PROJECTIVE CURVES WITH NICE NORMAL BUNDLES AND CONTAINING A PRESCRIBED SUBSET OF A HYPERPLANE

EDOARDO BALLICO

Abstract

Fix a hyperplane $H \subset \mathbb{P}^{n}, n>3$, and a finite set $S \subset H$. We give conditions on the integers d, g and $\sharp(S)$ such that there exists a smooth and connected curve $X \subset \mathbb{P}^{n}$ with $\operatorname{deg}(X)=d, p_{a}(X)=g$ and $S \subset X \cap H$. When $d=\sharp(S)$ we may take g up to order $2 d / n, d \gg 0$, when S is in linear general position. We also prove the existence of X with $h^{1}\left(N_{X}(-1)\right)=0$ if $n \geq 8, g$ is odd and $2 d \geq(n-3) g+n+11$.

1. INTRODUCTION

Let $X \subset \mathbb{P}^{n}$ be a smooth, connected and non-degenerate curve. Fix a hyperplane $H \subset \mathbb{P}^{n}$. Set $d:=\operatorname{deg}(X)$ and $g:=p_{a}(X)$. Let N_{X} denote the normal bundle of X in \mathbb{P}^{n}. If $h^{1}\left(N_{X}\right)=0$ the Hilbert scheme $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ of \mathbb{P}^{n} is smooth at $[X]$. Let Γ be the unique irreducible component of $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ containing $[X]$. Fix a hyperplane $H \subset \mathbb{P}^{n}$. It is natural to ask the following question.

Question 1.1. Fix a set $S \subset H$ such that $\sharp(S) \leq d$. Is there some $W \in \Gamma$ such that $S \subset W \cap H$ and no irreducible component of W is contained in H ? Is it possible to find an irreducible W ? A smooth W ?

There is an obvious necessary condition if $\sharp(S) \geq d-n+3$: the linear span of S in H must have codimension at most $d-\sharp(S)$ in H. If this condition is satisfied and $g=0$ the answer is yes (with W a smooth rational curve), even for certain zero-dimensional schemes ([7, Theorem 1.6]). We would like to raise similar questions in a range of d, g, n for which there are no curves with $h^{1}\left(N_{X}\right)=0$ (although all the results proved in this paper are in the range when there are such curves), because when $n>3$ if $h^{1}\left(N_{X}\right)=0 g$ has a linear upper bound in terms of d, while Castelnuovo's upper bound for the genus of curves in \mathbb{P}^{n} is quadratic in d ($[11$, Theorem 3.7]).

Question 1.1 is natural, but we also had in mind a technical motivation. In many papers (e.g. in [6]) we needed to add a curve $E \subset H$ such that $X \cup E$ has certain

[^0]properties. For instance, we need to add a line E such that $X \cup E$ is nodal and $p_{a}(X \cup E)=p_{a}(X)+2$, i.e. we need X such that $X \cap H$ has 3 collinear points, say $\left\{p_{1}, p_{2}, p_{3}\right\}$, while $X \cap H \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ has the Hilbert function of a general union of $\operatorname{deg}(X)-3$ points of H.

Assume that all $X \in \Gamma$ are smooth and non-degenerate curves of degree d and genus g. Fix an integer $\sigma>0$ such that $\sigma \leq d$ and consider sets $S \subset H$ with $\sharp(S)=\sigma$. We explain in Remark 2.3 the well-known fact that to answer Question 1.1 (as in Theorem 1.2 below) not just for a single set S with cardinality σ but for a set Δ of subsets of H with cardinality σ containing the general unions of σ points of H (maybe a different $W \in \Gamma$ for a different $S \in \Delta$) we also need a very strong numerical assumption. We recall that a zero-dimensional scheme $Z \subset \mathbb{P}^{r}$ is said to be curvilinear if its connected components have Zariski tangent spaces of dimension either 0 or 1 . The scheme Z is curvilinear if and only if it is contained in the smooth locus of a curve. Any zero-dimensional subscheme of a smooth curve is curvilinear. Thus to find a smooth W such that $W \cap H \supseteq S$ we must require that S is curvilinear. In this case we extend [7, Theorem 1.6] to the case $g>0$ (under certain assumptions on $d, g, n)$. We prove the following result.

Theorem 1.2. Fix integers $n \geq 3, g \geq g^{\prime} \geq 0, b \geq 0, a \geq n, d \geq d^{\prime}$. Set $s:=\lfloor(d-$ $\left.\left.d^{\prime}\right) / 2\right\rfloor, w:=\lfloor g /(n+1)\rfloor$ and $w^{\prime}:=\lceil g /(n+1)\rceil$. Assume $d^{\prime} \geq a+n w^{\prime}, b-w^{\prime} \leq$ $d^{\prime}-a-n w^{\prime}$ and $g-g^{\prime} \leq 2 s+d-d^{\prime}$. Fix a hyperplane $H \subset \mathbb{P}^{n}$, a curvilinear zerodimensional scheme $A \subset H$ and a finite set $B \subset H$ such that $A \cap B=\emptyset, \operatorname{deg}(A)=a$, $\sharp(B)=b, A$ spans H. Then there is a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^{n}$ such that $A \cup B \subset X, \operatorname{deg}(X)=d, p_{a}(X)=g$ and $h^{1}\left(N_{X}(-A-B)\right)=0$.

By a theorem of Kleppe ([20, Theorem 1.8], [25]) the vanishing of the integer $h^{1}\left(N_{X}(-A-B)\right)$ is important for the interpolation problem for general deformations of $A \cup B$ in H (or in \mathbb{P}^{n}).

Then we prove a stronger result ($A=\emptyset$, but $b=d$) under a geometrical assumption on the set $X \cap H$. A finite set $S \subset H$ is said to be in linear general position if any $S^{\prime} \subseteq S$ spans a linear space of dimension $\min \left\{\sharp\left(S^{\prime}\right), n-1\right\}$. If $\sharp(S) \leq n S$ is in linear general position if and only if it is linearly independent, while if $\sharp(S) \geq n S$ is in linear general position if and only if any subset of X with cardinality n spans H. For a set $S \subset H$ to be in linear general position is an easy to check property with strong geometric consequences ([11, §7.12], [21, Lemma 1.1 and Corollary 1.6]). These sets are the main actors of [9]. We prove the following result.

Theorem 1.3. Fix integers n, d and g such that $n \geq 3, g \geq 0$ and $d \geq n+g n / 2$ (case g even) or $d \geq n+1+n(g-1) / 2$ (case g odd). Let $H \subset \mathbb{P}^{n}$ be a hyperplane. Fix $S \subset H$ such that $\sharp(S)=d$ and S is in linear general position. Then there exists a smooth and connected curve $X \subset \mathbb{P}^{n}$ such that $\operatorname{deg}(X)=d, p_{a}(X)=g, S=X \cap H$ and $h^{1}\left(N_{X}\right)=0$.

Since points in Uniform Position in the sense of [11, Chapter 3] are in linear general position, Theorem 1.3 may be applied to them.

The cases $n=3$ and $n>3$ are quite different, even taking a general subset of H as S ($[10,20]$; see Remark 2.2 for more details). For $n=3$ Theorem 1.3 is known when $2 g \leq d-2$ ([7, Theorem 2.1]).

Now we describe the third result of this paper. Assume $h^{1}\left(N_{X}(-1)\right)=0$. Since $0=h^{1}\left(N_{X}(-1)\right) \geq h^{1}\left(N_{X}\right)$, the Hilbert scheme $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ of \mathbb{P}^{n} is smooth at $[X]$. Let Γ be the unique irreducible component of $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ containing $[X]$. The assumption $h^{1}\left(N_{X}(-1)\right)=0$ implies that for a general subset S of H with cardinality d there is $C \in \Gamma$ such that $C \cap H=S$. There is no information on how general the set S must be for the existence of some C. Nevertheless, we think that a statement for general $S \subset H$ is very interesting and many papers proved it under some restrictions on the triple $(n, d, g)([1,2,4,5,10,15-17,19,20,24,25])$. The cases $n=3$ and $n>3$ are very different (compare [10,20] and [25, Theorem 5]). The following theorem is the third result of this paper.

Theorem 1.4. For all integers $n \geq 8, g \geq 3$ and $2 d \geq(n-3) g+n+11$, with g odd there is a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^{n}$ such that $\operatorname{deg}(X)=d, p_{a}(X)=g, h^{1}\left(N_{X}(-1)\right)=0$ and X has general moduli.

We put the restriction " g odd " in the statement of Theorem 1.4, because for g even a statement similar to Theorem 1.4 holds [4, Theorem 1]. The last assertion of Theorem 1.4 means that the isomorphism classes of the curves X with $h^{1}\left(N_{X}(-1)\right)=0$ produced in the proof of the theorem cover a non-empty open subset of the moduli space \mathcal{M}_{g}. The proof covers the case $g=1$, where however a stronger result is known and used in the proof of Theorem 1.4 ([8, Theorem 4.1]).

Theorem 1.4 (and the corresponding statement for even g proved in [4]) are almost optimal, because Ch . Walter proved that $2 d \geq(n-3) g+4$ if any such X exists ($[25$, Theorem 5]). There are well-known triples (d, g, n) with $2 d \geq(n-$ 3) $g+4, n \geq 4$, and without curves X with $h^{1}\left(N_{X}(-1)\right)=0$, e.g. general canonical curves $C \subset \mathbb{P}^{4}$ of degree 8 and genus 5 , which are the complete intersection of 3 quadric hypersurfaces and so $h^{1}\left(N_{C}(-1)\right)=3$. For $n=4$ all exceptional cases in the Brill-Noether range are classified and their geometry is explained in [19, Corollary 2]. We do not know how much Walter's bound $2 d \geq(n-3) g+4$ is optimal for $n>3$. In the same paper he pointed out not only the quoted example of the canonical curves of \mathbb{P}^{4}, but that for very low g there are no integral and non-degenerate curves $C \subset \mathbb{P}^{n}$ with degree d, arithmetic genus g and $2 d$ very near to $(n-3) g+4$ by Castelnuovo's upper bound for the genus ($[11$, Theorems 3.6, $3.11,315]$) and that for almost minimal degrees the existing curves are contained in many quadric hypersurfaces and hence their general hyperplane section has a nongeneral Hilbert function. For a fixed n only finitely many d, g are excluded for this reason and so we wonder if the following is true.

Question 1.5. Fix an integer $n \geq 4$. Is there an integer $a(n) \geq 4$ such that for all integers d with $2 d \geq(n-3) g+a(n)$ there is a smooth and non-degenerate curve $X \subset \mathbb{P}^{n}$ such that $\operatorname{deg}(X)=d, p_{a}(X)=g$ and $h^{1}\left(N_{X}(-1)\right)=0$?

Fix integers $n \geq 4$ and $0<t<d$. Let $u(n, t, d) \in \mathbb{Z}$ be the minimum of all integers $(n+1) d-(n-3) g-(n-1) t$, where g has the following property. Let $S \subset H$ be any subset with $\sharp(S)=\sigma$ and S in linear general position. Then there exists a smooth, connected and non-degenerate $X \subset \mathbb{P}^{n}$ such that X is transversal to $H, X \cap H \supseteq S, \operatorname{deg}(X)=d$ and $p_{a}(X)=g$. We raise the following question (we have no idea on how to solve it).
Question 1.6. Give upper and/lower bounds for the function $u(n, t, d)$.
In Remark 2.3 we explain why to get a very strong and very interesting result for all t (even restricting to general subsets of H) it is not sufficient to take as $u(n, t, d)$ a function depending only on n.

For all $n \geq 4$ even the condition $h^{1}\left(N_{X}\right)=0$ gives a linear upper bound for the genus of X in term of the degree of X. We wonder if with different techniques one can control the Hilbert function of a general hyperplane section outside this range. Fix an integer $n \geq 4$. For every integer $d \geq n$ let $e_{n}(d)$ (resp. $e_{n}^{\prime}(d)$) be the maximal integer γ such that for all integers g with $0 \leq g \leq \gamma$ there is a smooth (resp. integral) non-degenerate curve $X \subset \mathbb{P}^{n}$ such that a general hyperplane section of X has the Hilbert function of a general subset of \mathbb{P}^{n-1} with cardinality d, i.e. $h^{0}\left(H, I_{X \cap H, H}(t)\right)=\max \left\{0,\binom{n+t-1}{n-1}-d\right\}$ for all $t \in \mathbb{N}$. For every integer $d \geq n$ let $f_{n}(d)$ (resp. $f_{n}^{\prime}(d)$) be the maximal integer g such that there is a smooth (resp. integral) non-degenerate curve $X \subset \mathbb{P}^{n}$ such that a general hyperplane section of X has the Hilbert function of a general subset of \mathbb{P}^{n-1} with cardinality d.
Question 1.7. Fix an integer $n \geq 4$. Is $e_{n}(d)=e_{n}^{\prime}(d)$ for all (or almost all) d ?

$$
\begin{aligned}
& \text { Is } \lim _{d \rightarrow+\infty} \frac{e_{n}(d)}{d}=\lim _{d \rightarrow+\infty} \frac{e_{n}^{\prime}(d)}{d}=+\infty ? \\
& \text { Is } \lim _{d \rightarrow+\infty} \frac{f_{n}(d)}{e_{n}(d)}=\lim _{d \rightarrow+\infty} \frac{f_{n}^{\prime}(d)}{e_{n}^{\prime}(d)}=1 ?
\end{aligned}
$$

Theorems 1.2 and 1.3 concern non-general subsets of a hyperplane $H \subset \mathbb{P}^{n}$, $n \geq 4$. We think that the bounds obtained in this paper are far from optimal.

We thank the referee for several important comments and suggestions.

2. Remarks and Lemmas

Remark 2.1. Fix a reduced and connected curve $Y \subset \mathbb{P}^{n}$. Set $d:=\operatorname{deg}(Y)$. Let $H \subset \mathbb{P}^{n}$ be a hyperplane containing no irreducible component of Y. Thus $Y \cap H$ is a zero-dimensional scheme and $\operatorname{deg}(Y \cap H)=d$. Since Y is reduced and connected, we have $h^{1}\left(I_{Y}\right)=0$. The exact sequence

$$
0 \rightarrow I_{Y} \rightarrow I_{Y}(1) \rightarrow I_{Y \cap H, H}(1) \rightarrow 0
$$

shows that the zero-dimensional scheme $Y \cap H$ spans H. For any zero-dimensional scheme $E \subset H$ let $\langle E\rangle$ denote its linear span, i.e. the intersection of all hyperplanes of H containing E, with the convention $\langle E\rangle=H$ if there is no such hyperplane. If $F \subset E$ we have $\operatorname{dim}\langle E\rangle \leq \operatorname{dim}\langle F\rangle+\operatorname{deg}(E)-\operatorname{deg}(F)$. Thus $\operatorname{dim}\langle S\rangle \geq n-1+$ $\operatorname{deg}(S)-d$ for any zero-dimensional scheme $S \subseteq Y \cap H$.

Remark 2.2. Let $H \subset \mathbb{P}^{n}$ be a hyperplane. Let Γ be an irreducible component of the Hilbert scheme $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ of \mathbb{P}^{n} whose general element is a smooth and nondegenerate curve of degree d and genus g with $h^{1}\left(N_{X}\right)=0$. Since $h^{1}\left(N_{X}\right)=0$, we have $\operatorname{dim} \Gamma=(n+1) d+(n-3)(g-1)$. Hence if $(n+1) d+(n-3)(1-g)<$ $d(n-1)$ for a general $S \subset H$ with $\sharp(S)=d$ there is no $X \in \Gamma$ such that $S=X \cap H$. If $n>3$, this condition gives a linear upper bound for the maximum genus allowable. If $0<t<d$ and $(n+1) d+(n-3)(1-g)<t(n-1)$, then the same holds for the inclusion in S of t general points of H. For $n=3$ the upper bound for the genus for curves X satisfying $h^{1}\left(N_{X}(-2)\right)=0\left(\right.$ or $h^{1}\left(N_{X}(-1)\right)=0$ or $\left.h^{1}\left(N_{X}\right)=0\right)$ is of order $d^{3 / 2}([10,20])$.

Lemma 2.1. Let $Y \subset \mathbb{P}^{n}$ be a smooth and connected curve and $Z \subset Y$ a zerodimensional scheme. Assume $h^{1}\left(N_{Y}(-Z)\right)=0$. Fix $o \in \mathbb{P}^{n} \backslash Y$ and a line $L \subset \mathbb{P}^{n}$ such that $o \in L, \sharp(Y \cap L)=1, L \cap Z=\emptyset$ and L is not tangent to Y. Then $Y \cup L$ is smoothable in a family of curves containing $Z \cup\{o\}$ and $h^{1}\left(N_{Y \cup L}(-Z-o)\right)=0$.

Proof. Set $\{q\}:=Y \cap L$. Since $N_{L}(-o) \cong O_{L}, L$ intersects quasi-transversally Y, $\sharp(Y \cap L)=1, o \notin Y$, and $L \cap Z=\emptyset, N_{Y \cup L}(-Z-o)_{\mid Y}$ is obtained from $N_{Y}(-Z)$ making a positive elementary transformation at q and $N_{Y \cup L}(-Z-o)_{\mid L}$ is obtained from $N_{L}(-o)$ making a positive elementary transformation at q ([13, §2], [23]). Thus $h^{1}\left(N_{Y \cup L}(-Z-o)_{\mid Y}\right)=0$ and $N_{Y \cup L}(-Z-o)_{\mid L}$ is a direct sum of one line bundle of degree 1 and $n-2$ line bundles of degree 0 . Thus $h^{1}\left(N_{Y \cup L}(-Z-o)_{\mid L}\right)=0$ and the restriction map $H^{0}\left(N_{Y \cup L}(-Z-o)_{\mid L}\right) \rightarrow H^{0}\left(N_{Y \cup L}(-Z-o)_{\mid\{q\}}\right)$ is surjective. The Mayer-Vietoris exact sequence

$$
\begin{align*}
& 0 \rightarrow N_{Y \cup L}(-Z-o) \rightarrow N_{Y \cup L}(-Z-o)_{\mid Y} \oplus N_{Y \cup L}(-Z-o)_{\mid L} \\
& \quad \rightarrow N_{Y \cup L}(-Z-o)_{\mid Y \cap L} \rightarrow 0 \tag{2.1}
\end{align*}
$$

gives $h^{1}\left(N_{Y \cup L}(-Z-o)\right)=0$. Set $d:=\operatorname{deg}(Y), g:=p_{a}(Y)$ and $z:=\operatorname{deg}(Z)$. Since $h^{1}\left(N_{Y}(-Z)\right)=0$, the family $\mathcal{B} \subset \operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ formed by all smooth curves containing Z is smooth and of dimension $(n+1) d+(3-n)(g-1)-z(n-1)$ at $[Y]$ ([20]). Let \mathcal{A} denote the closed subset of $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ formed by the nodal curves containing $Z \cup\{o\}$. Since $h^{1}\left(N_{Y \cup L}(-Z-o)\right)=0, \operatorname{deg}(Y \cup L)=d+1, p_{a}(Y \cup L)=g$ and $\operatorname{deg}(Z \cup\{o\})=z+1, \mathcal{A}$ is smooth and of dimension $\operatorname{dim}_{[Y]} \mathcal{B}+2$ at $Y \cup L$. The singular elements of \mathcal{A} near $Y \cup L$ are formed by lines through o meeting a curve near Y. Such a family of singular curves has dimension $\operatorname{dim}_{[Y]} \mathcal{B}+1$ and hence it does not contain a neighborhood of $[Y \cup L]$ in \mathcal{A}.

Lemma 2.2. Let $Y \subset \mathbb{P}^{n}, n \geq 3$, be a smooth and connected curve and $Z \subset Y$ a zerodimensional scheme. Assume $h^{1}\left(N_{Y}(-Z)\right)=0$. Fix non-negative integers x, y such that $0 \leq x+y \leq n+3$ and $y \leq n$. Assume the existence of a rational normal curve $L \subset \mathbb{P}^{n}$ such that L intersects quasi-transversally $Y, L \cap Z=\emptyset$ and $\sharp(Y \cap L)=x$. Fix a set $E \subset L \backslash Y \cap L$ such that $\sharp(E)=y$. Then $h^{1}\left(N_{Y \cup L}(-Z-E)\right)=0$ and $Y \cup L$ is smoothable in a family of curves of \mathbb{P}^{n} containing $Z \cup E$.

Proof. The normal bundle N_{L} of Y in \mathbb{P}^{n} is a direct sum of $n-1$ line bundles of degree $n+2$. By assumption the curve $Y \cup L$ is nodal. If $x=0$, then $Y \cup L$ is smooth with two connected components and the lemma is trivial. Thus we may assume $x>$ 0 . By [13] or [23] the restriction $N_{Y \cup L \mid Y}$ (resp. $N_{Y \cup L \mid L}$) to Y (resp. L) of the normal bundle $N_{Y \cup L}$ of $Y \cup L$ is obtained from N_{Y} (resp. N_{L}) making x positive elementary transformations, one for each point of $Y \cap L$. Thus $h^{1}\left(N_{Y \cup L \mid Y}\right)=h^{1}\left(N_{Y \cup L \mid L}\right)=0$ and the restriction map $H^{0}\left(N_{Y \cup L \mid L}\right) \rightarrow H^{0}\left(N_{Y \cup L \mid E}\right)$ is surjective. The exact sequence (2.1) with E instead of o gives $h^{1}\left(N_{Y \cup L}(-Z-E)\right)=0$.

Now we prove that $Y \cup L$ is smoothable in a family of curves of \mathbb{P}^{n} containing $Z \cup E$. Set $z:=\operatorname{deg}(Z), d:=\operatorname{deg}(Y)$ and $g:=p_{a}(Y)$. Since $h^{1}\left(N_{Y}(-Z)\right)=0$, the only irreducible component, Γ, of the set of all curves near Y containing Z has dimension $(n+1) d+(3-n)(1-g)-(n-1) z([20$, Theorem 1.8]). Let \mathcal{A} denote the closed subset of $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ formed by the nodal curves containing $Z \cup E$. Since $h^{1}\left(N_{Y \cup L}(-Z-E)\right)=0, \operatorname{deg}(Y \cup L)=d+n, p_{a}(Y \cup L)=g+x-1$ and $\operatorname{deg}(Z \cup$ $\{o\})=z+y, \mathcal{A}$ is smooth and of dimension $\operatorname{dim} \Gamma+n(n+1)+(3-n)(x-1)-$ $(n-1) y$ at $Y \cup L\left(\left[20\right.\right.$, Theorem 1.8]). For any integer t such that $1 \leq t \leq x$ let \mathcal{A}_{t} denote the set of all $X \in \mathcal{A}$ with exactly t nodes. Near $[Y \cup L]$ all elements of \mathcal{A}_{t} are obtained fixing a subset $S \subset Y \cap L$ such that $\sharp(S)=t$, smoothing all nodes in $Y \cap L \backslash S$ and considering only deformations of $Y \cup L$ equisingular at each point of S. To conclude the proof of the lemma it is sufficient to prove that $\operatorname{dim}_{[Y \cup L]} \mathcal{A}_{t}<$ $\operatorname{dim}_{[Y \cup L]} \mathcal{A}$ for all $t=1, \ldots, x$. The set of all rational normal curves containing E has dimension $(n-1)(n+3-y)$. A dimensional count gives that $\operatorname{dim}_{[Y \cup L]} \mathcal{A}_{x}=$ $\operatorname{dim}_{[Y \cup L]} \mathcal{A}-x$. Thus a general element of \mathcal{A} near $[Y \cup L]$ is irreducible. Fix an integer t such that $1 \leq t<x$. Fix any $q \in Y \cap L$ and call $\mathcal{A}(q)$ the set of all $A \in \mathcal{A}$ with a node near q. Since $h^{1}\left(N_{L}(-E-q)\right)=0$, we set that locally around $[Y \cup L]$ in the space \mathcal{A} smooth at q the set $\mathcal{A}(q)$ is given by a single local equation. Since $\operatorname{dim}_{[Y \cup L]} \mathcal{A}_{x}=\operatorname{dim}_{[Y \cup L]} \mathcal{A}-x$, all these equations are independent. We only need that all these equations are non-trivial, so that $\operatorname{dim}_{[Y \cup L]} \mathcal{A}_{t}<\operatorname{dim}_{[Y \cup L]} \mathcal{A}$ for $t>0$.

Lemma 2.3. Let $H \subset \mathbb{P}^{n}, n \geq 2$, be a hyperplane. Fix $o \in \mathbb{P}^{n} \backslash H$ and a rational normal curve $D \subseteq H$. Let $\ell_{o}: \mathbb{P}^{n} \backslash\{o\} \rightarrow H$ denote the linear projection from o. For any integral curve $Y \subset X, Y$ not a line, such that o is a smooth point of Y let $\ell(Y)$ denote the closure of $\ell_{o}(Y \backslash\{o\})$ in H. Let Δ denote the set of all rational normal curves $Y \subset \mathbb{P}^{n}$ such that $o \in Y$ and $\ell(Y)=D$. Then $\Delta \neq 0$ and Δ is a non-empty irreducible algebraic variety of dimension $n+2$.

Proof. Note that in the case $n=2$ we have $D=H$ and so Δ is the set of all smooth conics of \mathbb{P}^{2} containing o. Thus the lemma is trivial when $n=2$ and so we may assume $n>2$.

Let F_{n-1} denote the Hirzebruch surface with a section, h, of its ruling with selfintersection $h^{2}=1-n([12, \S \mathrm{~V} .2])$. We take h and a fiber f of the ruling π of F_{n-1} as a basis of $\operatorname{Pic}\left(F_{n-1}\right) \cong \mathbb{Z}^{2}$. We have $h \cdot(h+(n-1) f)=0$ and $\pi_{*}\left(O_{F_{n-1}}(h)\right) \cong$ $O_{\mathbb{P}^{1}} \oplus O_{\mathbb{P}^{1}}(1-n)$. Thus the projection formula gives $h^{0}\left(O_{F_{n-1}}(h+x f)\right)=2 x+3-n$ for all $x \geq n-2$. We get that the complete linear system $\left|O_{F_{n-1}}(h+(n-1) f)\right|$ induces a morphism $\phi: F_{n-1} \rightarrow \mathbb{P}^{n}$ which is an embedding outside $h, \phi(h)$ is a point, o^{\prime}, and $\phi\left(F_{n-1}\right)$ is a degree $n-1$ cone with vertex o^{\prime} over a rational normal curve of a hyperplane $H^{\prime} \subset \mathbb{P}^{n}$ such that $o^{\prime} \notin H^{\prime}$. Up to a projective transformation we may assume $o^{\prime}=o$ and $H^{\prime}=H$. Fixing D and o is equivalent to fixing the cone $\phi\left(F_{n-1}\right)$ (here we use that $n>2$). The irreducible elements of $\left|O_{F_{n-1}}(h+(n-1) f)\right|$ are projectively equivalent to D. Since $(h+n f) \cdot(h+(n-1) f)=n$, we get that Δ is the set of all irreducible (or equivalently, all smooth) elements of $\left|O_{F_{n-1}}(h+n f)\right|$. Thus $\Delta \neq \emptyset, \Delta$ is irreducible and $\operatorname{dim} \Delta=n+2$.

Lemma 2.4. Take o, D, Δ as in the statement of Lemma 2.3 and the linear projection ℓ_{0} and the cone $\phi\left(F_{n-1}\right)$ as in the proof of Lemma 2.3. Fix a finite set $B \subset \phi\left(F_{n-1}\right) \backslash\{o\}$ such that $\sharp(B)=n+2$, no two points of B are contained in the same line of $\phi\left(F_{n-1}\right)$ and B is in linear general position. Then there exists $Y \in \Delta$ such that $B \subset Y$.

Proof. Since $o \notin B$, there is a unique $E \subset F_{n-1} \backslash h$ such that $\phi(E)=B$. Since $\operatorname{dim}\left|O_{F_{n-1}}(h+n f)\right|=n+2$, there is $C \in\left|I_{E}(h+n f)\right|$. We need to check that C is smooth and irreducible (indeed it is even unique). This is true, because the singular elements of $\left|O_{F_{n-1}}(h+n f)\right|$ have the following description. One type are the reducible curves of the form $F \cup Y^{\prime}$ with Y^{\prime} a smooth element of $\mid O_{F_{n-1}}(h+(n-$ 1) $f) \mid$ and $F \in\left|O_{F_{n-1}}(f)\right|$. Since $\phi(F)$ is a line of $\phi\left(F_{n-1}\right)$, it contains at most one element of B. Since $\phi\left(Y^{\prime}\right)$ is a hyperplane section of $\phi\left(F_{n-1}\right)$, it contains at most n elements of B. Thus $F \cup Y^{\prime} \nsupseteq B$.

The other type of singular elements of $\left|O_{F_{n-1}}(h+n f)\right|$ are of the form $h \cup G$ with $G \in\left|O_{F_{n-1}}(n f)\right|$. Since $\phi(h)=\{o\}$ and each line of $\phi\left(F_{n-1}\right)$ contains at most 1 element of B, at most finitely many $\phi(h \cup G)$ contain an element of B.
Lemma 2.5. Let $Y \subset \mathbb{P}^{r}, r \geq 2$, be an integral and non-degenerate curve. Assume that Y is not a rational normal curve. Let \mathcal{A} denote the set of all subsets $S \subset Y$ such that $\sharp(S)=r+3$ and S is in linear general position. For each $S \in \mathcal{A}$ let C_{S} denote the only rational normal curve of \mathbb{P}^{r} containing S. Set $\mathcal{B}:=\cap_{S \in \mathcal{A}} C_{S}$. Then $\mathcal{B}=\emptyset$.

Proof. The case $r=2$ is trivial, because every non-empty open subset of $\left|O_{\mathbb{P}^{2}}(2)\right|$ has no base points. Now assume $r \geq 3$ and that the lemma is true in \mathbb{P}^{r-1}. Since Y is integral and not a rational normal curve, we have $Y \nsubseteq \mathcal{B}$. Hence $o \notin \mathcal{B}$ for a general $o \in Y$. Let $\ell: \mathbb{P}^{r} \backslash\{o\} \rightarrow \mathbb{P}^{r-1}$ denote the linear projection from o. Let
$D \subset \mathbb{P}^{r}$ be the closure of $\ell\left(X \backslash\{o\}\right.$ in \mathbb{P}^{r-1}. If D is not a rational normal curve of \mathbb{P}^{r-1} we may use the inductive assumption. If D is a rational normal curve, then $\ell_{\mid X \backslash\{o\}}$ is not birational onto its image and this does not occur for a general $o \in Y$.

Lemma 2.6. Let $Y \subset \mathbb{P}^{r}, r \geq 3$, be an integral and non-degenerate curve. Fix $q \in \mathbb{P}^{r} \backslash Y$ and call \mathcal{A} the set of all subsets $S \subset Y$ such that $\sharp(S)=r+2$ and $S \cup\{q\}$ is in linear general position. For each $S \in \mathcal{A}$ let C_{S} denote the only rational normal curve of \mathbb{P}^{r} containing $S \cup\{q\}$. Set $\mathcal{B}:=\cap_{S \in \mathcal{A}} C_{S}$. Then $\mathcal{B}=\{q\}$.
Proof. Let $\ell: \mathbb{P}^{r} \backslash\{q\} \rightarrow \mathbb{P}^{r}$ denote the linear projection from q. If $\ell(Y)$ is not a rational normal curve we may apply Lemma 2.5 to $\ell(Y) \subset \mathbb{P}^{r-1}$. Now assume that D is a rational normal curve. Since o is a smooth point of Y, we have $\operatorname{deg}(Y)-1=$ $x \operatorname{deg}(D)$, where x is the degree of the rational map $Y \rightarrow D$ induced by $\ell_{\mid Y \backslash\{o\}}$. Since Y is not a rational normal curve, we get $x \geq 2$, i.e. $\ell_{\mid Y \backslash\{o\}}$ is not birational onto its image. This possibility may occur only for finitely many $o \in Y$, contradicting the generality of Y.

Lemma 2.7. Let $Y \subset \mathbb{P}^{n}, n \geq 2$, be an integral and non-degenerate curve. Fix a finite set $S \subset \mathbb{P}^{n}$ in linear general position and set $x:=\sharp(S \cap Y)$ and $y:=\sharp\left(S \cap\left(\mathbb{P}^{n} \backslash\right.\right.$ $Y)$). Assume $x+y \leq n+2$. If Y is a rational normal curve assume $y>0$. Let Γ denote the set of all $A \subset Y$ such that $\sharp(A)=n+3-x-y, A \cap S=\emptyset$ and $A \cup S$ is in linearly general position. For any $A \in \Gamma$ let C_{A} denote the unique rational normal curve of \mathbb{P}^{n} containing A. Then $\cap_{A \in \Gamma} C_{A}=S$.
Proof. Since Y is integral and spans \mathbb{P}^{n}, we have $\Gamma \neq \emptyset$. Increasing y if necessary we may assume $x+y=n+2$.
(a) Assume $n=2$. Any set $F \subset \mathbb{P}^{2}$ such that $\sharp(F)=4$ and no 3 of the points of F are collinear is the complete intersection of 2 smooth conics and a general $C \in\left|I_{F}(2)\right|$ is smooth and transversal to Y (note that in this case if $\operatorname{deg}(Y)>0$ we have $\sharp(Y \cap C)>4)$.
(b) Assume $n>2$ and that the lemma is true in \mathbb{P}^{n-1}.
(b1) Assume $x>0$. Fix $o \in S \cap Y$ and let $\ell_{o}: \mathbb{P}^{n} \backslash\{o\} \rightarrow \mathbb{P}^{n-1}$ denote the linear projection from o. Set $S^{\prime}:=\ell_{o}(S \backslash\{o\})$. Let $T \subset \mathbb{P}^{n-1}$ denote the closure of $\ell_{o}(Y \backslash\{o\})$ in \mathbb{P}^{n-1}. T is an integral and non-degenerate curve of \mathbb{P}^{n-1}. Since S is in linear general position, we have $\sharp\left(S^{\prime}\right)=n+1$ and S^{\prime} is in linearly general position. We have $\sharp\left(S^{\prime} \cap T\right)=x-1$ and $\sharp\left(S^{\prime} \cap\left(\mathbb{P}^{n-1} \backslash T\right)\right)=y=n+2-x$. Assume $\cap_{A \in \Gamma} C_{A} \neq S$ and fix $q \in \cap_{A \in \Gamma} C_{A} \backslash S$. Since $o \in S$ and $q \notin S$, the point $q^{\prime}=\ell_{o}(q)$ is well-defined.

First assume that either $y>0$ or that T is not a rational normal curve of \mathbb{P}^{n-1}. By the inductive assumption there is a rational normal curve $D \subset \mathbb{P}^{n-1}$ such that D contains S^{\prime} and a point $q^{\prime \prime}$ of $D \backslash S^{\prime}$. To apply Lemma 2.4 it is sufficient to observe that $q^{\prime \prime}$ is the image of a point of $Y \backslash\{o\}$.

Now assume $y=0$ and that T is a rational normal curve. In this case we assumed that Y is not a rational normal curve. In this case T_{0} is an injective (at least for $n \geq 4$) projection of a degree n cone $J \subset \mathbb{P}^{n+1}$. With the notation of the proof of Lemma we have $J=\phi\left(F_{n}\right)$, where $\phi: F_{n} \rightarrow \mathbb{P}^{n+1}$ is the morphism induced by the linear system $\left|O_{F_{n}}(h+n f)\right|$. Let $D \subset F_{n}$ be the curve such that Y is an injective linear projection of $\phi(D) \subset J$. Take positive integers a, b such that $D \in\left|O_{F_{n}}(a h+b f)\right|$ with $a>0$ and $b \geq n a$. Since $o \in Y, \phi(D)$ contains the vertex of J, i.e. $b>n a$. We have $x=n+2$ and to apply the inductive assumption we may take any other point of $S \cap Y$. We see that Y cannot be contained in $n+2$ cones like T_{0}, concluding the proof in this case.
(b2) Assume $x=0$. We have $y=n+2$. We fix $o \in S$, consider the linear projection from o and use the inductive assumption. Since $y \geq 2$ in \mathbb{P}^{n-1} we do not need to distinguish the case in which $\ell_{o}(Y)$ is a rational normal curve to apply the inductive assumption.
Lemma 2.8. Let $Y \subset \mathbb{P}^{n}, n \geq 3$, be an integral and non-degenerate curve. Assume that Y is not a rational normal curve. Let $E \subset Y$ be a general subset of Y with cardinality $n+3$. Let $D \subset \mathbb{P}^{n}$ be the only rational normal curve containing E. Then D meets Y quasi-transversally and $Y \cap D=E$.
Proof. Since Y is integral and non-degenerate and $E \subset Y$ is general, there is one and only one rational normal curve $D \subset Y$ containing E. Since E is general in Y, no point of E is a singular point of Y. Since Y is not a rational normal curve, $Z:=D \cap Y$ (scheme-theoretic intersection) is a zero-dimensional scheme. We need to prove that $Z=E$ as schemes. It is sufficient to prove that $Z=E$ for a specific set E (of course, in linearly general position, otherwise D is not defined). We use induction on n. Set $d:=\operatorname{deg}(Y)$. Fix $q \in E$ and let $\ell_{q}: \mathbb{P}^{n} \backslash\{q\} \rightarrow \mathbb{P}^{n-1}$ denote the linear projection from q. Set $G:=E \backslash\{q\}$. Since $E \subset Y$ is general, q is a general point of Y. Hence $\ell_{q \mid Y \backslash\{q\}}$ is birational onto its image whose closure, W, in \mathbb{P}^{n-1} is an integral and non degenerate curve of degree $d-1$. Since E is in linear general position, $A:=\ell_{q}(G)$ is a subset of \mathbb{P}^{n-1} with cardinality $n+2$ and in linear general position. Thus there is a unique rational normal curve $C \subset \mathbb{P}^{n-1}$ containing A. For a fixed q we may move G among the subsets of Y with cardinality $n+2$. Thus A is a general subset of W with cardinality $n+2$. Let $T \subset \mathbb{P}^{n}$ be the cone with vertex q and C as a basis. Since T is a cone and a minimal degree surface, its minimal desingularization $u: F_{n-1} \rightarrow T$ is the Hirzebruch surface with a minimal degree section, h, with self-intersection $1-n$. Set $G^{\prime}:=u^{-1}(G)$. Since q is a smooth point of $Y, \ell_{q \mid Y \backslash\{q\}}$ extends to a surjective and birational morphism $\mu: Y \rightarrow W$. Since (after fixing q) G is general in Y, we have $G=\mu^{-1}(A)$ and μ is a local isomorphism at each point of G. We will take as D a curve $u\left(D^{\prime}\right)$ with $D^{\prime} \in\left|O_{F_{n}}(h+n f)\right|$ and $G^{\prime} \subset D^{\prime}$. Since $h^{0}\left(O_{F_{n}}(h+n)\right)=(n+1)+2$, there is at least one such D^{\prime}. Every irreducible element of $X \in\left|O_{F_{n}}(h+n f)\right|$ is smooth and $u(X)$ is a rational normal curve containing q. Since G is in linearly general position, we
have $h^{0}\left(F_{n-1}, I_{G^{\prime}}(h+n f)\right)=1$ and the only element of $\left|I_{G^{\prime}}(h+n f)\right|$ is irreducible. Thus $D=u\left(D^{\prime}\right)$.
(a) First assume $n=3$. In this case C is a smooth conic. By Bertini's theorem a general conic is transversal to W. Since A is general in W, C may be seen (even after fixing W) as a general conic. Thus C is transversal to W. Since $G=\mu^{-1}(A)$ and $\mu: Y \rightarrow W$ is a local isomorphism at each point of Y, D and Y meet quasitransversally and $D \cap Y=E$.
(b) Now assume $n>3$ and that the lemma is true in \mathbb{P}^{n-1} for all non-degenerate curves, different from the rational normal curve of \mathbb{P}^{n-1}. Thus C and W intersect quasi-transversally and $C \cap W=A$ since $G=\mu^{-1}(A)$ and $\mu: Y \rightarrow W$ is a local isomorphism at each point of Y. Thus D and Y meet quasi-transversally and $D \cap Y=E$.
Lemma 2.9. Let $Y \subset \mathbb{P}^{n}, n \geq 3$, be a smooth, connected and non-degenerate curve. Set $d^{\prime}:=\operatorname{deg}(Y)$ and $g^{\prime}:=p_{a}(Y)$. Fix a finite set $S \subset X$ and integers $d \geq d^{\prime}, g \geq g^{\prime}$ and set $s:=\left\lfloor\left(d-d^{\prime}\right) / n\right\rfloor$. Assume $g-g^{\prime} \leq 2 s+d-d^{\prime}-$ sn and $h^{1}\left(N_{Y}(-S)\right)=0$; if $g=g^{\prime}+2 s$ and $d=d^{\prime}+s n$ assume that $d^{\prime} \neq n$. Then there exists a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^{n}$ such that $X \supset S, \operatorname{deg}(X)=d, p_{a}(X)=$ g and $h^{1}\left(N_{X}(-S)\right)=0$.
Proof. We may assume $(d, g) \neq\left(d^{\prime}, g^{\prime}\right)$, i.e. $d>d^{\prime}$. In steps (a), (b) and (c) we will silently use the following observation. Let $\pi: \Pi \rightarrow \mathbb{P}^{n}$ denote the blowing up of S. Let Y^{\prime} denote the strict transform of Y. Since Y is smooth at each point of S, π induces an isomorphism between Y^{\prime} and Y and this isomorphism induces an isomorphism between $N_{Y}(-S)$ and $N_{Y^{\prime}, \Pi}$. For any smooth curve $L \subset \mathbb{P}^{n}$ such that $L \cap S=\emptyset$ set $L^{\prime}:=\pi^{-1}(L)$. Since $S \cap L=\emptyset, \pi$ induces an isomorphism between Y^{\prime} and Y and this isomorphism induces an isomorphism between N_{L} and $N_{L^{\prime}, \Pi}$. If $L^{\prime} \cup Y^{\prime}$ is smoothable inside Π, then π shows the existence of a smoothing of $L \cup Y$ with a family of curves containing S. Since π induces an isomorphism between $N_{Y \cup L}(-S)$ and $N_{Y^{\prime} \cup L^{\prime}, \Pi}$, to prove that $h^{1}\left(N_{Y \cup L}(-S)\right)=0$ (and then to conclude by the semicontinuity theorem for cohomology) it is sufficient to prove that $h^{1}\left(N_{Y^{\prime} \cup L^{\prime}}\right)=0$.
(a) Assume $d=d^{\prime}+1$ and $g=g^{\prime}$. We take as X a smoothing with fixed S of $Y \cup L$, where L is a general line meeting Y at exactly one point. The proof that $Y \cup L$ is smoothable among curves fixing S is easier than the one of Lemma 2.1.
(b) Assume $d=d^{\prime}+1$ and $g=g^{\prime}+1$. We take as X a smoothing with fixed S of $Y \cup L$, where L is a general secant line of Y. The proof that $Y \cup L$ is smoothable among curves fixing S is similar (inside Π) to the proof of Lemma 2.1.
(c) Assume $d=d^{\prime}+n, g=g^{\prime}+n+2$ and $d^{\prime} \neq n$. Let $E \subset Y$ be a general subset with cardinality $n+3$. In particular E is in linear general position and $E \cap S=\emptyset$. Let $L \subset \mathbb{P}^{n}$ a general rational normal curve containing E. Since $d^{\prime} \neq n$ we have $L \neq Y$. As in the proof of Lemma 2.8 we see that $L \cap S=0, L \cap Y=E$ and that $Y \cup L$ is nodal. Set $X^{\prime}:=Y^{\prime} \cup L^{\prime}$ and $F:=\pi^{-1}(E)$. Consider the Mayer-Vietoris
exact sequence of the normal bundle of X^{\prime} in Π :

$$
\begin{equation*}
0 \rightarrow N_{X^{\prime}, \Pi} \rightarrow N_{X^{\prime}, \Pi \mid Y^{\prime}} \oplus N_{X^{\prime}, \Pi \mid L^{\prime}} \rightarrow N_{X^{\prime}, \Pi \mid F} \rightarrow 0 . \tag{2.2}
\end{equation*}
$$

The rank $n-1$ vector bundle $N_{X^{\prime}, \Pi \mid Y^{\prime}}\left(\right.$ resp. $N_{X^{\prime}, \Pi \mid L^{\prime}}$) on Y^{\prime} (resp. on L^{\prime}) is obtained from $N_{Y^{\prime}, \Pi}$ (resp. $N_{L^{\prime} \mid \Pi}$) making $n+3$ positive elementary transformations, one for each point of $F([?, \S 2])$. Since $h^{1}\left(N_{Y^{\prime}, \Pi}\right)=0$, we have $h^{1}\left(N_{X^{\prime}, \Pi \mid Y^{\prime}}\right)=0$. Since N_{L} is a direct sum of $n-1$ line bundles of degree $n+2$ and $L \cap S=\emptyset, N_{L^{\prime}, \Pi}$ is a direct sum of $n-1$ line bundles of degree $n+2$. Thus $N_{X^{\prime}, \Pi \mid L^{\prime}}$ is a direct sum of line bundles of degree at least $n+2$. Thus $h^{1}\left(N_{X^{\prime}, \Pi \mid L}\right)=0$ and $h^{1}\left(N_{X^{\prime}, \Pi \mid L}(-F)\right)=0$. Thus the restriction map $H^{0}\left(L^{\prime}, N_{X^{\prime}, \Pi \mid L^{\prime}} \rightarrow H^{0}\left(F, N_{X^{\prime}, \Pi \mid F}\right)\right.$ is surjective. From (2.2) we get $h^{1}\left(N_{X^{\prime}, \Pi}\right)=0$. To see that X^{\prime} is smoothable it is sufficient to observe that $h^{1}\left(N_{L^{\prime}, \Pi}(-F)\right)=0([13$, Th. 4.1 and Rem. 4.1.1]).
(d) Assume $d=d^{\prime}+n$ and $g=g++n+1$. Adapt the proof of part (c) to this easier case taking E with $\sharp(E)=n+2$.
(e) If $g-g^{\prime} \leq s+d-d^{\prime}$ we apply s times step (d), then $g-g^{\prime}-s(n+1)$ times step (b) and then $d-d^{\prime}-g+g^{\prime}-s$ times step (a). If $s+d-d^{\prime}<g-g^{\prime} \leq 2 s+d-d^{\prime}$ we apply several times step (c) and then if necessary steps (a) and (b).

Remark 2.3. Let $H \subset \mathbb{P}^{n}, n \geq 4$, be a hyperplane. Let Γ be a family of smooth, connected and non-degenerate curves whose closure in $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ is an irreducible component of $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$. Set $d:=\operatorname{deg}(X)$ and $g:=p_{a}(X)$. Fix a positive integer $\sigma \leq d$ and call Δ the set of subsets of H with cardinality σ. Fix $S \in \Delta$ and let W_{S} denote the set of $X \in W$ such that $X \cap H \supseteq S$. Assume $W_{S} \neq \emptyset$. J. Kleppe proved that for each $X \in W_{S}$ the vector space $H^{0}\left(N_{X}(-S)\right)$ is the Zariski tangent space of W_{S} at $[X]$, while $H^{1}\left(N_{X}(-S)\right)$ may be used as an obstruction space ([20, Theorem 1.8], [25]). Hence if $W_{S} \neq \emptyset$ we have $h^{0}\left(N_{X}(-S)\right) \geq 0$. We have $\chi\left(N_{X}(-S)\right)=$ $(n+1) d+(3-n)(g-1)-(n-1) \sigma$. In many cases (but not in all cases!) we have $h^{0}\left(N_{X}(-S)\right)=h^{0}\left(N_{X}\right)-(n-1) \sigma$. Thus the inequality

$$
\begin{equation*}
(n-3)(g-1) \leq(n+1) d-(n-1) \sigma \tag{2.3}
\end{equation*}
$$

(equivalent to $h^{1}\left(N_{X}(-S)\right)=0$) is often a necessary condition to have $W_{S} \neq \emptyset$ for a general $S \in \Delta$. When $\sigma=d$, we have $N_{X}(-S) \cong N_{X}(-1)$. Ch. Walter proved in this case that $h^{0}\left(N_{X}(-1)\right) \geq n+1$ and hence that if $h^{1}\left(N_{X}(-1)\right)=0$ we have

$$
\begin{equation*}
(n-3) g+4 \leq 2 d \tag{2.4}
\end{equation*}
$$

([25, Theorem 5]). Just applying (2.4) in the case $\sigma=d-1$ gives an upper bound for g better than (2.3). But neither (2.3) nor the improved by $n+1$ bound hopefully obtained generalizing [25, Theorem 5] to some $\sigma<d$ (a task we do not know how to do) would be very good for low σ. For instance take any $\sigma \leq n+1$. Hence in this case any S in linear general position is realized by any smooth and non-degenerate curve $Y \subset \mathbb{P}^{n}$. Hence for $\sigma \leq n+1$, the maximal possible g is the maximal genus $\pi(n, d)$ of all smooth and non-degenerate degree d curves of \mathbb{P}^{n}. Since $\pi(n, d)$ is
quadratic in d ([11, Theorems 3.7 and 3.11]) (2.3) is not satisfied when $\sigma \leq n+1$. Somewhere between $n+1$ and d the upper bound for g must go from quadratic in d to linear in d, but we have no guess on this matter.

3. Proofs of the theorems

Proof of Theorem 1.4: Let $Y \subset \mathbb{P}^{n}, n \geq 4$, be a linearly normal elliptic curve. Thus Y is smooth, $p_{a}(Y)=1$ and $\operatorname{deg}(Y)=n+1$.

Claim 1: We have $h^{1}\left(N_{Y}(-1)\right)=0$.
Proof of Claim 1: We have $\operatorname{deg}\left(N_{Y}(-1)\right)=2(n+1)$. By [8, Theorem 4.1] $N_{Y}(-1)$ is polystable. We have $\operatorname{deg}\left(N_{Y}(-1)\right)=\operatorname{deg}\left(N_{Y}\right)-(n+1)(n-1)=\operatorname{deg} T_{\mathbb{P}^{n}}-$ $(n+1)(n-1)=2(n+1)>0$. The definition of semistability, implies $h^{0}\left(N_{Y}(-1)^{\vee}\right)=$ 0 . Since Y is an elliptic curve, duality implies $h^{1}\left(N_{Y}(-1)\right)=0$.

Claim 2: Assume $n \geq 5$. For any 3 general points $p_{1}, p_{2}, p_{3} \in \mathbb{P}^{n}$ and general lines $L_{1}, L_{2}, L_{3} \subset \mathbb{P}^{n}$ such that $p_{i} \in L_{i}$ for all i there is a smooth linearly normal elliptic curve $Y \subset \mathbb{P}^{n}$ containing $\left\{p_{1}, p_{2}, p_{3}\right\}$ with L_{i} as its tangent line at each p_{i}.

Proof of Claim 2: By a theorem of Kleppe ([20, Theorem 1.8]) it is sufficient to prove that $h^{1}\left(N_{Y}(-Z)\right)=0$, where Z is any zero-dimensional scheme of Y with $\operatorname{deg}(Z)=6$. This is true by the semistablity of N_{Y} ([8, Theorem 4.1]), because $6(n-1)<(n+1)^{2}, N_{Y}$ has degree $\operatorname{deg} T_{\mathbb{P} n \mid Y}=(n+1)^{2}$ and rank $n-1$.

Then we continue the proof of the theorem as in the proof of [4, Theorem 1].
Proof of Theorem 1.2: Until step (d) we assume $d=d^{\prime}$ and $g=g^{\prime}$. When $g=0$ it is sufficient to do the case $b=0$, which is [7, Theorem 1.6]. Assume $g>0$. We order the points p_{1}, \ldots, p_{b} of B. For any integer t let $\Gamma(t)$ denote the set of all $E \subset Y$ such that $\sharp(E)=t$. Fix a general $\left(S_{1}, \ldots, S_{w}\right) \in \Gamma(n+2)^{w}$. We have $h^{1}\left(N_{Y}(-Z)\right)=0$ for any degree $n+2$ effective divisor Z of Y by the possible splitting types of the normal bundles of smooth and non-degenerate rational curves ([22]). Thus for each $i \in\{1, \ldots, w\}$ the generality of $S_{i} \in \Gamma(n+2)$ implies $b_{i} \notin S_{i}$ and that $S_{i} \cup\left\{b_{i}\right\}$ is in linear general position in \mathbb{P}^{n}. Thus there is a unique rational normal curve $C_{i} \subset \mathbb{P}^{n}$ containing $S_{i} \cup B_{i}$. We have $C_{i} \cap C_{j}=\emptyset$ for all $i, j \in\{1, \ldots, w\}$ such that $i \neq j$ and $C_{i} \cap Y=S_{i}$ for all i by Lemma 2.6 and the generality of $\left(S_{1}, \ldots, S_{w}\right)$.
(a) We first do the case $b=w, d=a+n w$ and $g=w(n+1)$.

Claim 1: For general $S_{i}, 1 \leq i \leq w$, we have $b_{j} \notin C_{i}$ for all $j \neq i$ and the curve $E:=Y \cup C_{1} \cup \cdots \cup C_{b}$ is nodal and with $p_{a}(E)=w(n+1)$.

Proof of Claim 1: Since $C_{i} \cap S_{i}=S_{i}$ for all i, to prove that E is nodal with arithmetic genus $w(n+1)$ it is sufficient to prove that each C_{i} meets Y quasitransversally. Assume the existence of $i \in\{1, \ldots, w\}$ such that C_{i} is tangent to Y at some $p \in S_{i}$. A monodromy argument gives that C_{i} is tangent to Y at all points of S_{i}. Write $S_{i}=J \cup\{o\}$ with $\sharp(J)=n+1$ and take a general $q \in Y$. Since $J \cup\{q\} \cup\left\{b_{i}\right\}$ is in linear general position, there is a unique rational normal curve $C \supset J \cup\{q\} \cup\left\{b_{i}\right\}$. Since o is a limit of the family $\{q\}_{q \in Y}$, we may take all C_{j}, $j \neq i$, and C instead of C_{1}, \ldots, C_{w}. By the generality of C_{1}, \ldots, C_{w}, we see that
C is tangent to Y at all points of $J \cup\{q\}$. Thus $\operatorname{deg}\left(C \cap C_{i}\right) \geq 2(n+1)$. Since $2(n+1) \geq n+3$, we get $C=C_{i}$ for a general $q \in Y$, absurd.
(b) Assume $w^{\prime}=w$. Increasing b if necessary we may assume $d=a+b+$ $(n-1) w$. Take $B^{\prime}:=\left\{b_{1}, \ldots, b_{w}\right\}$ and F as in step (a). The curve F is a smoothing (with fixed $A \cup B^{\prime}$) of $Y \cup C_{1} \cup \cdots \cup C_{w}$ with each C_{i} a rational normal curve. Since $g>0$ and $w=w^{\prime}$, we have $w>0$. By step (a) F is smooth, connected and nondegenerate, $\operatorname{deg}(F)=a+w n, A \cup B^{\prime} \subset F$ and $h^{1}\left(N_{F}\left(-A-B^{\prime}\right)\right)=0$. Take general lines $L_{i}, b-n w+1 \leq i \leq b$ containing b_{i} and meeting F.

Claim 2: We may take F so that each L_{i} meets F quasi-transversally at a unique point and $L_{i} \cap L_{j}=\emptyset$ for all $i \neq j$.

Proof of Claim 2: Let $R_{i}, b-n w+1 \leq i \leq b$, be a general line containing b_{i} and intersecting C_{w}. Since $b_{i} \neq b_{j}$, any two meeting lines are coplanar and C_{w} spans \mathbb{P}^{n}, we have $R_{i} \cap R_{j}=\emptyset$ for all $i \neq j$. Since F is a smoothing of $Y \cup C_{1} \cup \cdots \cup C_{w}$, it is sufficient to prove that for all $i R_{i} \cap C_{h}=\emptyset$ for all $h<w, R_{i} \cap Y=\emptyset, \sharp\left(R_{i} \cap C_{w}\right)=1$, R_{i} meets quasi-transversally C_{w}. Fix i. Let T_{0} be the cone with vertex b_{i} and Y as a basis. For $1 \leq h<w$ let T_{h} be the cone with vertex b_{i} and base C_{h}. To get all the statements it is sufficient to prove that in step (a) we may find C_{w} with the additional property that $C_{w} \nsubseteq \cup_{0 \leq h<w} T_{w}$. Assume that this is false and take $h \in\{0, \ldots, w-1\}$ such that $C_{w} \subset T_{h}$. Since C_{w} contains a general point of C_{w-1}, varying C_{w} we see that $C_{w-1} \subset T_{h}$. Taking the first w (for some data) for which this occurs we get $h=w-1$. Assume either $w \geq 2$ or that Y is a rational normal curve. With these assumptions T_{w-1} is a degree n cone which is a linear projection from one point of \mathbb{P}^{n+1} of a degree n cone $T \subset \mathbb{P}^{n+1}$ over a rational normal curve of \mathbb{P}^{n} and the linear projection $\eta: T \rightarrow T_{w-1}$ is injective and an isomorphism outside the vertex of T. With the notation of the proof of Lemma 2.3 T is the image of the complete linear system $\left|O_{F_{n}}(h+n f)\right|$ on the Hirzebruch surface F_{n} and C_{w-1}, C_{w} are isomorphic linear projections of two elements $A_{1}, A_{2} \in\left|O_{F_{n}}(h+n f)\right|$. Since $C_{w-1} \cup C_{w}$ is nodal and η is injective, we get $\sharp\left(C_{w-1} \cap C_{w}\right)=\operatorname{deg}\left(A_{1} \cap A_{2}\right)=O_{F_{n}}(h+n f) \cdot O_{F_{n}}(h+$ $n f)=n$, a contradiction. Now assume $w=1$ and $\operatorname{deg}(Y)>n$. We see that T_{0} is the cone with base C_{1} and vertex b_{i}. Thus T_{0} is an injective linear projection of the degree $n+1$ cone $T \subset \mathbb{P}^{n+1}$ just described. Since $\operatorname{deg}(Y)>n$ and $Y \subset T_{0}$, we see that Y is an isomorphic linear projection of a curve $D \in\left|O_{F_{n}}(x h+b f)\right|$ with $x \geq 2$ and $b \geq x b$. We get $\operatorname{deg}(Y \cap C) \geq O_{F_{n}}(x h+b f) \cdot O_{F_{n}}(h+n f)=b \geq 2 n>n+2$, a contradiction.

Applying $d-a-n w$ times Lemma 2.1 we get $h^{1}\left(N_{G}(-A-B)\right)=0$, where $G=F \cup L_{b-w+1} \cup \cdots \cup L_{b}$. By Lemmas 2.1 and 2.2 we may deform G to a smooth curve in a family of curves containing $A \cup B$. Apply the semicontinuity theorem for cohomology.
(c) Assume $w^{\prime} \neq w$. Thus $w^{\prime}=w+1$. Take a smooth F as in step (a) (hence $\operatorname{deg}(F)=a+n w, p_{a}(F)=w(n+1)$ and $\left.F \supset A \cup\left\{b_{1}, \ldots, b_{w}\right\}\right)$. First assume $b \leq w$. Increasing if necessary b we may assume $b=w$. Take E as in step (a) containing
b_{1}, \ldots, b_{w}. Set $E^{\prime \prime}:=F \cup D$, where D is a general rational curve containing a general subset of F with cardinality $g-(n+1) w+1$. As in Claim 1 we get that $\sharp(F \cap D)=g-(n+1) w+1$ and F^{\prime} is nodal. As in Lemmas 2.1 and 2.2 we see F^{\prime} is smoothable in a family of curves of \mathbb{P}^{n} containing $A \cup B$. Now assume $b>w$. By assumption we have $d \geq n w^{\prime}+a,(n+1) w<g<(n+1) w^{\prime}$ and $b-w^{\prime} \leq d-a-n w^{\prime}$. Increasing if necessary b we may assume $d=a+b+(n-1) w^{\prime}$. As in step (a) we take $F \cup C$ with C rational normal curve of $\mathbb{P}^{n}, \sharp(C \cap E)=g-(n+1) w+1$ and $b_{w+1} \in C$. Set $B^{\prime}:=\left\{b_{1}, \ldots, b_{w+1}\right\}$. As in step (a) the curve $F \cup C$ is nodal, of degree $a+n w^{\prime}, p_{a}(F \cup C)=g, F \cup C \supset A \cup B^{\prime}, h^{1}\left(N_{F \cup C}\left(-A-B^{\prime}\right)\right)=0$ and $F \cup C$ is smoothable in a family of curves containing $A \cup B^{\prime}$. Call F^{\prime} one such smooth curve. Then as in step (b) we add $b-w^{\prime}$ general lines $R_{i}, w^{\prime}+1 \leq i \leq b$ with $b_{i} \in R_{i}$ and R_{i} intersecting F^{\prime}. We conclude as in step (b) using F^{\prime} instead of the curve F used in step (b).
(d) Assume $(d, g) \neq\left(d^{\prime}, g^{\prime}\right)$. Apply Lemma 2.9 with $S:=A \cup B$.

Proof of Theorem 1.3: Set $w:=\lfloor g / 2\rfloor$. Write $S=S_{0} \cup S_{1} \cdots \cup S_{w} \cup A$ with $\sharp\left(S_{i}\right)=n$ for $1 \leq i \leq w, \sharp\left(S_{0}\right)=n$ if g is even, $\sharp\left(S_{0}\right)=n+1$ if g is odd, $S_{i} \cap S_{j}=\emptyset$ for all $i \neq j$, and $\sharp(A)=d-n w-\sharp\left(S_{0}\right)$.
(a) Assume g is even and $d=n+n g / 2$. Let $C_{0} \subset \mathbb{P}^{n}$ be a rational normal curve such that $C_{0} \cap H=S_{0}$ (it exists, because any two subsets of H with cardinality n spanning H are projectively equivalent). For $1 \leq i \leq w$ let C_{i} be a general rational normal curve of \mathbb{P}^{n} containing S_{i} and with $\sharp\left(C_{i} \cap C_{i-1}\right)=3$. As in the proof of Theorem 1.2 we see that $E:=\cup_{i=0}^{w} C_{i}$ is a connected nodal curve of degree d and genus g
(b) Assume g is odd and $d=n+1+n(g-1) / 2$. In this case we start taking as C_{0} a smooth and linearly normal elliptic curve such that $C_{0} \cap H=S_{0}$ (it exists, because any two subsets of H with cardinality $n+1$ in linear general position are projectively equivalent). Then we continue as in the proof of Theorem 1.2.
(c) Assume either g is even and $d>n+n g / 2$ or g is odd and $d>n+1+$ $n(g-1) / 2$, i.e. assume $A \neq \emptyset$. Take $E:=C_{0} \cup C_{1} \cup \cdots \cup C_{w}$ as in step (a) or as in step (b), respectively. Order the points $p_{1}, \ldots, p_{z}, z=\sharp(A)$, of A. As in Claim 2 in the proof of Theorem 1.2 take the union of E and z lines L_{1}, \ldots, L_{z} with L_{i} a general line containing p_{i} and intersecting C_{w}.

Note that if $X \cap H=S$ we have $N_{X}(-S)=N_{X}(-1)$. Hence the proof of Theorem 1.4 (or [4, Theorem 1]) gives $h^{1}\left(N_{X}(-S)\right)=0$.

Remark 3.1. For all $n \geq 8, g \geq 0$ even (resp. $g>0$ odd) and $d \geq(n-3) g / 2+$ $n+3$ (resp. $d \geq(g-1) / 2+n+4)$ [3, Theorem 1] (resp. Theorem 1.4) there is a smooth, connected and non-degenerate curve $X \subset \mathbb{P}^{n}$ with degree d, genus g and $h^{1}\left(N_{X}(-1)\right)=0$. The lower bounds for d arising in these theorems just come from their proofs (a game with linearly normal elliptic curves and rational normal curves possibly in lower dimensional linear subspaces).

REFERENCES

[1] A. Atanasov, Interpolation and vector bundles on curves, arXiv:1404.4892.
[2] A. Atanasov, E. Larson and D. Yang, Interpolation for normal bundles of general curves, Mem. Amer. Math. Soc. 257 (2019), no. 1234.
[3] E. Ballico, Hyperplane sections of linearly normal curves, Proc. Amer Math. Soc. 122 (1994), no. 2, 395-398.
[4] E. Ballico, A vanishing theorem for the twisted normal bundle of curves in $\mathbb{P}^{n}, n \geq 8$, Canad. Math. Bull. 63 (2000), no 1, 1-5.
[5] E. Ballico and Ph. Ellia, Bonnes petites composantes des schémas de Hilbert de courbes lisses

[6] E. Ballico and Ph. Ellia, On the existence of curves with maximal rank in \mathbb{P}^{n}, J. Reine Angew. Math. 397 (1989), 1-22.
[7] E. Ballico and J. Migliore, Smooth curves whose hyperplane section is a given set of points, Comm. Algebra 18 (1990), no. 9, 3015-3040.
[8] L. Ein and R. Lazarfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, Complex projective geometry (Trieste, 1989/Bergen, 1989), 149-156, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992.
[9] D. Eisenbud and J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), no. 1, 15-30.
[10] G. Ellingsrud and A. Hirschowitz, Sur le fibré normal des courbes gauches, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 7, 245-248.
[11] J. Harris (with D. Eisenbud), Curves in projective space, Les Presses de l'Université de Montréal, Montréal, 1982.
[12] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[13] R. Hartshorne and A. Hirschowitz, Smoothing algebraic space curves, Algebraic Geometry, Sitges 1983, 98-131, Lecture Notes in Math. 1124, Springer, Berlin, 1985.
[14] J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic curves over a finite field, Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2008.
[15] E. Larson, Interpolation for restricted tangent bundles of general curves, Algebra Number Theory 10 (2016), no. 4, 931-938.
[16] E. Larson, Constructing reducible Brill-Noether curves, arXiv:1603.02301.
[17] E. Larson, The generality of a section of a curve, J. Algebra 555 (2020), 223-245.
[18] E. Larson, Interpolation with bounded error, Int. Math. Res. Not. IMRN 2021, no. 15, 1142611451.
[19] E. Larson and I. Vogt, Interpolation for Brill-Noether curve in \mathbb{P}^{4}, Eur. J. Math. 7 (2021), no. 1, 235-271.
[20] D. Perrin, Courbes passant par m points généraux de \mathbf{P}^{3}, Bull. Soc. Math. France, Mem. 28/29, 1987.
[21] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), no. 4, 565-579.
[22] G. Sacchiero, Normal bundle of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 26 (1981), 33-40.
[23] E. Sernesi, On the existence of certain families of curves, Invent. Math. 75 (1984), no. 1, 25-57.
[24] I. Vogt, Interpolation for Brill-Noether space curves, Manuscripta Math. 156 (2018), 137-147.
[25] C. Walter, Hyperplane sections of arithmetically Cohen-Macaulay curves, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2651-2656.
(Received: February 17, 2020)
(Revised: October 29, 2021)

Edoardo Ballico
University of Trento
Department of Mathematics
38123 Trento, Italy
The author is a member of GNSAGA of INdAM (Italy)
e-mail: edoardo.ballico@unitn.it

[^0]: 2010 Mathematics Subject Classification. 14H50.
 Key words and phrases. projective curve; hyperplane section; normal bundle; interpolation problem; twisted normal bundle.

