-1}{n-1} - d\}$ for all $t \in \mathbb{N}$. For every integer $d \ge n$ let $f_n(d)$ (resp. $f'_n(d)$) be the maximal integer g such that a general hyperplane section of X has the Hilbert function of a general subset of \mathbb{P}^{n-1} with cardinality d, i.e. $h^0(H, I_{X \cap H, H}(t)) = \max\{0, \binom{n+t-1}{n-1} - d\}$ for all $t \in \mathbb{N}$. For every integer $d \ge n$ let $f_n(d)$ (resp. $f'_n(d)$) be the maximal integer g such that there is a smooth (resp. integral) non-degenerate curve $X \subset \mathbb{P}^n$ such that a general hyperplane section of X has the Hilbert function of a general subset of \mathbb{P}^{n-1} with cardinality d.

Question 1.7. Fix an integer $n \ge 4$. Is $e_n(d) = e'_n(d)$ for all (or almost all) d?

Is
$$\lim_{d \to +\infty} \frac{e_n(d)}{d} = \lim_{d \to +\infty} \frac{e'_n(d)}{d} = +\infty$$
?
Is $\lim_{d \to +\infty} \frac{f_n(d)}{e_n(d)} = \lim_{d \to +\infty} \frac{f'_n(d)}{e'_n(d)} = 1$?

Theorems 1.2 and 1.3 concern non-general subsets of a hyperplane $H \subset \mathbb{P}^n$, $n \ge 4$. We think that the bounds obtained in this paper are far from optimal.

We thank the referee for several important comments and suggestions.

2. Remarks and Lemmas

Remark 2.1. Fix a reduced and connected curve $Y \subset \mathbb{P}^n$. Set $d := \deg(Y)$. Let $H \subset \mathbb{P}^n$ be a hyperplane containing no irreducible component of *Y*. Thus $Y \cap H$ is a zero-dimensional scheme and $\deg(Y \cap H) = d$. Since *Y* is reduced and connected, we have $h^1(I_Y) = 0$. The exact sequence

$$0 \to I_Y \to I_Y(1) \to I_{Y \cap H,H}(1) \to 0$$

shows that the zero-dimensional scheme $Y \cap H$ spans H. For any zero-dimensional scheme $E \subset H$ let $\langle E \rangle$ denote its linear span, i.e. the intersection of all hyperplanes of H containing E, with the convention $\langle E \rangle = H$ if there is no such hyperplane. If $F \subset E$ we have dim $\langle E \rangle \le \dim \langle F \rangle + \deg(E) - \deg(F)$. Thus dim $\langle S \rangle \ge n - 1 + \deg(S) - d$ for any zero-dimensional scheme $S \subset Y \cap H$.

Remark 2.2. Let $H \subset \mathbb{P}^n$ be a hyperplane. Let Γ be an irreducible component of the Hilbert scheme Hilb (\mathbb{P}^n) of \mathbb{P}^n whose general element is a smooth and nondegenerate curve of degree d and genus g with $h^1(N_X) = 0$. Since $h^1(N_X) = 0$, we have dim $\Gamma = (n+1)d + (n-3)(g-1)$. Hence if (n+1)d + (n-3)(1-g) < d(n-1) for a general $S \subset H$ with $\sharp(S) = d$ there is no $X \in \Gamma$ such that $S = X \cap H$. If n > 3, this condition gives a linear upper bound for the maximum genus allowable. If 0 < t < d and (n+1)d + (n-3)(1-g) < t(n-1), then the same holds for the inclusion in S of t general points of H. For n = 3 the upper bound for the genus for curves X satisfying $h^1(N_X(-2)) = 0$ (or $h^1(N_X(-1)) = 0$ or $h^1(N_X) = 0$) is of order $d^{3/2}$ ([10, 20]).

Lemma 2.1. Let $Y \subset \mathbb{P}^n$ be a smooth and connected curve and $Z \subset Y$ a zerodimensional scheme. Assume $h^1(N_Y(-Z)) = 0$. Fix $o \in \mathbb{P}^n \setminus Y$ and a line $L \subset \mathbb{P}^n$ such that $o \in L$, $\sharp(Y \cap L) = 1$, $L \cap Z = \emptyset$ and L is not tangent to Y. Then $Y \cup L$ is smoothable in a family of curves containing $Z \cup \{o\}$ and $h^1(N_{Y \cup L}(-Z - o)) = 0$.

Proof. Set $\{q\} := Y \cap L$. Since $N_L(-o) \cong O_L$, L intersects quasi-transversally Y, $\sharp(Y \cap L) = 1, o \notin Y$, and $L \cap Z = \emptyset$, $N_{Y \cup L}(-Z - o)_{|Y}$ is obtained from $N_Y(-Z)$ making a positive elementary transformation at q and $N_{Y \cup L}(-Z - o)_{|L}$ is obtained from $N_L(-o)$ making a positive elementary transformation at q ([13, §2], [23]). Thus $h^1(N_{Y \cup L}(-Z - o)_{|Y}) = 0$ and $N_{Y \cup L}(-Z - o)_{|L}$ is a direct sum of one line bundle of degree 1 and n - 2 line bundles of degree 0. Thus $h^1(N_{Y \cup L}(-Z - o)_{|L}) = 0$ and the restriction map $H^0(N_{Y \cup L}(-Z - o)_{|L}) \to H^0(N_{Y \cup L}(-Z - o)_{|\{q\}})$ is surjective. The Mayer-Vietoris exact sequence

$$0 \to N_{Y \cup L}(-Z - o) \to N_{Y \cup L}(-Z - o)_{|Y} \oplus N_{Y \cup L}(-Z - o)_{|L}$$

$$\to N_{Y \cup L}(-Z - o)_{|Y \cap L} \to 0$$
(2.1)

gives $h^1(N_{Y\cup L}(-Z-o)) = 0$. Set $d := \deg(Y)$, $g := p_a(Y)$ and $z := \deg(Z)$. Since $h^1(N_Y(-Z)) = 0$, the family $\mathcal{B} \subset \operatorname{Hilb}(\mathbb{P}^n)$ formed by all smooth curves containing Z is smooth and of dimension (n+1)d + (3-n)(g-1) - z(n-1) at [Y] ([20]). Let \mathcal{A} denote the closed subset of $\operatorname{Hilb}(\mathbb{P}^n)$ formed by the nodal curves containing $Z \cup \{o\}$. Since $h^1(N_{Y\cup L}(-Z-o)) = 0$, $\deg(Y \cup L) = d+1$, $p_a(Y \cup L) = g$ and $\deg(Z \cup \{o\}) = z+1$, \mathcal{A} is smooth and of dimension $\dim_{[Y]} \mathcal{B} + 2$ at $Y \cup L$. The singular elements of \mathcal{A} near $Y \cup L$ are formed by lines through o meeting a curve near Y. Such a family of singular curves has dimension $\dim_{[Y]} \mathcal{B} + 1$ and hence it does not contain a neighborhood of $[Y \cup L]$ in \mathcal{A} .

Lemma 2.2. Let $Y \subset \mathbb{P}^n$, $n \ge 3$, be a smooth and connected curve and $Z \subset Y$ a zerodimensional scheme. Assume $h^1(N_Y(-Z)) = 0$. Fix non-negative integers x, y such that $0 \le x + y \le n + 3$ and $y \le n$. Assume the existence of a rational normal curve $L \subset \mathbb{P}^n$ such that L intersects quasi-transversally $Y, L \cap Z = \emptyset$ and $\sharp(Y \cap L) = x$. Fix a set $E \subset L \setminus Y \cap L$ such that $\sharp(E) = y$. Then $h^1(N_{Y \cup L}(-Z - E)) = 0$ and $Y \cup L$ is smoothable in a family of curves of \mathbb{P}^n containing $Z \cup E$.

Proof. The normal bundle N_L of Y in \mathbb{P}^n is a direct sum of n-1 line bundles of degree n+2. By assumption the curve $Y \cup L$ is nodal. If x = 0, then $Y \cup L$ is smooth with two connected components and the lemma is trivial. Thus we may assume x > 0. By [13] or [23] the restriction $N_{Y \cup L|Y}$ (resp. $N_{Y \cup L|L}$) to Y (resp. L) of the normal bundle $N_{Y \cup L}$ of $Y \cup L$ is obtained from N_Y (resp. N_L) making x positive elementary transformations, one for each point of $Y \cap L$. Thus $h^1(N_{Y \cup L|Y}) = h^1(N_{Y \cup L|L}) = 0$ and the restriction map $H^0(N_{Y \cup L|L}) \to H^0(N_{Y \cup L|E})$ is surjective. The exact sequence (2.1) with E instead of o gives $h^1(N_{Y \cup L}(-Z - E)) = 0$.

Now we prove that $Y \cup L$ is smoothable in a family of curves of \mathbb{P}^n containing $Z \cup E$. Set $z := \deg(Z)$, $d := \deg(Y)$ and $g := p_a(Y)$. Since $h^1(N_Y(-Z)) = 0$, the only irreducible component, Γ , of the set of all curves near Y containing Z has dimension (n+1)d + (3-n)(1-g) - (n-1)z ([20, Theorem 1.8]). Let *A* denote the closed subset of Hilb(\mathbb{P}^n) formed by the nodal curves containing $Z \cup E$. Since $h^{1}(N_{Y \cup L}(-Z - E)) = 0$, deg $(Y \cup L) = d + n$, $p_{a}(Y \cup L) = g + x - 1$ and deg $(Z \cup L)$ $\{o\}$ = z + y, \mathcal{A} is smooth and of dimension dim $\Gamma + n(n+1) + (3-n)(x-1) - (x-1) + (3-n)(x-1) - (x-1) + (3-n)(x-1) - (x-1) + (3-n)(x-1) - (x-1) + (x-1$ (n-1)y at $Y \cup L$ ([20, Theorem 1.8]). For any integer *t* such that $1 \le t \le x$ let \mathcal{A}_t denote the set of all $X \in \mathcal{A}$ with exactly t nodes. Near $[Y \cup L]$ all elements of \mathcal{A}_t are obtained fixing a subset $S \subset Y \cap L$ such that $\sharp(S) = t$, smoothing all nodes in $Y \cap L \setminus S$ and considering only deformations of $Y \cup L$ equisingular at each point of S. To conclude the proof of the lemma it is sufficient to prove that $\dim_{[Y \cup L]} \mathcal{A}_t < \mathcal{A}_t$ $\dim_{[Y \cup L]} \mathcal{A}$ for all $t = 1, \dots, x$. The set of all rational normal curves containing E has dimension (n-1)(n+3-y). A dimensional count gives that $\dim_{[Y \cup L]} \mathcal{A}_x =$ $\dim_{[Y \cup L]} \mathcal{A} - x$. Thus a general element of \mathcal{A} near $[Y \cup L]$ is irreducible. Fix an integer t such that $1 \le t < x$. Fix any $q \in Y \cap L$ and call $\mathcal{A}(q)$ the set of all $A \in \mathcal{A}$ with a node near q. Since $h^1(N_L(-E-q)) = 0$, we set that locally around $[Y \cup L]$ in the space \mathcal{A} smooth at q the set $\mathcal{A}(q)$ is given by a single local equation. Since $\dim_{[Y \cup L]} \mathcal{A}_x = \dim_{[Y \cup L]} \mathcal{A} - x$, all these equations are independent. We only need that all these equations are non-trivial, so that $\dim_{[Y \cup L]} \mathcal{A}_t < \dim_{[Y \cup L]} \mathcal{A}$ for t > 0. \Box

Lemma 2.3. Let $H \subset \mathbb{P}^n$, $n \geq 2$, be a hyperplane. Fix $o \in \mathbb{P}^n \setminus H$ and a rational normal curve $D \subseteq H$. Let $\ell_o : \mathbb{P}^n \setminus \{o\} \to H$ denote the linear projection from o. For any integral curve $Y \subset X$, Y not a line, such that o is a smooth point of Y let $\ell(Y)$ denote the closure of $\ell_o(Y \setminus \{o\})$ in H. Let Δ denote the set of all rational normal curves $Y \subset \mathbb{P}^n$ such that $o \in Y$ and $\ell(Y) = D$. Then $\Delta \neq 0$ and Δ is a non-empty irreducible algebraic variety of dimension n + 2.

Proof. Note that in the case n = 2 we have D = H and so Δ is the set of all smooth conics of \mathbb{P}^2 containing *o*. Thus the lemma is trivial when n = 2 and so we may assume n > 2.

Let F_{n-1} denote the Hirzebruch surface with a section, h, of its ruling with selfintersection $h^2 = 1 - n$ ([12, §V.2]). We take h and a fiber f of the ruling π of F_{n-1} as a basis of Pic $(F_{n-1}) \cong \mathbb{Z}^2$. We have $h \cdot (h + (n-1)f) = 0$ and $\pi_*(O_{F_{n-1}}(h)) \cong O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1} (1-n)$. Thus the projection formula gives $h^0(O_{F_{n-1}}(h+xf)) = 2x+3-n$ for all $x \ge n-2$. We get that the complete linear system $|O_{F_{n-1}}(h + (n-1)f)|$ induces a morphism $\phi : F_{n-1} \to \mathbb{P}^n$ which is an embedding outside h, $\phi(h)$ is a point, o', and $\phi(F_{n-1})$ is a degree n-1 cone with vertex o' over a rational normal curve of a hyperplane $H' \subset \mathbb{P}^n$ such that $o' \notin H'$. Up to a projective transformation we may assume o' = o and H' = H. Fixing D and o is equivalent to fixing the cone $\phi(F_{n-1})$ (here we use that n > 2). The irreducible elements of $|O_{F_{n-1}}(h + (n-1)f)|$ are projectively equivalent to D. Since $(h+nf) \cdot (h+(n-1)f) = n$, we get that Δ is the set of all irreducible (or equivalently, all smooth) elements of $|O_{F_{n-1}}(h+nf)|$. Thus $\Delta \neq \emptyset$, Δ is irreducible and dim $\Delta = n + 2$.

Lemma 2.4. Take o, D, Δ as in the statement of Lemma 2.3 and the linear projection ℓ_o and the cone $\phi(F_{n-1})$ as in the proof of Lemma 2.3. Fix a finite set $B \subset \phi(F_{n-1}) \setminus \{o\}$ such that $\sharp(B) = n + 2$, no two points of B are contained in the same line of $\phi(F_{n-1})$ and B is in linear general position. Then there exists $Y \in \Delta$ such that $B \subset Y$.

Proof. Since $o \notin B$, there is a unique $E \subset F_{n-1} \setminus h$ such that $\phi(E) = B$. Since dim $|O_{F_{n-1}}(h+nf)| = n+2$, there is $C \in |I_E(h+nf)|$. We need to check that *C* is smooth and irreducible (indeed it is even unique). This is true, because the singular elements of $|O_{F_{n-1}}(h+nf)|$ have the following description. One type are the reducible curves of the form $F \cup Y'$ with Y' a smooth element of $|O_{F_{n-1}}(h+(n-1)f)|$ and $F \in |O_{F_{n-1}}(f)|$. Since $\phi(F)$ is a line of $\phi(F_{n-1})$, it contains at most one element of *B*. Since $\phi(Y')$ is a hyperplane section of $\phi(F_{n-1})$, it contains at most *n* elements of *B*. Thus $F \cup Y' \not\supseteq B$.

The other type of singular elements of $|O_{F_{n-1}}(h+nf)|$ are of the form $h \cup G$ with $G \in |O_{F_{n-1}}(nf)|$. Since $\phi(h) = \{o\}$ and each line of $\phi(F_{n-1})$ contains at most 1 element of *B*, at most finitely many $\phi(h \cup G)$ contain an element of *B*.

Lemma 2.5. Let $Y \subset \mathbb{P}^r$, $r \geq 2$, be an integral and non-degenerate curve. Assume that Y is not a rational normal curve. Let \mathcal{A} denote the set of all subsets $S \subset Y$ such that $\sharp(S) = r + 3$ and S is in linear general position. For each $S \in \mathcal{A}$ let C_S denote the only rational normal curve of \mathbb{P}^r containing S. Set $\mathcal{B} := \bigcap_{S \in \mathcal{A}} C_S$. Then $\mathcal{B} = \emptyset$.

Proof. The case r = 2 is trivial, because every non-empty open subset of $|\mathcal{O}_{\mathbb{P}^2}(2)|$ has no base points. Now assume $r \ge 3$ and that the lemma is true in \mathbb{P}^{r-1} . Since *Y* is integral and not a rational normal curve, we have $Y \nsubseteq \mathcal{B}$. Hence $o \notin \mathcal{B}$ for a general $o \in Y$. Let $\ell : \mathbb{P}^r \setminus \{o\} \to \mathbb{P}^{r-1}$ denote the linear projection from *o*. Let

 $D \subset \mathbb{P}^r$ be the closure of $\ell(X \setminus \{o\} \text{ in } \mathbb{P}^{r-1}$. If *D* is not a rational normal curve of \mathbb{P}^{r-1} we may use the inductive assumption. If *D* is a rational normal curve, then $\ell_{|X \setminus \{o\}}$ is not birational onto its image and this does not occur for a general $o \in Y$.

Lemma 2.6. Let $Y \subset \mathbb{P}^r$, $r \geq 3$, be an integral and non-degenerate curve. Fix $q \in \mathbb{P}^r \setminus Y$ and call \mathcal{A} the set of all subsets $S \subset Y$ such that $\sharp(S) = r + 2$ and $S \cup \{q\}$ is in linear general position. For each $S \in \mathcal{A}$ let C_S denote the only rational normal curve of \mathbb{P}^r containing $S \cup \{q\}$. Set $\mathcal{B} := \bigcap_{S \in \mathcal{A}} C_S$. Then $\mathcal{B} = \{q\}$.

Proof. Let $\ell : \mathbb{P}^r \setminus \{q\} \to \mathbb{P}^r$ denote the linear projection from q. If $\ell(Y)$ is not a rational normal curve we may apply Lemma 2.5 to $\ell(Y) \subset \mathbb{P}^{r-1}$. Now assume that D is a rational normal curve. Since o is a smooth point of Y, we have $\deg(Y) - 1 = x \deg(D)$, where x is the degree of the rational map $Y \dashrightarrow D$ induced by $\ell_{|Y \setminus \{o\}}$. Since Y is not a rational normal curve, we get $x \ge 2$, i.e. $\ell_{|Y \setminus \{o\}}$ is not birational onto its image. This possibility may occur only for finitely many $o \in Y$, contradicting the generality of Y.

Lemma 2.7. Let $Y \subset \mathbb{P}^n$, $n \geq 2$, be an integral and non-degenerate curve. Fix a finite set $S \subset \mathbb{P}^n$ in linear general position and set $x := \sharp(S \cap Y)$ and $y := \sharp(S \cap (\mathbb{P}^n \setminus Y))$. Assume $x + y \leq n + 2$. If Y is a rational normal curve assume y > 0. Let Γ denote the set of all $A \subset Y$ such that $\sharp(A) = n + 3 - x - y$, $A \cap S = \emptyset$ and $A \cup S$ is in linearly general position. For any $A \in \Gamma$ let C_A denote the unique rational normal curve of \mathbb{P}^n containing A. Then $\cap_{A \in \Gamma} C_A = S$.

Proof. Since *Y* is integral and spans \mathbb{P}^n , we have $\Gamma \neq \emptyset$. Increasing *y* if necessary we may assume x + y = n + 2.

(a) Assume n = 2. Any set $F \subset \mathbb{P}^2$ such that $\sharp(F) = 4$ and no 3 of the points of *F* are collinear is the complete intersection of 2 smooth conics and a general $C \in |I_F(2)|$ is smooth and transversal to *Y* (note that in this case if deg(*Y*) > 0 we have $\sharp(Y \cap C) > 4$).

(b) Assume n > 2 and that the lemma is true in \mathbb{P}^{n-1} .

(b1) Assume x > 0. Fix $o \in S \cap Y$ and let $\ell_o : \mathbb{P}^n \setminus \{o\} \to \mathbb{P}^{n-1}$ denote the linear projection from o. Set $S' := \ell_o(S \setminus \{o\})$. Let $T \subset \mathbb{P}^{n-1}$ denote the closure of $\ell_o(Y \setminus \{o\})$ in \mathbb{P}^{n-1} . T is an integral and non-degenerate curve of \mathbb{P}^{n-1} . Since S is in linear general position, we have $\sharp(S') = n+1$ and S' is in linearly general position. We have $\sharp(S' \cap T) = x - 1$ and $\sharp(S' \cap (\mathbb{P}^{n-1} \setminus T)) = y = n+2-x$. Assume $\bigcap_{A \in \Gamma} C_A \neq S$ and fix $q \in \bigcap_{A \in \Gamma} C_A \setminus S$. Since $o \in S$ and $q \notin S$, the point $q' = \ell_o(q)$ is well-defined.

First assume that either y > 0 or that *T* is not a rational normal curve of \mathbb{P}^{n-1} . By the inductive assumption there is a rational normal curve $D \subset \mathbb{P}^{n-1}$ such that *D* contains *S'* and a point q'' of $D \setminus S'$. To apply Lemma 2.4 it is sufficient to observe that q'' is the image of a point of $Y \setminus \{o\}$.

NORMAL BUNDLE

Now assume y = 0 and that *T* is a rational normal curve. In this case we assumed that *Y* is not a rational normal curve. In this case T_0 is an injective (at least for $n \ge 4$) projection of a degree n cone $J \subset \mathbb{P}^{n+1}$. With the notation of the proof of Lemma we have $J = \phi(F_n)$, where $\phi : F_n \to \mathbb{P}^{n+1}$ is the morphism induced by the linear system $|O_{F_n}(h+nf)|$. Let $D \subset F_n$ be the curve such that *Y* is an injective linear projection of $\phi(D) \subset J$. Take positive integers a, b such that $D \in |O_{F_n}(ah+bf)|$ with a > 0 and $b \ge na$. Since $o \in Y$, $\phi(D)$ contains the vertex of *J*, i.e. b > na. We have x = n+2 and to apply the inductive assumption we may take any other point of $S \cap Y$. We see that *Y* cannot be contained in n+2 cones like T_0 , concluding the proof in this case.

(b2) Assume x = 0. We have y = n + 2. We fix $o \in S$, consider the linear projection from o and use the inductive assumption. Since $y \ge 2$ in \mathbb{P}^{n-1} we do not need to distinguish the case in which $\ell_o(Y)$ is a rational normal curve to apply the inductive assumption.

Lemma 2.8. Let $Y \subset \mathbb{P}^n$, $n \ge 3$, be an integral and non-degenerate curve. Assume that Y is not a rational normal curve. Let $E \subset Y$ be a general subset of Y with cardinality n+3. Let $D \subset \mathbb{P}^n$ be the only rational normal curve containing E. Then D meets Y quasi-transversally and $Y \cap D = E$.

Proof. Since Y is integral and non-degenerate and $E \subset Y$ is general, there is one and only one rational normal curve $D \subset Y$ containing E. Since E is general in Y, no point of E is a singular point of Y. Since Y is not a rational normal curve, $Z := D \cap Y$ (scheme-theoretic intersection) is a zero-dimensional scheme. We need to prove that Z = E as schemes. It is sufficient to prove that Z = E for a specific set E (of course, in linearly general position, otherwise D is not defined). We use induction on *n*. Set $d := \deg(Y)$. Fix $q \in E$ and let $\ell_q : \mathbb{P}^n \setminus \{q\} \to \mathbb{P}^{n-1}$ denote the linear projection from q. Set $G := E \setminus \{q\}$. Since $E \subset Y$ is general, q is a general point of Y. Hence $\ell_{q|Y\setminus\{q\}}$ is birational onto its image whose closure, W, in \mathbb{P}^{n-1} is an integral and non degenerate curve of degree d-1. Since E is in linear general position, $A := \ell_q(G)$ is a subset of \mathbb{P}^{n-1} with cardinality n+2 and in linear general position. Thus there is a unique rational normal curve $C \subset \mathbb{P}^{n-1}$ containing A. For a fixed q we may move G among the subsets of Y with cardinality n+2. Thus A is a general subset of W with cardinality n+2. Let $T \subset \mathbb{P}^n$ be the cone with vertex q and C as a basis. Since T is a cone and a minimal degree surface, its minimal desingularization $u: F_{n-1} \to T$ is the Hirzebruch surface with a minimal degree section, h, with self-intersection 1 - n. Set $G' := u^{-1}(G)$. Since q is a smooth point of Y, $\ell_{q|Y\setminus\{q\}}$ extends to a surjective and birational morphism $\mu: Y \to W$. Since (after fixing q) G is general in Y, we have $G = \mu^{-1}(A)$ and μ is a local isomorphism at each point of G. We will take as D a curve u(D') with $D' \in |\mathcal{O}_{F_n}(h+nf)|$ and $G' \subset D'$. Since $h^0(\mathcal{O}_{F_n}(h+n)) = (n+1)+2$, there is at least one such D'. Every irreducible element of $X \in |\mathcal{O}_{F_n}(h+nf)|$ is smooth and u(X)is a rational normal curve containing q. Since G is in linearly general position, we have $h^0(F_{n-1}, I_{G'}(h+nf)) = 1$ and the only element of $|I_{G'}(h+nf)|$ is irreducible. Thus D = u(D').

(a) First assume n = 3. In this case *C* is a smooth conic. By Bertini's theorem a general conic is transversal to *W*. Since *A* is general in *W*, *C* may be seen (even after fixing *W*) as a general conic. Thus *C* is transversal to *W*. Since $G = \mu^{-1}(A)$ and $\mu : Y \to W$ is a local isomorphism at each point of *Y*, *D* and *Y* meet quasi-transversally and $D \cap Y = E$.

(b) Now assume n > 3 and that the lemma is true in \mathbb{P}^{n-1} for all non-degenerate curves, different from the rational normal curve of \mathbb{P}^{n-1} . Thus *C* and *W* intersect quasi-transversally and $C \cap W = A$ since $G = \mu^{-1}(A)$ and $\mu : Y \to W$ is a local isomorphism at each point of *Y*. Thus *D* and *Y* meet quasi-transversally and $D \cap Y = E$.

Lemma 2.9. Let $Y \subset \mathbb{P}^n$, $n \ge 3$, be a smooth, connected and non-degenerate curve. Set $d' := \deg(Y)$ and $g' := p_a(Y)$. Fix a finite set $S \subset X$ and integers $d \ge d'$, $g \ge g'$ and set $s := \lfloor (d-d')/n \rfloor$. Assume $g - g' \le 2s + d - d' - sn$ and $h^1(N_Y(-S)) = 0$; if g = g' + 2s and d = d' + sn assume that $d' \ne n$. Then there exists a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^n$ such that $X \supset S$, $\deg(X) = d$, $p_a(X) =$ g and $h^1(N_X(-S)) = 0$.

Proof. We may assume $(d,g) \neq (d',g')$, i.e. d > d'. In steps (a), (b) and (c) we will silently use the following observation. Let $\pi : \Pi \to \mathbb{P}^n$ denote the blowing up of *S*. Let *Y'* denote the strict transform of *Y*. Since *Y* is smooth at each point of *S*, π induces an isomorphism between *Y'* and *Y* and this isomorphism induces an isomorphism between $N_Y(-S)$ and $N_{Y',\Pi}$. For any smooth curve $L \subset \mathbb{P}^n$ such that $L \cap S = \emptyset$ set $L' := \pi^{-1}(L)$. Since $S \cap L = \emptyset$, π induces an isomorphism between N_L and $N_{L',\Pi}$. If $L' \cup Y'$ is smoothable inside Π , then π shows the existence of a smoothing of $L \cup Y$ with a family of curves containing *S*. Since π induces an isomorphism between $N_{Y\cup L}(-S)$ and $N_{Y'\cup L',\Pi}$, to prove that $h^1(N_{Y\cup L}(-S)) = 0$ (and then to conclude by the semicontinuity theorem for cohomology) it is sufficient to prove that $h^1(N_{Y\cup L'}) = 0$.

(a) Assume d = d' + 1 and g = g'. We take as *X* a smoothing with fixed *S* of $Y \cup L$, where *L* is a general line meeting *Y* at exactly one point. The proof that $Y \cup L$ is smoothable among curves fixing *S* is easier than the one of Lemma 2.1.

(b) Assume d = d' + 1 and g = g' + 1. We take as *X* a smoothing with fixed *S* of $Y \cup L$, where *L* is a general secant line of *Y*. The proof that $Y \cup L$ is smoothable among curves fixing *S* is similar (inside Π) to the proof of Lemma 2.1.

(c) Assume d = d' + n, g = g' + n + 2 and $d' \neq n$. Let $E \subset Y$ be a general subset with cardinality n + 3. In particular *E* is in linear general position and $E \cap S = \emptyset$. Let $L \subset \mathbb{P}^n$ a general rational normal curve containing *E*. Since $d' \neq n$ we have $L \neq Y$. As in the proof of Lemma 2.8 we see that $L \cap S = \emptyset$, $L \cap Y = E$ and that $Y \cup L$ is nodal. Set $X' := Y' \cup L'$ and $F := \pi^{-1}(E)$. Consider the Mayer-Vietoris

exact sequence of the normal bundle of X' in Π :

$$0 \to N_{X',\Pi} \to N_{X',\Pi|Y'} \oplus N_{X',\Pi|L'} \to N_{X',\Pi|F} \to 0.$$

$$(2.2)$$

The rank n-1 vector bundle $N_{X',\Pi|Y'}$ (resp. $N_{X',\Pi|L'}$) on Y' (resp. on L') is obtained from $N_{Y',\Pi}$ (resp. $N_{L'|\Pi}$) making n+3 positive elementary transformations, one for each point of F ([?, §2]). Since $h^1(N_{Y',\Pi}) = 0$, we have $h^1(N_{X',\Pi|Y'}) = 0$. Since N_L is a direct sum of n-1 line bundles of degree n+2 and $L \cap S = \emptyset$, $N_{L',\Pi}$ is a direct sum of n-1 line bundles of degree n+2. Thus $N_{X',\Pi|L'}$ is a direct sum of line bundles of degree at least n+2. Thus $h^1(N_{X',\Pi|L}) = 0$ and $h^1(N_{X',\Pi|L}(-F)) = 0$. Thus the restriction map $H^0(L', N_{X',\Pi|L'} \to H^0(F, N_{X',\Pi|F})$ is surjective. From (2.2) we get $h^1(N_{X',\Pi}) = 0$. To see that X' is smoothable it is sufficient to observe that $h^1(N_{L',\Pi}(-F)) = 0$ ([13, Th. 4.1 and Rem. 4.1.1]).

(d) Assume d = d' + n and g = g + n + 1. Adapt the proof of part (c) to this easier case taking *E* with $\sharp(E) = n + 2$.

(e) If $g - g' \le s + d - d'$ we apply *s* times step (d), then g - g' - s(n+1) times step (b) and then d - d' - g + g' - s times step (a). If $s + d - d' < g - g' \le 2s + d - d'$ we apply several times step (c) and then if necessary steps (a) and (b).

Remark 2.3. Let $H \subset \mathbb{P}^n$, $n \ge 4$, be a hyperplane. Let Γ be a family of smooth, connected and non-degenerate curves whose closure in Hilb(\mathbb{P}^n) is an irreducible component of Hilb(\mathbb{P}^n). Set $d := \deg(X)$ and $g := p_a(X)$. Fix a positive integer $\sigma \le d$ and call Δ the set of subsets of H with cardinality σ . Fix $S \in \Delta$ and let W_S denote the set of $X \in W$ such that $X \cap H \supseteq S$. Assume $W_S \ne \emptyset$. J. Kleppe proved that for each $X \in W_S$ the vector space $H^0(N_X(-S))$ is the Zariski tangent space of W_S at [X], while $H^1(N_X(-S))$ may be used as an obstruction space ([20, Theorem 1.8], [25]). Hence if $W_S \ne \emptyset$ we have $h^0(N_X(-S)) \ge 0$. We have $\chi(N_X(-S)) = (n+1)d + (3-n)(g-1) - (n-1)\sigma$. In many cases (but not in all cases!) we have $h^0(N_X(-S)) = h^0(N_X(-S)) = h^0(N_X) - (n-1)\sigma$. Thus the inequality

$$(n-3)(g-1) \le (n+1)d - (n-1)\sigma$$
 (2.3)

(equivalent to $h^1(N_X(-S)) = 0$) is often a necessary condition to have $W_S \neq \emptyset$ for a general $S \in \Delta$. When $\sigma = d$, we have $N_X(-S) \cong N_X(-1)$. Ch. Walter proved in this case that $h^0(N_X(-1)) \ge n+1$ and hence that if $h^1(N_X(-1)) = 0$ we have

$$(n-3)g+4 \le 2d \tag{2.4}$$

([25, Theorem 5]). Just applying (2.4) in the case $\sigma = d - 1$ gives an upper bound for *g* better than (2.3). But neither (2.3) nor the improved by n + 1 bound hopefully obtained generalizing [25, Theorem 5] to some $\sigma < d$ (a task we do not know how to do) would be very good for low σ . For instance take any $\sigma \le n+1$. Hence in this case any *S* in linear general position is realized by any smooth and non-degenerate curve $Y \subset \mathbb{P}^n$. Hence for $\sigma \le n+1$, the maximal possible *g* is the maximal genus $\pi(n,d)$ of all smooth and non-degenerate degree *d* curves of \mathbb{P}^n . Since $\pi(n,d)$ is

quadratic in *d* ([11, Theorems 3.7 and 3.11]) (2.3) is not satisfied when $\sigma \le n+1$. Somewhere between n+1 and *d* the upper bound for *g* must go from quadratic in *d* to linear in *d*, but we have no guess on this matter.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.4: Let $Y \subset \mathbb{P}^n$, $n \ge 4$, be a linearly normal elliptic curve. Thus *Y* is smooth, $p_a(Y) = 1$ and deg(Y) = n + 1.

Claim 1: We have $h^1(N_Y(-1)) = 0$.

Proof of Claim 1: We have $\deg(N_Y(-1)) = 2(n+1)$. By [8, Theorem 4.1] $N_Y(-1)$ is polystable. We have $\deg(N_Y(-1)) = \deg(N_Y) - (n+1)(n-1) = \deg T_{\mathbb{P}^n} - (n+1)(n-1) = 2(n+1) > 0$. The definition of semistability, implies $h^0(N_Y(-1)^{\vee}) = 0$. Since *Y* is an elliptic curve, duality implies $h^1(N_Y(-1)) = 0$.

Claim 2: Assume $n \ge 5$. For any 3 general points $p_1, p_2, p_3 \in \mathbb{P}^n$ and general lines $L_1, L_2, L_3 \subset \mathbb{P}^n$ such that $p_i \in L_i$ for all *i* there is a smooth linearly normal elliptic curve $Y \subset \mathbb{P}^n$ containing $\{p_1, p_2, p_3\}$ with L_i as its tangent line at each p_i .

Proof of Claim 2: By a theorem of Kleppe ([20, Theorem 1.8]) it is sufficient to prove that $h^1(N_Y(-Z)) = 0$, where *Z* is any zero-dimensional scheme of *Y* with deg(*Z*) = 6. This is true by the semistablity of N_Y ([8, Theorem 4.1]), because $6(n-1) < (n+1)^2$, N_Y has degree deg $T_{\mathbb{P}^n|Y} = (n+1)^2$ and rank n-1.

Then we continue the proof of the theorem as in the proof of [4, Theorem 1]. \Box

Proof of Theorem 1.2: Until step (d) we assume d = d' and g = g'. When g = 0 it is sufficient to do the case b = 0, which is [7, Theorem 1.6]. Assume g > 0. We order the points p_1, \ldots, p_b of B. For any integer t let $\Gamma(t)$ denote the set of all $E \subset Y$ such that $\sharp(E) = t$. Fix a general $(S_1, \ldots, S_w) \in \Gamma(n+2)^w$. We have $h^1(N_Y(-Z)) = 0$ for any degree n + 2 effective divisor Z of Y by the possible splitting types of the normal bundles of smooth and non-degenerate rational curves ([22]). Thus for each $i \in \{1, \ldots, w\}$ the generality of $S_i \in \Gamma(n+2)$ implies $b_i \notin S_i$ and that $S_i \cup \{b_i\}$ is in linear general position in \mathbb{P}^n . Thus there is a unique rational normal curve $C_i \subset \mathbb{P}^n$ containing $S_i \cup B_i$. We have $C_i \cap C_j = \emptyset$ for all $i, j \in \{1, \ldots, w\}$ such that $i \neq j$ and $C_i \cap Y = S_i$ for all i by Lemma 2.6 and the generality of (S_1, \ldots, S_w) .

(a) We first do the case b = w, d = a + nw and g = w(n+1).

Claim 1: For general S_i , $1 \le i \le w$, we have $b_j \notin C_i$ for all $j \ne i$ and the curve $E := Y \cup C_1 \cup \cdots \cup C_b$ is nodal and with $p_a(E) = w(n+1)$.

Proof of Claim 1: Since $C_i \cap S_i = S_i$ for all *i*, to prove that *E* is nodal with arithmetic genus w(n + 1) it is sufficient to prove that each C_i meets *Y* quasi-transversally. Assume the existence of $i \in \{1, ..., w\}$ such that C_i is tangent to *Y* at some $p \in S_i$. A monodromy argument gives that C_i is tangent to *Y* at all points of S_i . Write $S_i = J \cup \{o\}$ with $\sharp(J) = n + 1$ and take a general $q \in Y$. Since $J \cup \{q\} \cup \{b_i\}$ is in linear general position, there is a unique rational normal curve $C \supset J \cup \{q\} \cup \{b_i\}$. Since *o* is a limit of the family $\{q\}_{q \in Y}$, we may take all C_j , $j \neq i$, and *C* instead of C_1, \ldots, C_w . By the generality of C_1, \ldots, C_w , we see that

C is tangent to *Y* at all points of $J \cup \{q\}$. Thus deg $(C \cap C_i) \ge 2(n+1)$. Since $2(n+1) \ge n+3$, we get $C = C_i$ for a general $q \in Y$, absurd.

(b) Assume w' = w. Increasing *b* if necessary we may assume d = a + b + (n-1)w. Take $B' := \{b_1, \ldots, b_w\}$ and *F* as in step (a). The curve *F* is a smoothing (with fixed $A \cup B'$) of $Y \cup C_1 \cup \cdots \cup C_w$ with each C_i a rational normal curve. Since g > 0 and w = w', we have w > 0. By step (a) *F* is smooth, connected and non-degenerate, deg(F) = a + wn, $A \cup B' \subset F$ and $h^1(N_F(-A - B')) = 0$. Take general lines L_i , $b - nw + 1 \le i \le b$ containing b_i and meeting *F*.

Claim 2: We may take *F* so that each L_i meets *F* quasi-transversally at a unique point and $L_i \cap L_j = \emptyset$ for all $i \neq j$.

Proof of Claim 2: Let R_i , $b - nw + 1 \le i \le b$, be a general line containing b_i and intersecting C_w . Since $b_i \neq b_i$, any two meeting lines are coplanar and C_w spans \mathbb{P}^n , we have $R_i \cap R_i = \emptyset$ for all $i \neq j$. Since F is a smoothing of $Y \cup C_1 \cup \cdots \cup C_w$, it is sufficient to prove that for all $i R_i \cap C_h = \emptyset$ for all $h < w, R_i \cap Y = \emptyset, \ \sharp(R_i \cap C_w) = 1$, R_i meets quasi-transversally C_w . Fix *i*. Let T_0 be the cone with vertex b_i and Y as a basis. For $1 \le h < w$ let T_h be the cone with vertex b_i and base C_h . To get all the statements it is sufficient to prove that in step (a) we may find C_w with the additional property that $C_w \not\subseteq \bigcup_{0 \le h \le w} T_w$. Assume that this is false and take $h \in \{0, \dots, w-1\}$ such that $C_w \subset T_h$. Since C_w contains a general point of C_{w-1} , varying C_w we see that $C_{w-1} \subset T_h$. Taking the first w (for some data) for which this occurs we get h = w - 1. Assume either $w \ge 2$ or that Y is a rational normal curve. With these assumptions T_{w-1} is a degree *n* cone which is a linear projection from one point of \mathbb{P}^{n+1} of a degree *n* cone $T \subset \mathbb{P}^{n+1}$ over a rational normal curve of \mathbb{P}^n and the linear projection $\eta: T \to T_{w-1}$ is injective and an isomorphism outside the vertex of *T*. With the notation of the proof of Lemma 2.3 T is the image of the complete linear system $|O_{F_n}(h+nf)|$ on the Hirzebruch surface F_n and C_{w-1} , C_w are isomorphic linear projections of two elements $A_1, A_2 \in |O_{F_n}(h+nf)|$. Since $C_{w-1} \cup C_w$ is nodal and η is injective, we get $\sharp(C_{w-1} \cap C_w) = \deg(A_1 \cap A_2) = O_{F_n}(h+nf) \cdot O_{F_n}(h+nf)$ nf) = n, a contradiction. Now assume w = 1 and deg(Y) > n. We see that T_0 is the cone with base C_1 and vertex b_i . Thus T_0 is an injective linear projection of the degree n + 1 cone $T \subset \mathbb{P}^{n+1}$ just described. Since deg(Y) > n and $Y \subset T_0$, we see that Y is an isomorphic linear projection of a curve $D \in |O_{F_n}(xh+bf)|$ with $x \ge 2$ and $b \ge xb$. We get deg $(Y \cap C) \ge O_{F_n}(xh+bf) \cdot O_{F_n}(h+nf) = b \ge 2n > n+2$, a contradiction.

Applying d - a - nw times Lemma 2.1 we get $h^1(N_G(-A - B)) = 0$, where $G = F \cup L_{b-w+1} \cup \cdots \cup L_b$. By Lemmas 2.1 and 2.2 we may deform *G* to a smooth curve in a family of curves containing $A \cup B$. Apply the semicontinuity theorem for cohomology.

(c) Assume $w' \neq w$. Thus w' = w + 1. Take a smooth *F* as in step (a) (hence $\deg(F) = a + nw$, $p_a(F) = w(n+1)$ and $F \supset A \cup \{b_1, \dots, b_w\}$). First assume $b \leq w$. Increasing if necessary *b* we may assume b = w. Take *E* as in step (a) containing

 b_1, \ldots, b_w . Set $E'' := F \cup D$, where *D* is a general rational curve containing a general subset of *F* with cardinality g - (n+1)w + 1. As in Claim 1 we get that $\sharp(F \cap D) = g - (n+1)w + 1$ and *F'* is nodal. As in Lemmas 2.1 and 2.2 we see *F'* is smoothable in a family of curves of \mathbb{P}^n containing $A \cup B$. Now assume b > w. By assumption we have $d \ge nw' + a$, (n+1)w < g < (n+1)w' and $b - w' \le d - a - nw'$. Increasing if necessary *b* we may assume d = a + b + (n-1)w'. As in step (a) we take $F \cup C$ with *C* rational normal curve of \mathbb{P}^n , $\sharp(C \cap E) = g - (n+1)w + 1$ and $b_{w+1} \in C$. Set $B' := \{b_1, \ldots, b_{w+1}\}$. As in step (a) the curve $F \cup C$ is nodal, of degree a + nw', $p_a(F \cup C) = g$, $F \cup C \supset A \cup B'$, $h^1(N_{F \cup C}(-A - B')) = 0$ and $F \cup C$ is smoothable in a family of curves containing $A \cup B'$. Call *F'* one such smooth curve. Then as in step (b) we add b - w' general lines R_i , $w' + 1 \le i \le b$ with $b_i \in R_i$ and R_i intersecting *F'*. We conclude as in step (b) using *F'* instead of the curve *F* used in step (b).

(d) Assume $(d,g) \neq (d',g')$. Apply Lemma 2.9 with $S := A \cup B$.

Proof of Theorem 1.3: Set $w := \lfloor g/2 \rfloor$. Write $S = S_0 \cup S_1 \cdots \cup S_w \cup A$ with $\sharp(S_i) = n$ for $1 \le i \le w$, $\sharp(S_0) = n$ if g is even, $\sharp(S_0) = n+1$ if g is odd, $S_i \cap S_j = \emptyset$ for all $i \ne j$, and $\sharp(A) = d - nw - \sharp(S_0)$.

(a) Assume g is even and d = n + ng/2. Let $C_0 \subset \mathbb{P}^n$ be a rational normal curve such that $C_0 \cap H = S_0$ (it exists, because any two subsets of H with cardinality nspanning H are projectively equivalent). For $1 \le i \le w$ let C_i be a general rational normal curve of \mathbb{P}^n containing S_i and with $\sharp(C_i \cap C_{i-1}) = 3$. As in the proof of Theorem 1.2 we see that $E := \bigcup_{i=0}^w C_i$ is a connected nodal curve of degree d and genus g

(b) Assume g is odd and d = n + 1 + n(g - 1)/2. In this case we start taking as C_0 a smooth and linearly normal elliptic curve such that $C_0 \cap H = S_0$ (it exists, because any two subsets of H with cardinality n + 1 in linear general position are projectively equivalent). Then we continue as in the proof of Theorem 1.2.

(c) Assume either g is even and d > n + ng/2 or g is odd and d > n + 1 + n(g-1)/2, i.e. assume $A \neq \emptyset$. Take $E := C_0 \cup C_1 \cup \cdots \cup C_w$ as in step (a) or as in step (b), respectively. Order the points $p_1, \ldots, p_z, z = \sharp(A)$, of A. As in Claim 2 in the proof of Theorem 1.2 take the union of E and z lines L_1, \ldots, L_z with L_i a general line containing p_i and intersecting C_w .

Note that if $X \cap H = S$ we have $N_X(-S) = N_X(-1)$. Hence the proof of Theorem 1.4 (or [4, Theorem 1]) gives $h^1(N_X(-S)) = 0$.

Remark 3.1. For all $n \ge 8$, $g \ge 0$ even (resp. g > 0 odd) and $d \ge (n-3)g/2 + n+3$ (resp. $d \ge (g-1)/2 + n+4$) [3, Theorem 1] (resp. Theorem 1.4) there is a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^n$ with degree d, genus g and $h^1(N_X(-1)) = 0$. The lower bounds for d arising in these theorems just come from their proofs (a game with linearly normal elliptic curves and rational normal curves possibly in lower dimensional linear subspaces).

NORMAL BUNDLE

REFERENCES

- [1] A. Atanasov, Interpolation and vector bundles on curves, arXiv:1404.4892.
- [2] A. Atanasov, E. Larson and D. Yang, *Interpolation for normal bundles of general curves*, Mem. Amer. Math. Soc. 257 (2019), no. 1234.
- [3] E. Ballico, Hyperplane sections of linearly normal curves, Proc. Amer Math. Soc. 122 (1994), no. 2, 395–398.
- [4] E. Ballico, A vanishing theorem for the twisted normal bundle of curves in Pⁿ, n ≥ 8, Canad. Math. Bull. 63 (2000), no 1, 1–5.
- [5] E. Ballico and Ph. Ellia, Bonnes petites composantes des schémas de Hilbert de courbes lisses de Pⁿ, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 4, 187–190.
- [6] E. Ballico and Ph. Ellia, On the existence of curves with maximal rank in \mathbb{P}^n , J. Reine Angew. Math. 397 (1989), 1–22.
- [7] E. Ballico and J. Migliore, Smooth curves whose hyperplane section is a given set of points, Comm. Algebra 18 (1990), no. 9, 3015–3040.
- [8] L. Ein and R. Lazarfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, Complex projective geometry (Trieste, 1989/Bergen, 1989), 149–156, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992.
- [9] D. Eisenbud and J. Harris, *Finite projective schemes in linearly general position*, J. Algebraic Geom. 1 (1992), no. 1, 15–30.
- [10] G. Ellingsrud and A. Hirschowitz, Sur le fibré normal des courbes gauches, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 7, 245–248.
- [11] J. Harris (with D. Eisenbud), Curves in projective space, Les Presses de l'Université de Montréal, Montréal, 1982.
- [12] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [13] R. Hartshorne and A. Hirschowitz, *Smoothing algebraic space curves*, Algebraic Geometry, Sitges 1983, 98–131, Lecture Notes in Math. 1124, Springer, Berlin, 1985.
- [14] J. W. P. Hirschfeld, G. Korchmáros and F. Torres, *Algebraic curves over a finite field*, Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2008.
- [15] E. Larson, Interpolation for restricted tangent bundles of general curves, Algebra Number Theory 10 (2016), no. 4, 931–938.
- [16] E. Larson, Constructing reducible Brill-Noether curves, arXiv:1603.02301.
- [17] E. Larson, The generality of a section of a curve, J. Algebra 555 (2020), 223–245.
- [18] E. Larson, Interpolation with bounded error, Int. Math. Res. Not. IMRN 2021, no. 15, 11426– 11451.
- [19] E. Larson and I. Vogt, Interpolation for Brill-Noether curve in P⁴, Eur. J. Math. 7 (2021), no. 1, 235–271.
- [20] D. Perrin, Courbes passant par m points généraux de P³, Bull. Soc. Math. France, Mem. 28/29, 1987.
- [21] J. Rathmann, *The uniform position principle for curves in characteristic p*, Math. Ann. 276 (1987), no. 4, 565–579.
- [22] G. Sacchiero, Normal bundle of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 26 (1981), 33–40.
- [23] E. Sernesi, On the existence of certain families of curves, Invent. Math. 75 (1984), no. 1, 25–57.
- [24] I. Vogt, Interpolation for Brill-Noether space curves, Manuscripta Math. 156 (2018), 137–147.
- [25] C. Walter, Hyperplane sections of arithmetically Cohen-Macaulay curves, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2651–2656.

(Received: February 17, 2020) (Revised: October 29, 2021) Edoardo Ballico University of Trento Department of Mathematics 38123 Trento, Italy The author is a member of GNSAGA of INdAM (Italy) e-mail: *edoardo.ballico@unitn.it*