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PROJECTIVE CURVESWITH NICE NORMAL BUNDLES AND
CONTAINING A PRESCRIBED SUBSET OF A HYPERPLANE

EDOARDO BALLICO

ABSTRACT. Fix a hyperplanéd C P", n> 3, and a finite seBC H. We give
conditions on the integerd, g and #(S) such that there exists a smooth and
connected curv&X C P" with degX) = d, pa(X) =gandSc XNH. When

d = #(S) we may takeg up to order &/n, d > 0, whenSis in linear general
position. We also prove the existenceXofvith h'(Nx (—1)) =0if n> 8, gis
odd and & > (n—3)g+n+11.

1. INTRODUCTION

Let X C P" be a smooth, connected and non-degenerate curve. Fix gohemper
H C P". Setd :=degX) andg := pa(X). Let Nx denote the normal bundle &f
in P". If hY(Nx) = 0 the Hilbert scheme Hil@®") of P" is smooth afX]. LetTl
be the unique irreducible component of HItY) containing[X]. Fix a hyperplane
H C P". It is natural to ask the following question.

Question 1.1. Fix a set SC H such thatf(S) < d. Is there some W I" such that
SCWnNH and no irreducible component of W is contained in H? Is itgiole to
find an irreducible W? A smooth W ?

There is an obvious necessary conditiof8) > d — n+ 3: the linear span d
in H must have codimension at mast £(S) in H. If this condition is satisfied and
g = 0 the answer is yes (witt¥ a smooth rational curve), even for certain zero-di-
mensional schemes ([7, Theorem 1.6]). We would like to rsiisélar questions in
a range ofd, g, n for which there are no curves witit(Nx) = 0 (although all the
results proved in this paper are in the range when there afe@uves), because
whenn > 3 if h*(Nx) = 0 g has a linear upper bound in termsdyfwhile Casteln-
uovo’s upper bound for the genus of curve®hhis quadratic ind ([11, Theorem
3.7)).

Question 1.1 is natural, but we also had in mind a technicaivatoon. In many
papers (e.g. in [6]) we needed to add a cuEve H such thatX UE has certain
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properties. For instance, we need to add a Ensuch thatX UE is nodal and
Pa(XUE) = pa(X) + 2, i.e. we nee such thatX N H has 3 collinear points, say
{p1, P2, p3}, while XNH\ {p1, p2, ps} has the Hilbert function of a general union
of deg X) — 3 points ofH.

Assume that alX € I are smooth and non-degenerate curves of dedjraed
genugy. Fix an integeo > 0 such that < d and consider se8C H with §(S) = 0.
We explain in Remark 2.3 the well-known fact that to answeefion 1.1 (as in
Theorem 1.2 below) not just for a single setvith cardinality o but for a setA
of subsets oH with cardinality o containing the general unions ofpoints ofH
(maybe a differenWW < I for a differentS € A) we also need a very strong nu-
merical assumption. We recall that a zero-dimensional et C P' is said to
be curvilinear if its connected components have Zariski tangent spacesnsd
sion either 0 or 1. The schenZeis curvilinear if and only if it is contained in the
smooth locus of a curve. Any zero-dimensional subschemesai@oth curve is
curvilinear. Thus to find a smoot#v such thaW NH O Swe must require that
Sis curvilinear. In this case we extend [7, Theorem 1.6] todageg > 0 (under
certain assumptions ahg,n). We prove the following result.

Theorem 1.2. Fix integersn>3,g>d¢ >0,b>0,a>n,d>d. Sets=|(d—
d)/2], w:=[g/(n+1)] and W := [g/(n+1)]. Assume d>a+nw, b—w <
d —a—nw and g— ¢ < 2s+d—d'. Fix a hyperplane HZ P", a curvilinear zero-
dimensional scheme@&H and a finite set B- H such that AA\B =0, deg A) = a,
#(B) = b, A spans H. Then there is a smooth, connected and non-deagecearve
X C P"such that AUB C X,degX) =d, pa(X) =g and H(Nx(~A—B)) = 0.

By a theorem of Kleppe ( [20, Theorem 1.8], [25]) the vanighat the integer
h'(Nx(—A — B)) is important for the interpolation problem for general defa-
tions of AUBIn H (or in P").

Then we prove a stronger result £ 0, butb = d) under a geometrical assump-
tion on the seX NH. A finite setSC H is said to be ifinear general positionf
any S C Sspans a linear space of dimension fiif8),n— 1}. If 4(S) <n Sisin
linear general position if and only if it is linearly indepsmt, while if§(S) >n S
is in linear general position if and only if any subsebofvith cardinalityn spans
H. For a seSC H to be in linear general position is an easy to check propeitty w
strong geometric consequences ([11, §7.12], [21, LemmaridICorollary 1.6]).
These sets are the main actors of [9]. We prove the followasgilt.

Theorem 1.3. Fix integers n, d and g such thatn3, g> 0and d> n+gn/2
(case geven)or & n+1+4+n(g—1)/2(case g odd). Let H- P" be a hyperplane.
Fix SC H such thati(S) = d and S is in linear general position. Then there exists
a smooth and connected curveXP" such thatdeg X) =d, pa(X) =g, S=XNH

and H‘(Nx) =0.
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Since points in Uniform Position in the sense of [11, Chafieare in linear
general position, Theorem 1.3 may be applied to them.

The cases = 3 andn > 3 are quite different, even taking a general subsét of
asS([10, 20]; see Remark 2.2 for more details). et 3 Theorem 1.3 is known
when < d -2 ([7, Theorem 2.1]).

Now we describe the third result of this paper. Assurhigy(—1)) = 0. Since
0=h!(Nx(—1)) > h'(Ny), the Hilbert scheme HilP") of P" is smooth afX]. Let
I" be the unique irreducible component of Hity) containing[X]. The assumption
h'(Nx(—1)) = 0 implies that for a general subsgof H with cardinalityd there is
C T such thaCNH =S There is no information on how general the Sehust
be for the existence of son@® Nevertheless, we think that a statement for general
SC H is very interesting and many papers proved it under someatasts on the
triple (n,d,g) ([1,2,4,5,10,15-17,19, 20, 24, 25]). The cages3 andn > 3 are
very different (compare [10, 20] and [25, Theorem 5]). Thiéofeing theorem is
the third result of this paper.

Theorem 1.4. For all integers n> 8, g > 3 and 2d > (n— 3)g+ n+ 11, with
g odd there is a smooth, connected and non-degenerate curyé®Xsuch that
degX) =d, pa(X) =g, ht(Nx(—1)) = 0and X has general moduli.

We put the restriction ‘g odd ” in the statement of Theorem 1.4, because for
g even a statement similar to Theorem 1.4 holds [4, TheoremThe last as-
sertion of Theorem 1.4 means that the isomorphism classt® afurvesX with
h'(Nx(—1)) = 0 produced in the proof of the theorem cover a non-empty open
subset of the moduli spacey. The proof covers the cage= 1, where however a
stronger result is known and used in the proof of Theorem [84Theorem 4.1]).

Theorem 1.4 (and the corresponding statement for gvproved in [4]) are
almost optimal, because Ch. Walter proved trht2(n — 3)g+ 4 if any suchX
exists ( [25, Theorem 5]). There are well-known triplesg,n) with 2d > (n—
3)g+4,n> 4, and without curveX with h'(Nx(—1)) = 0, e.g. general canonical
curvesC C P* of degree 8 and genus 5, which are the complete intersection o
3 quadric hypersurfaces and Bt{Nc(—1)) = 3. Forn = 4 all exceptional cases
in the Brill-Noether range are classified and their geometrgxplained in [19,
Corollary 2]. We do not know how much Walter’s bound 2 (n—3)g+4 is
optimal forn > 3. In the same paper he pointed out not only the quoted example
of the canonical curves d*, but that for very lowg there are no integral and
non-degenerate curv€sc P" with degreed, arithmetic genug and 21 very near
to (n—3)g+ 4 by Castelnuovo’s upper bound for the genus ( [11, Theorefs 3
3.11, 315]) and that for almost minimal degrees the existimyes are contained
in many quadric hypersurfaces and hence their general pigmer section has a
nongeneral Hilbert function. For a fixedonly finitely manyd, g are excluded for
this reason and so we wonder if the following is true.
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Question 1.5. Fix an integer n> 4. Is there an integer @) > 4 such that for all
integers d witizd > (n— 3)g+ a(n) there is a smooth and non-degenerate curve
X C P"such thatdeg X) =d, pa(X) = g and H(Nx(—1)) = 0?

Fix integersn > 4 and O<t < d. Letu(n,t,d) € Z be the minimum of all
integers(n+1)d — (n—3)g — (n— 1)t, whereg has the following property. Let
SC H be any subset with(S) = o andSin linear general position. Then there
exists a smooth, connected and non-degenetateP" such thatX is transversal
toH, XNH D S degX) = d andpa(X) = g. We raise the following question (we
have no idea on how to solve it).

Question 1.6. Give upper and/lower bounds for the functiofnut,d).

In Remark 2.3 we explain why to get a very strong and very @smg result for
all t (even restricting to general subsetdHfit is not sufficient to take as(n,t,d)
a function depending only om

For alln > 4 even the conditiot® (Nx) = O gives a linear upper bound for the
genus ofX in term of the degree oK. We wonder if with different techniques
one can control the Hilbert function of a general hyperplaeetion outside this
range. Fix an integen > 4. For every integed > n let e,(d) (resp. €,(d)) be
the maximal integey such that for all integerg with 0 < g <y there is a smooth
(resp. integral) non-degenerate cuke P" such that a general hyperplane section
of X has the Hilbert function of a general subsetP8f! with cardinalityd, i.e.
hO(H, Ixqm n (1)) = max{0, ("';) —d} for all t € N. For every integed > n let
fa(d) (resp. fi(d)) be the maximal integeg such that there is a smooth (resp.
integral) non-degenerate curdec P" such that a general hyperplane sectioiXof
has the Hilbert function of a general subseP8f! with cardinalityd.

Question 1.7. Fix an integer n> 4. Is &,(d) = €,(d) for all (or almost all) d?

Is lim @: im M:JHX)?
d—+o d do+o d

d—+wen(d)  d-+e €, (d)
Theorems 1.2 and 1.3 concern non-general subsets of a tepei C P",

n > 4. We think that the bounds obtained in this paper are far foptimal.
We thank the referee for several important comments andestiogs.

=17?

2. REMARKS AND LEMMAS

Remark2.1 Fix a reduced and connected cuive- P". Setd :=dedY). Let

H c P" be a hyperplane containing no irreducible component.ofhusY NH is

a zero-dimensional scheme and ¢¢gH ) = d. SinceY is reduced and connected,
we haveh!( &) = 0. The exact sequence

0— I — Iy(l) — IYﬂH7H (1) —0
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shows that the zero-dimensional scheviteH spandH. For any zero-dimensional
schemeE C H let (E) denote its linear span, i.e. the intersection of all hyzeres
of H containingE, with the conventionE) = H if there is no such hyperplane.
If F C E we have dinfE) < dim(F) +degE) —dedgF). Thus dimS >n—1+
deq S) —d for any zero-dimensional scherSe_ Y NH.

Remark2.2 LetH C P" be a hyperplane. Ldt be an irreducible component of
the Hilbert scheme Hil®") of P" whose general element is a smooth and non-
degenerate curve of degréeand genusgy with h'(Ny) = 0. Sinceh!(Nx) = 0,

we have dinf = (n+1)d+ (n—3)(g—1). Hence if(n+1)d+ (n—3)(1—g) <
d(n—1) for ageneraBcC H with §(S) = d there isnoX € I' such thaS=XNH. If

n> 3, this condition gives a linear upper bound for the maximamus allowable.
If0 <t<dand(n+1)d+ (n—3)(1—g) < t(n—1), then the same holds for the
inclusion inSof t general points oH. Forn = 3 the upper bound for the genus
for curvesX satisfyingh!(Nx(—2)) = 0 (orh'(Nx(—1)) = 0 orh'(Nx) = 0) is of
orderd®/2 ([10, 20)).

Lemma 2.1. Let Y C P" be a smooth and connected curve and X a zero-
dimensional scheme. AssumiéMy(—Z)) = 0. Fix o€ P"\'Y and a line LC P"
such thatoe L, f(YNL) =1, LNZ=0and L is not tangent to Y. ThenYL is
smoothable in a family of curves containing/Zo} and h(Ny . (~Z —0)) = 0.

Proof. Set{q} :=Y NL. SinceN_(—0) = O, L intersects quasi-transversaly
f(YNL)=1,0¢Y,andLNZ =0, Ny .(—Z—0)}y is obtained fromNy (—~Z) mak-
ing a positive elementary transformationge@ndNy(—Z —0),_ is obtained from
NL(—0) making a positive elementary transformatiomdt[13, 82], [23]). Thus
ht(NyL(—Z — 0)ly) = 0 andNyy(—Z — o). is a direct sum of one line bundle of
degree 1 and — 2 line bundles of degree 0. Tha§(Ny . (—Z — 0)iL) =0and the
restriction mapH®(NyuL(—Z — o)) — H%(NyuL(—Z — 0)4q)) is surjective. The
Mayer-Vietoris exact sequence

0— NyuL(=Z—0) = NyuL(=Z—0)y & NvuL(—Z - o)L
= NyuL(=Z—=0)yr — 0 (2.1)

givesh!(Ny . (—Z —0)) = 0. Setd := degY), g:= pa(Y) andz:= degZ). Since
h*(Ny(—2)) = 0, the familyB C Hilb (P") formed by all smooth curves containing
Z is smooth and of dimensiofn+1)d + (3—n)(g—1) —z(n— 1) at [Y] ( [20]).
Let 4 denote the closed subset of Hilt') formed by the nodal curves containing
ZU{o}. Sinceh*(Ny, (-Z—0)) =0, degYUL) =d+1, pa(YUL) = g and
degZuU{o}) = z+1, 4 is smooth and of dimension djg3 +2 atYUL. The
singular elements offl nearY UL are formed by lines through meeting a curve
nearY. Such a family of singular curves has dimension ¢j + 1 and hence it
does not contain a neighborhood[®fUL] in 4.
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Lemma?2.2. LetY C P", n> 3, be a smooth and connected curve and ¥ a zero-
dimensional scheme. AssunméMy (—2Z)) = 0. Fix non-negative integers x such
that0 < x+y < n+3and y< n. Assume the existence of a rational normal curve
L € P" such that L intersects quasi-transversally YN £ =0 and (Y NL) = x.

Fix a set EC L\ YL such thati(E) =y. Then A(Ny . (-Z—E)) =0and YUL

is smoothable in a family of curves Bf containing 2JE.

Proof. The normal bundléN, of Y in P" is a direct sum oh— 1 line bundles of
degreen+ 2. By assumption the curéUL is nodal. Ifx= 0, thenY UL is smooth
with two connected components and the lemma is trivial. Weisnay assume >

0. By [13] or [23] the restrictiomNy |y (resp.Ny i) toY (resp.L) of the normal
bundleNy_ of Y UL is obtained fromNy (resp.N_) makingx positive elementary
transformations, one for each pointofiL. Thushl(NYUuy) = hl(NYUL‘L) =0and
the restriction map-IO(NYUuL) — HO(NYUL‘E) is surjective. The exact sequence
(2.1) with E instead oo givesh*(Ny, . (-Z—E)) = 0.

Now we prove thaY UL is smoothable in a family of curves &f' containing
ZUE. Setz:=degZ), d :=degY) andg:= pa(Y). Sincen*(Ny(-2)) = 0, the
only irreducible component;, of the set of all curves nedf containingZ has
dimension(n+1)d+ (3—n)(1—g) — (n—1)z([20, Theorem 1.8]). Le# denote
the closed subset of Hi{lf") formed by the nodal curves containidg) E. Since
h*(NyuL(—Z—E)) =0, dedY UL) =d+n, pa(YUL) =g+x—1 and degZz U
{0}) =z+Yy, 4 is smooth and of dimension dim+n(n+ 1)+ (3—n)(x—1) —
(n—1)yatY UL ([20, Theorem 1.8]). For any integesuch that I<t < x let %
denote the set of aK € 4 with exactlyt nodes. NeafY UL] all elements of%
are obtained fixing a subs&tC Y NL such thati(S) = t, smoothing all nodes in
Y NL\ Sand considering only deformations ¥%fJ L equisingular at each point of
S To conclude the proof of the lemma it is sufficient to provatttimy ;4 <
dimyy A forallt =1,...,x. The set of all rational normal curves containiig
has dimensiorin— 1)(n+3—Y). A dimensional count gives that dipy ) A« =
dimyy A —x. Thus a general element of near[Y UL] is irreducible. Fix an
integert such that I<t < x. Fix anyqe YNL and call4(q) the set of allA € 4
with a node neag. Sinceh!*(N_(—E —q)) = 0, we set that locally aroun@f UL]
in the spaceq smooth af the set4(q) is given by a single local equation. Since
dimpy ) Ax = dimy ) A4 — X, all these equations are independent. We only need
that all these equations are non-trivial, so thatgim 4 <dimy; 4 fort>0. O

Lemma 2.3. Let H C P", n> 2, be a hyperplane. Fix @ P"\ H and a rational
normal curve DC H. Let/, : P"\ {o} — H denote the linear projection from o. For
any integral curve YC X, Y not a line, such that o is a smooth point of Y/[&t)
denote the closure @ (Y \ {0}) in H. LetA denote the set of all rational normal
curves YC P" such that o= Y and/(Y) = D. ThenA # 0 andA is a non-empty
irreducible algebraic variety of dimensiorHn2.
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Proof. Note that in the case = 2 we haveD = H and saA is the set of all smooth
conics ofP? containingo. Thus the lemma is trivial when = 2 and so we may
assumen > 2.

Let F,_1 denote the Hirzebruch surface with a sectionof its ruling with self-
intersectiorh? = 1—n ([12, §V.2]). We takeh and a fiberf of the rulingrtof F,_1
as a basis of P{&,_1) = Z2. We haveh- (h+ (n—1)f) = 0 andm.(Of, , (h)) =
Op1 @ Op1(1—n). Thus the projection formula givéS(Og, , (h+xf)) =2x+3—n
for all x> n—2. We get that the complete linear syst¢@w, ,(h+ (n—1)f)|
induces a morphisnp: F,_1 — P" which is an embedding outside ¢(h) is a
point, o', and@(F,_1) is a degreen — 1 cone with vertexd’ over a rational normal
curve of a hyperplanel’ C P" such that! ¢ H'. Up to a projective transformation
we may assume = o andH’ = H. Fixing D ando is equivalent to fixing the cone
@(Fr—1) (here we use that> 2). The irreducible elements ofx, , (h+ (n—1)f)]
are projectively equivalent . Since(h+nf)- (h+(n—1)f) =n, we get that\
is the set of all irreducible (or equivalently, all smootlgraents of Og, ,(h+nf)].
ThusA # 0, Ais irreducible and dimA = n+ 2. O

Lemma 2.4. Take o, D,A as in the statement of Lemma 2.3 and the linear pro-
jection ¢, and the conep(F,-1) as in the proof of Lemma 2.3. Fix a finite set
B C ¢(Fy-1) \ {0} such thati(B) = n+ 2, no two points of B are contained in the
same line ofp(F,_1) and B is in linear general position. Then there exists ¥
suchthat BC Y.

Proof. Sinceo ¢ B, there is a uniqué& C F,_1\ h such that¢(E) = B. Since
dim|Og, ,(h+nf)| =n+2, there isC € |Ig(h+nf)|. We need to check tha
is smooth and irreducible (indeed it is even unique). Thiguge, because the
singular elements diOg, ,(h+nf)| have the following description. One type are
the reducible curves of the forfUY’ with Y’ a smooth element 9O, , (h+ (n—
1)f)| andF € |Og, ,(f)|. Since@(F) is a line ofg(F,_1), it contains at most one
element ofB. Since@(Y’) is a hyperplane section gfF,_1), it contains at most
elements oB. ThusF UY’ 2 B.

The other type of singular elements|6k, , (h+nf)| are of the formhu G with
G € |0, ,(nf)|. Sinceg(h) = {o} and each line ofp(F,_1) contains at most 1
element ofB, at most finitely manyp(hU G) contain an element d. O

Lemma25. LetY C P, r > 2, be an integral and non-degenerate curve. Assume
thatY is not a rational normal curve. L&t denote the set of all subsetsY such
that#(S) =r+3and S is in linear general position. For eacheS let Cs denote

the only rational normal curve @' containing S. SeB := Ng-4Cs. ThenB = 0.

Proof. The case = 2 is trivial, because every non-empty open subsepf(2)|
has no base points. Now assumg 3 and that the lemma is true H 1. Since
Y is integral and not a rational normal curve, we ha\/g ‘B. Henceo ¢ B for
agenerabeY. Let/: P\ {o} — P! denote the linear projection from Let
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D C P' be the closure of(X \ {o} in P"~1. If D is not a rational normal curve
of P"~! we may use the inductive assumption. Difis a rational normal curve,
then/x\ (o is not birational onto its image and this does not occur foeaegal
ocY. O

Lemma 2.6. LetY C P, r > 3, be an integral and non-degenerate curve. Fix
geP"\Y and call4 the set of all subsets@&Y such that(S) =r +2and SU{q}

is in linear general position. For each&4 let Cs denote the only rational normal
curve ofP' containing $J{q}. SetB := Ns-4Cs. ThenB = {q}.

Proof. Let ¢ : P"\ {q} — P" denote the linear projection froop If /(Y) is not a
rational normal curve we may apply Lemma 2.%¢%) ¢ P'~1. Now assume that
D is a rational normal curve. Sineds a smooth point of, we have defY) — 1=
xdegD), wherex is the degree of the rational map--» D induced byl (o}-
SinceY is not a rational normal curve, we get 2, i.e. £y, (o) is Not birational onto
its image. This possibility may occur only for finitely manye Y, contradicting
the generality of. O

Lemma 2.7. Let Y C P", n> 2, be an integral and non-degenerate curve. Fix a
finite set SC P in linear general position and setx #(SNY) and y:= #(SN (P"\
Y)). Assume ¥y <n+2. IfY is arational normal curve assumexy0. Letl
denote the set of all A'Y such that(A) =n+3—x—y, ANS=0and AUS isin
linearly general position. For any A I' let Ca denote the unique rational normal
curve ofP" containing A. ThemacrCa=S.

Proof. SinceY is integral and span®", we havel” # 0. Increasingy if necessary
we may assume—+y=n-+2.

(a) Assumen = 2. Any setF C P? such that{(F) = 4 and no 3 of the points
of F are collinear is the complete intersection of 2 smooth aitd a general
C € |Ir(2)| is smooth and transversal Yo(note that in this case if d¢g) > 0 we
havet(YNC) > 4).

(b) Assumen > 2 and that the lemma is true B~

(b1) Assumex > 0. Fixo € SNY and let/, : P"\ {0} — P"~1 denote the
linear projection fromo. SetS := /,(S\ {0}). Let T c P"! denote the closure
of £o(Y \ {0}) in P"1. T is an integral and non-degenerate curvé®fl. Since
Sis in linear general position, we hayéS) = n+ 1 andS is in linearly general
position. We havé(SNT) =x—1and(SN(P"1\T)) =y=n+2—x Assume
NacrCa # Sand fixg € NacrCa\ S Sinceo € Sandq ¢ S, the pointqd’ = 44(q) is
well-defined.

First assume that eithgr> 0 or thatT is not a rational normal curve @1,
By the inductive assumption there is a rational normal cidve P"~* such thaD
containsS and a poing” of D\ S. To apply Lemma 2.4 it is sufficient to observe
thatq” is the image of a point of \ {o}.
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Now assumeg = 0 and thafl is a rational normal curve. In this case we assumed
thatY is not a rational normal curve. In this cakgs an injective (at least far> 4)
projection of a degrea coneJ C P"1. With the notation of the proof of Lemma
we havel = @(F,), where@: F, — P™1 is the morphism induced by the linear
system|Og,(h+nf)|. LetD C F, be the curve such that is an injective linear
projection of@(D) C J. Take positive integera,b such thatD € |Og,(ah+bf)]
with a > 0 andb > na. Sinceo € Y, ¢(D) contains the vertex af, i.e.b > na. We
havex = n+ 2 and to apply the inductive assumption we may take any ofthiet p
of SNY. We see thaY cannot be contained im+ 2 cones likeTp, concluding the
proof in this case.

(b2) Assumex =0. We havey =n+2. We fixo € S consider the linear
projection fromo and use the inductive assumption. Sigce 2 in P"~! we do not
need to distinguish the case in whig§(Y) is a rational normal curve to apply the
inductive assumption. O

LemmaZ2.8. LetY C P", n> 3, be an integral and non-degenerate curve. Assume
that Y is not a rational normal curve. Let EY be a general subset of Y with
cardinality n+3. Let D C P" be the only rational normal curve containing E.
Then D meets Y quasi-transversally anc® = E.

Proof. SinceY is integral and non-degenerate dad- Y is general, there is one
and only one rational normal cuni2 C Y containingE. SinceE is general in
Y, no point ofE is a singular point off. SinceY is not a rational normal curve,
Z:=DnNY (scheme-theoretic intersection) is a zero-dimensioramse. We need
to prove thatZ = E as schemes. It is sufficient to prove tizat E for a specific
setE (of course, in linearly general position, otherwi3as not defined). We use
induction onn. Setd := degY). Fix q € E and let/q : P"\ {q} — P"! denote
the linear projection frong. SetG:=E\ {q}. SinceE C Y is general,qis a
general point off. Hencelyy\ (q; is birational onto its image whose closuw,
in P"1 is an integral and non degenerate curve of degreel. SinceE is in
linear general positiond := ¢4(G) is a subset oP"~! with cardinalityn+ 2 and
in linear general position. Thus there is a unique ratiomaimal curveC c P"-1
containingA. For a fixedq we may moves among the subsets Wfwith cardinality
n+ 2. ThusAis a general subset &Y with cardinalityn+2. LetT c P" be the
cone with vertexqg andC as a basis. Sincé is a cone and a minimal degree
surface, its minimal desingularizatian: F,_1 — T is the Hirzebruch surface with
a minimal degree sectioh, with self-intersection 1 n. SetG' := u1(G). Since
g is a smooth point of, {yv\ (qy €xtends to a surjective and birational morphism
u:Y — W. Since (after fixingg) G is general inY, we haveG = pu~1(A) andu
is a local isomorphism at each point @f We will take asD a curveu(D’) with
D' € |Or, (h+nf)| andG c D'. Sinceh®(Og, (h+n)) = (n+1)+2, there is at least
one suctD’. Every irreducible element of € |Og,(h+nf)| is smooth andi(X)

is a rational normal curve containirgg SinceG is in linearly general position, we
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haveh?(F,_1, Is (h+nf)) = 1 and the only element ¢ig (h-+nf)| is irreducible.
ThusD = u(D’).

(a) First assuma = 3. In this cas& is a smooth conic. By Bertini's theorem
a general conic is transversal\Wé. SinceA is general iV, C may be seen (even
after fixingW) as a general conic. Th@is transversal tV. SinceG = p(A)
andp:Y — W is a local isomorphism at each point ¥f D andY meet quasi-
transversally an®dNY = E.

(b) Now assume > 3 and that the lemma is true ¥ for all non-degenerate
curves, different from the rational normal curve B 1. ThusC andW inter-
sect quasi-transversally a@NW = A sinceG = p~1(A) andu:Y — W is a lo-
cal isomorphism at each point ¥ ThusD andY meet quasi-transversally and
DNnY =E. O

LemmaZ2.9. LetY c P", n> 3, be a smooth, connected and non-degenerate curve.
Setd:=deqY) and d := pa(Y). Fix a finite set &~ X and integers &> d’, g> ¢

and sets= [(d—d')/n|. Assume g ¢ < 2s+d—d —snand A(Ny(—S)) =0;

if g =d +2s and d= d’ + sn assume that'd4 n. Then there exists a smooth,
connected and non-degenerate curve X" such that X S,deg X) =d, pa(X) =

g and H(Nx(—S)) =0.

Proof. We may assuméd,g) # (d',d'), i.e. d > d’. In steps (a), (b) and (c) we
will silently use the following observation. Let: 1 — P" denote the blowing
up of S. LetY’ denote the strict transform df. SinceY is smooth at each point
of S, minduces an isomorphism betwe¥handY and this isomorphism induces
an isomorphism betweely (—S) andNy: 1. For any smooth curve C P" such
thatLNS= 0 setL’ := 1t }(L). SinceSNL = 0, induces an isomorphism be-
tweenY’ andY and this isomorphism induces an isomorphism betwdgmnd
Nu . If L'UY’ is smoothable insidBl, thenttshows the existence of a smoothing
of LUY with a family of curves containing. Sincerttinduces an isomorphism
betweemy . (—S) andNy /1, to prove thah! Ny, (—S)) = 0 (and then to con-
clude by the semicontinuity theorem for conomology) it iffisient to prove that
hl(NY’uL') =0.

(@) Assumed = d’' + 1 andg = ¢. We take asX a smoothing with fixed5
of YUL, whereL is a general line meeting at exactly one point. The proof that
Y UL is smoothable among curves fixi&js easier than the one of Lemma 2.1.

(b) Assumed = d’ + 1 andg = ¢’ + 1. We take a¥ a smoothing with fixe®
of YUL, whereL is a general secant line ¥f The proof thalY UL is smoothable
among curves fixingis similar (insidel) to the proof of Lemma 2.1.

(c) Assumed =d'+n,g=d +n+2andd #n. LetE CY be a general subset
with cardinalityn-+ 3. In particularE is in linear general position arldNS= 0.
Let L C P" a general rational normal curve containig Sinced’ # n we have
L #Y. As in the proof of Lemma 2.8 we see tHahS=0, LNY = E and that
Y UL is nodal. Se’:=Y'UL’ andF := 1t }(E). Consider the Mayer-Vietoris
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exact sequence of the normal bundlexéin M:
0— Nxp— NX’.I'I|Y’ D Nx/.|'|||_/ — NX/.|-|||: — 0. (2.2)

The rankn— 1 vector bundléNy: qy: (resp.Nx/ /) on Y’ (resp. orl’) is obtained
from Ny’ n (resp.Npn) makingn+ 3 positive elementary transformations, one for
each point of ([?, §2]). Sinceh!(Ny 1) =0, we haveh!(Ny: jy/) = 0. SinceN,
is a direct sum oh— 1 line bundles of degree+ 2 andLNS= 0, Ni/ n is a direct
sum ofn—1 line bundles of degree+ 2. ThusNy q- is a direct sum of line
bundles of degree at least+ 2. Thush!(Ny ) = 0 andh!(Ny ). (—F)) = 0.
Thus the restriction mal®(L’,Nx/ 7 — HP(F,Nx: 1r ) is surjective. From (2.2)
we geth!(Ny 1) = 0. To see thaX’ is smoothable it is sufficient to observe that
h' (N n(—F)) =0 ([13, Th. 4.1 and Rem. 4.1.1)).

(d) Assumed = d’ +nandg = g+ +n-+ 1. Adapt the proof of part (c) to this
easier case taking with §(E) = n+ 2.

(e) Ifg—d <s-+d—d we applystimes step (d), theg— g — s(n+ 1) times
step (b) and thed —d' —g+g — stimes step (a). I6+d—d' <g—g <2s+d—d’
we apply several times step (c) and then if necessary stepadab). O

Remark2.3. Let H Cc P", n > 4, be a hyperplane. Lét be a family of smooth,
connected and non-degenerate curves whose closure ifPHjlls an irreducible
component of HilP"). Setd := degX) andg := pa(X). Fix a positive integer

0 < d and callA the set of subsets &1 with cardinalityo. Fix Se€ A and letWs
denote the set ok € W such thatX N"H 2 S Assumeéis # 0. J. Kleppe proved
that for eachX € Ws the vector spackl®(Nx (—S)) is the Zariski tangent space of
Ws at [X], while H(Nx (—S)) may be used as an obstruction space ( [20, Theorem
1.8], [25]). Hence ifWs # 0 we haveh?(Ny(—S)) > 0. We havex(Nx(—S)) =
(n+1)d+(3—n)(g—1) — (n—1)o. In many cases (but not in all cases!) we have
hO(Nx (—S)) = h%(Nx) — (n— 1)a. Thus the inequality

(n=3)(g—1) <(n+1)d—(n—1)c (2.3)

(equivalent tah*(Nx (—S)) = 0) is often a necessary condition to have# 0 for
a generaSe A. Wheno = d, we haveNy (—S) = Nx(—1). Ch. Walter proved in
this case that®(Nx(—1)) > n+1 and hence that iit(Nx(—1)) = 0 we have

(n—3)g+4< 2d (2.4)

([25, Theorem 5]). Just applying (2.4) in the case d — 1 gives an upper bound
for g better than (2.3). But neither (2.3) nor the improvecbyl bound hopefully

obtained generalizing [25, Theorem 5] to some d (a task we do not know how
to do) would be very good for low. For instance take any< n+ 1. Hence in this

case anysin linear general position is realized by any smooth and degenerate

curveY C P". Hence foro < n+ 1, the maximal possiblg is the maximal genus
1(n,d) of all smooth and non-degenerate degdemurves ofP". Sincer(n,d) is
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quadratic ind ([11, Theorems 3.7 and 3.11]) (2.3) is not satisfied whietin+ 1.
Somewhere betweam+ 1 andd the upper bound fog must go from quadratic in
d to linear ind, but we have no guess on this matter.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.4LetY C P", n> 4, be a linearly normal elliptic curve. Thus
Y is smooth,pa(Y) = 1 and degY) = n+ 1.

Claim 1: We haveh!(Ny(—1)) = 0.

Proof of Claim 1: We have defNy(—1)) = 2(n+1). By [8, Theorem 4.1]
Ny (—1) is polystable. We have dégy(—1)) =degNy)—(n+1)(n—1) = degTpn —
(n+1)(n—1) =2(n+1) > 0. The definition of semistability, implid® (Ny (—1)") =
0. SinceY is an elliptic curve, duality implieg!(Ny(—1)) = 0.

Claim 2: Assumen > 5. For any 3 general poings, p2, ps € P" and general
linesLy,Ly, L3 € P" such thatp; € L; for all i there is a smooth linearly normal
elliptic curveY C P" containing{ p1, p2, p3} with L; as its tangent line at eagi.

Proof of Claim 2:By a theorem of Kleppe ( [20, Theorem 1.8]) it is sufficient
to prove thah'(Ny(—2Z)) = 0, whereZ is any zero-dimensional scheme\ofvith
degZ) = 6. This is true by the semistablity &f ( [8, Theorem 4.1]), because
6(n— 1) < (n+1)%, Ny has degree délg~y = (n+1)? and rankn— 1.

Then we continue the proof of the theorem as in the proof offlgorem 1]. O

Proof of Theorem 1.21ntil step (d) we assumg=d’ andg=¢. Wheng=0itis
sufficient to do the cade= 0, which is [7, Theorem 1.6]. Assunge> 0. We order
the pointsps, ..., pp Of B. For any integet let I (t) denote the set of alt C Y such
thatt(E) =t. Fix a generalS,,...,Sy) € F(n+2)". We haveh}(Ny(-2)) =0
for any degrean + 2 effective divisorZ of Y by the possible splitting types of the
normal bundles of smooth and non-degenerate rational syry22]). Thus for
eachi € {1,...,w} the generality of € I'(n+2) impliesb; ¢ S and thatS U {b; }
is in linear general position i®". Thus there is a unique rational normal curve
Ci C P" containingS UB;. We haveC;NCj =0for all i, j € {1,...,w} such that
i # jandC NY = § for all i by Lemma 2.6 and the generality (&,...,Sy).

(a) We first do the cade=w, d = a+ nwandg =w(n+1).

Claim 1: For general§, 1 <i <w, we haveb; ¢ C; for all j # i and the curve
E:=YUCiU---UGCyis nodal and withpa(E) = w(n+1).

Proof of Claim 1: SinceCin§ = § for all i, to prove thatt is nodal with
arithmetic genusv(n+ 1) it is sufficient to prove that eac@; meetsY quasi-
transversally . Assume the existenceiaf {1,...,w} such thatC; is tangent to
Y at somep € §. A monodromy argument gives th@} is tangent toy at all
points of§. Write § = JU {0} with §(J) = n+ 1 and take a generale Y. Since
Ju{q}uU{bi} isin linear general position, there is a unique rationahmarcurve
C>oJu{qtu{bi}. Sinceois a limit of the family {q}qcy, we may take alC;,

j #1, andC instead ofC,,...,C,. By the generality ofC4,...,C,, we see that
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C is tangent toy at all points ofJU {q}. Thus de¢CNCi) > 2(n+1). Since
2(n+1) > n+ 3, we getlC = C; for a generafj € Y, absurd.

(b) Assumew = w. Increasingb if necessary we may assurde= a+ b+
(n—1)w. TakeB' := {by,...,by} andF as in step (a). The cune is a smoothing
(with fixed AUB') of YUC, U - - - UC,, with eachC; a rational normal curve. Since
g > 0 andw = w, we havew > 0. By step (a)F is smooth, connected and non-
degenerate, d¢g) = a+wn, AUB' C F andh!(Ng(—A—B')) = 0. Take general
linesL;, b—nw-+ 1 <i < b containingb; and meetingd-.

Claim 2: We may takeF so that each.; meetsF quasi-transversally at a
unique pointand,; NL; =0 for alli # j.

Proof of Claim 2:Let R, b—nw+1 <i < b, be a general line containing
and intersectin@,,. Sinceb; # b;, any two meeting lines are coplanar &gspans
P", we haveR NR;j = 0for alli # j. SinceF is a smoothing o¥ UC1U---UCy, itis
sufficient to prove that for allRiNC,=0forallh<w, RNY =0, §(RNCy) =1,

R meets quasi-transversally,. Fixi. Let Top be the cone with vertely; andY as

a basis. For X h < w let T, be the cone with vertelg; and bas€y,. To get all the
statements it is sufficient to prove that in step (a) we mayG@ipaith the additional
property thaCy ¢ Uo<h<wTw. Assume that this is false and tafke {0,...,w—1}
such thaC,, C Tj,. SinceC,, contains a general point &,_;, varyingC,, we see
thatCy_1 C Tn. Taking the firstw (for some data) for which this occurs we get
h=w-—1. Assume eithew > 2 or thatY is a rational normal curve. With these
assumptiondy,_1 is a degree cone which is a linear projection from one point of
P of a degrean coneT c P! over a rational normal curve & and the linear
projectionn : T — T,_1 is injective and an isomorphism outside the vertexX of
With the notation of the proof of Lemma 213is the image of the complete linear
system|Og, (h+nf)| on the Hirzebruch surfacE, andC,_1, Cy are isomorphic
linear projections of two elements, A € |Og,(h+nf)|. SinceCy_1UCy is nodal
andn is injective, we get(Cy_1NCy) = degA1 NA2) = Og,(h+nf)- O (h+
nf) = n, a contradiction. Now assunve= 1 and dedY) > n. We see thaly is
the cone with bas€; and vertexy;. ThusTg is an injective linear projection of the
degreen+ 1 coneT C P! just described. Since d@g) > nandY C Ty, we see
thatY is an isomorphic linear projection of a curizec |Og, (xh-+bf)| with x > 2
andb > xb. We get de¢Y NC) > O, (xh+bf)-Og,(h+nf)=b>2n>n+2,a
contradiction.

Applying d —a— nw times Lemma 2.1 we gédt'(Ng(—A — B)) = 0, where
G=FULp_wi1U---ULp. By Lemmas 2.1 and 2.2 we may defofato a smooth
curve in a family of curves containiryuB. Apply the semicontinuity theorem for
cohomology.

(c) Assumew # w. Thusw = w+ 1. Take a smootl as in step (a) (hence
degF)=a+nw, pa(F) =w(n+1)andF > AU{b,...,by}). Firstassumé <w.
Increasing if necessatywe may assumb = w. TakeE as in step (a) containing
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by,...,byw. SetE” := FuUD, whereD is a general rational curve containing a
general subset df with cardinalityg— (n+ 1)w+ 1. As in Claim 1 we get that
$#(FND)=g— (n+1)w+ 1 andF’ is nodal. Asin Lemmas 2.1 and 2.2 we $€e
is smoothable in a family of curves Bf' containingAUB. Now assumé > w. By
assumption we hawé> nw +a, (n+1)w < g< (n+1)w andb—w <d—a—nw.
Increasing if necessatywe may assumd = a+b+ (n—1)w'. As in step (a) we
take F UC with C rational normal curve oP", 4(CNE)=g— (n+1)w+1 and
byi1 € C. SetB :={by,...,bys1}. Asin step (a) the curv& UC is nodal, of
degreea+nw, pa(FUC) =g, FUC D AUB', hY(Ng c(—A—B')) =0 andF UC
is smoothable in a family of curves containidgJB’. Call F’ one such smooth
curve. Then as in step (b) we atbd- w general linesR;, W +1 < i < b with
b € R andR; intersectingF’. We conclude as in step (b) usifg instead of the
curveF used in step (b).

(d) Assume(d,g) # (d',d’). Apply Lemma 2.9 withS:= AUB. O

Proof of Theorem 1.3Setw:=[g/2|. Write S=SUS; ---USyUAWith §(S) =n
for 1<i<w, §(S) =nif gis eveni(S) =n+1if gis odd,SNS; = 0 for all
i # j, andg(A) = d — nw— ().

(a) Assumeyis even andl = n+ng/2. LetCy C P" be arational normal curve
such thalConH = & (it exists, because any two subsetd-bivith cardinalityn
spanningH are projectively equivalent). Ford i <w letC; be a general rational
normal curve ofP" containing§ and with(C; NCi_1) = 3. As in the proof of
Theorem 1.2 we see thit:= U} ;C; is a connected nodal curve of degetand
genusy

(b) Assumeg is odd andd = n+1+n(g—1)/2. In this case we start taking
asCy a smooth and linearly normal elliptic curve such tGaghH = & (it exists,
because any two subsetstéfwith cardinalityn+ 1 in linear general position are
projectively equivalent). Then we continue as in the prdofteeorem 1.2.

(c) Assume eitheg is even andd > n+ng/2 orgis odd andd > n+ 1+
n(g—1)/2, i.e. assumé # 0. TakeE :=CoUC;U---UCy as in step (a) or as
in step (b), respectively. Order the poirgs,..., p;, z= £(A), of A. As in Claim
2 in the proof of Theorem 1.2 take the union®fandzlinesL,,...,L, with L; a
general line containing; and intersectin@,,.

Note that ifX NH = Swe haveNy (—S) = Nx(—1). Hence the proof of Theorem
1.4 (or [4, Theorem 1]) givel!(Ny(—S)) = 0. O

Remark3.1 For alln> 8, g > 0 even (resp.g > 0 odd) andd > (n—3)g/2+
n+3 (resp.d > (g—1)/2+n+4) [3, Theorem 1] (resp. Theorem 1.4) there is a
smooth, connected and non-degenerate cXreeP" with degreed, genusg and
h'(Nx(—1)) = 0. The lower bounds fad arising in these theorems just come from
their proofs (a game with linearly normal elliptic curveglaational normal curves
possibly in lower dimensional linear subspaces).
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