THE LINE GRAPH OF A COMMUTING GRAPH ON THE DIHEDRAL GROUP $D_{2 n}$

R. DIVYA AND P. CHITHRA DEVI

Abstract

Let Γ be a non-abelian group and $\alpha \subseteq \Gamma$. Then the Commuting graph $C(\Gamma, \alpha)$ has α as its vertex set and two distinct vertices in α are adjacent if they commute with each other in Γ. Let $G=L(C(\Gamma, \alpha))$ be the Line graph of the Commuting graph. A vertex v_{i} of G is given by $\{x, y\}=\{y, x\}$ where x and y are the vertices that are adjacent in $C(\Gamma, \alpha)$. In this paper, we discuss certain properties of the Line graph of the Commuting graph on the Dihedral group $D_{2 n}$. More specifically, we obtain the chromatic number, clique number and genus of this graph.

1. Introduction

Let G be any graph. The line graph of G, denoted $L(G)$, is the graph whose points are the lines of G, with two points of $L(G)$ adjacent whenever the corresponding lines of G are adjacent. Various extensions of the concept of a line graph have been studied, including line graphs of line graphs, line graphs of multigraphs, line graphs of hypergraphs and line graphs of weighted graphs. For any integer $n \geq 3$, the Dihedral group $D_{2 n}$ is given by $D_{2 n}=\left\langle r, s: s^{2}=r^{n}=1, r s=s r^{-1}\right\rangle$.

The line graph of $C(\Gamma, \alpha)$, denoted by $L(C(\Gamma, \alpha))$ has vertices as the lines of $C(\Gamma, \alpha)$, and two points of G are adjacent whenever the corresponding lines of $C(\Gamma, \alpha)$ are adjacent. We consider simple graphs which are undirected, with no loops and multiple edges.

A graph G consists of a finite nonempty set $V=V(G)$ of points together with a prescribed set E of unordered pairs of distinct points of V. Each pair $e=\{u, v\}$ of points in E is a line of G. We write $e=u v$ and say that u and v are adjacent points; point u and line e are incident with each other, as are v and e. A walk on a graph G is an alternating sequence of points and lines $v_{0}, e_{1}, v_{1}, e_{2}, \cdots, v_{n-1}, e_{n}, v_{n}$, beginning and ending with points, in which each line is incident with the two points immediately preceding and following it. A walk is called a path if all the points (and thus necessarily all the lines) are distinct. A graph is connected if every pair

2010 Mathematics Subject Classification. 05C25, 05C76.

Key words and phrases. Line Graph of Commuting Graph, Clique number, Chromatic number, Genus.
of points are joined by a path. The length of a walk is the number of occurences of lines in it. The degree of a point v_{i} in graph G, denoted by $\operatorname{deg}_{G}\left(v_{i}\right)$, is the number of lines incident with v_{i}. The shortest $u-v$ path is often called a geodesic. The diameter, $\operatorname{diam}(G)$ of a connected graph G is the length of any longest geodesic. A clique of a graph is a maximal complete subgraph. The maximum size of a clique in a graph G is called the clique number of G and is denoted by $\omega(G)$. A colouring of a graph is an assignment of colors to its points so that no two adjacent points have the same color. The chromatic number $\chi(G)$ is defined as the minimum n for which G has an n-colouring. A graph is planar if it can be embedded in the plane. The genus of a simple graph G is the smallest integer g such that G can be embedded into an orientable surface S_{g}. Since the number of vertices in $L(G)$ is the same as the number of edges in G, from the following theorem we have the number of vertices in $L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$.

Theorem 1.1. [4]: For any integer $n \geq 3$, let $G=C\left(D_{2 n}, D_{2 n}\right)$. Then the number of edges in G,

$$
\varepsilon(G)= \begin{cases}n \frac{(n+1)}{2} & \text { ifn is odd } \\ n \frac{(n+4)}{2} & \text { otherwise } .\end{cases}
$$

The following lemmas are used in the proofs of our main results.
Lemma 1.1. [3]: (Fundamental Theorem of Graph Theory)
The sum of the degrees of the points of a graph G is twice the number of lines,

$$
\sum \operatorname{deg}\left(v_{i}\right)=2 q .
$$

Lemma 1.2. [3]: (Kuratowski's Theorem)
A graph is planar if and only if it has no subgraph homeomorphic to k_{5} or $K_{3,3}$.
Lemma 1.3. [3]: For $p \geq 3$, the genus of the complete graph is

$$
\gamma\left(k_{p}\right)=\left\lceil\frac{(p-3)(p-4)}{12}\right\rceil .
$$

2. Main Results

Theorem 2.1. Let $n \geq 3$ be an odd integer. Let $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$. Then
i) $\operatorname{deg}_{G}\left(\left\{1, s r^{i}\right\}\right)=2 n-2 ; 1 \leq i \leq n$
ii) $\operatorname{deg}_{G}\left(\left\{1, r^{j}\right\}\right)=3 n-4 ; 1 \leq j \leq n-1$
iii) $\operatorname{deg}_{G}\left(\left\{r^{k}, r^{l}\right\}\right)=2 n-4 ; k<l, 1 \leq k \leq n-2$ and $2 \leq l \leq n-1$.

Proof. Let $n \geq 3$ be an odd integer.
i) The vertex $\left\{1, s r^{i}\right\} ; 1 \leq i \leq n$ is adjacent with each of the vertices of the form $\left\{1, s r^{j}\right\} ; j \neq i, 1 \leq j \leq n$ and $\left\{1, r^{t}\right\} ; 1 \leq t \leq n-1$. Hence $\operatorname{deg}_{G}\left(\left\{1, s r^{i}\right\}\right)=$ $(n-1)+(n-1)=2 n-2$ for $1 \leq i \leq n$.
ii) The vertex $\left\{1, r^{j}\right\} ; 1 \leq j \leq n-1$ is adjacent with each of the vertices of the form $\left\{1, r^{k}\right\} ; k \neq j, n, 1 \leq k \leq n-1,\left\{1, s r^{i}\right\} ; 1 \leq i \leq n,\left\{r^{j}, r^{l}\right\} ; 1 \leq l \leq n-1$, $l \neq j, n$. Hence $\operatorname{deg}_{G}\left(\left\{1, r^{j}\right\}\right)=(n-2)+n+(n-2)=3 n-4$ for $1 \leq j \leq n-1$.
iii) The vertex $\left\{r^{k}, r^{l}\right\} ; k<l, 1 \leq k \leq n-2,2 \leq l \leq n-1$ is adjacent with each of the vertices of the form $\left\{r^{k}, r^{s}\right\} ; s \neq k, l, 1 \leq s \leq n$ and $\left\{r^{t}, r^{l}\right\} ; t \neq l, k, 1 \leq t \leq n$. Hence $\operatorname{deg}_{G}\left(\left\{r^{k}, r^{l}\right\}\right)=(n-2)+(n-2)=2 n-4$ for $k<l, 1 \leq k \leq n-2$ and $2 \leq l \leq n-1$.
Theorem 2.2. Let $n \geq 3$ be an even integer. Let $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$. Then
i) $\operatorname{deg}_{G}\left(\left\{1, s r^{i}\right\}\right)=2 n ; 1 \leq i \leq n$
ii) $\operatorname{deg}_{G}\left(\left\{r^{\frac{n}{2}}, s r^{i}\right\}\right)=2 n ; 1 \leq i \leq n$
iii) $\operatorname{deg}_{G}\left(\left\{s r^{i}, s r^{i \oplus n} \frac{n}{2}\right\}\right)=4 ; 1 \leq i \leq n$
iv) $\operatorname{deg}_{G}\left(\left\{1, r^{j}\right\}\right)=3 n-4 ; j \neq \frac{n}{2}, 1 \leq j \leq n-1$
v) $\operatorname{deg}_{G}\left(\left\{1, r^{\frac{n}{2}}\right\}\right)=4 n-4$
vi) $\operatorname{deg}_{G}\left(\left\{r^{k}, r^{l}\right\}\right)=2 n-4 ; k<l, 1 \leq k \leq n-2,2 \leq l \leq n-1, k, l \neq n, \frac{n}{2}$
vii) $\operatorname{deg}_{G}\left(\left\{r^{k}, r^{\frac{n}{2}}\right\}\right)=3 n-4 ; k \neq \frac{n}{2}, 1 \leq k \leq n-1$.

Proof. Let $n \geq 3$ be an even integer.
i) The vertex $\left\{1, s r^{i}\right\} ; 1 \leq i \leq n$ is adjacent with each of the vertices of the form $\left\{1, s r^{t}\right\} ; t \neq i, 1 \leq t \leq n,\left\{r^{\frac{n}{2}}, s r^{i}\right\},\left\{s r^{i \oplus_{n} \frac{n}{2}}, s r^{i}\right\}$ and $\left\{1, r^{j}\right\} ; 1 \leq j \leq n-1$. Hence $\operatorname{deg}_{G}\left(\left\{1, s r^{i}\right\}\right)=(n-1)+1+1+(n-1)=2 n$ for $1 \leq i \leq n$.
ii) The vertex $\left\{r^{\frac{n}{2}}, s r^{i}\right\} ; 1 \leq i \leq n$ is adjacent with each of the vertices of the form $\left\{r^{\frac{n}{2}}, s r^{t}\right\} ; t \neq i, 1 \leq t \leq n,\left\{r^{\frac{n}{2}}, r^{j}\right\} ; j \neq \frac{n}{2}, 1 \leq j \leq n$ and $\left\{1, s r^{i}\right\}$ and $\left\{s r^{i}, s r^{i \oplus_{n} \frac{n}{2}}\right\}$. Hence $\operatorname{deg}_{G}\left(\left\{r^{\frac{n}{2}}, s r^{i}\right\}\right)=(n-1)+(n-1)+1+1=2 n$ for $1 \leq i \leq n$.
iii) The vertex $\left\{s r^{i}, s r^{i \oplus n} \frac{n}{2}\right\} ; 1 \leq i \leq n$ is adjacent with each of the vertices $\left\{1, s r^{t}\right\} ; t=i, i \oplus_{n} \frac{n}{2}$ and $\left\{r^{\frac{n}{2}}, s r^{t}\right\} ; t=i, i \oplus_{n} \frac{n}{2}$. Hence $\operatorname{deg}_{G}\left(\left\{s r^{i}, s r^{i \oplus_{n} \frac{n}{2}}\right\}\right)=4$ for $1 \leq i \leq n$.
iv) The vertex $\left\{1, r^{j}\right\} ; j \neq \frac{n}{2}, 1 \leq j \leq n-1$ is adjacent with each of the vertices of the form $\left\{1, r^{t}\right\} ; t \neq j, 1 \leq t \leq n-1$ and $\left\{r^{j}, r^{m}\right\} ; m \neq j, 1 \leq m \leq n-1$ and $\left\{1, s r^{i}\right\} ; 1 \leq i \leq n$. Hence $\operatorname{deg}_{G}\left(\left\{1, r^{j}\right\}\right)=(n-2)+(n-2)+n=3 n-4$ for $1 \leq j \leq n-1$ and $j \neq \frac{n}{2}$.
v) The vertex $\left\{1, r^{\frac{n}{2}}\right\}$ is adjacent with each of the vertices of the form $\left\{1, r^{m}\right\}$; $m \neq \frac{n}{2}, 1 \leq m \leq n-1,\left\{r^{\frac{n}{2}}, r^{m}\right\} ; m \neq \frac{n}{2}, 1 \leq m \leq n-1,\left\{1, s r^{i}\right\} ; 1 \leq i \leq n$ and $\left\{r^{\frac{n}{2}}, s r^{i}\right\} ; 1 \leq i \leq n$. Hence $\operatorname{deg}_{G}\left(\left\{1, r^{\frac{n^{2}}{2}}\right\}\right)=(n-2)+(n-2)+n+n=4 n-4$.
vi) The vertex $\left\{r^{k}, r^{l}\right\} ; k<l, 1 \leq k \leq n-2,2 \leq l \leq n-1, k, l \neq \frac{n}{2}$ is adjacent with each of the vertices of the form $\left\{r^{k}, r^{t}\right\} ; 1 \leq t \leq n, t \neq k, l$ and $\left\{r^{u}, r^{l}\right\}$; $1 \leq u \leq n, u \neq k, l$. Hence $\operatorname{deg}_{G}\left(\left\{r^{k}, r^{l}\right\}\right)=(n-2)+(n-2)=2 n-4$ for $k<l$, $1 \leq k \leq n-2,2 \leq l \leq n-1, k, l \neq n, \frac{n}{2}$.
vii) The vertex $\left\{r^{k}, r^{\frac{n}{2}}\right\} ; k \neq \frac{n}{2} ; 1 \leq k \leq n-1$ is adjacent with each of the vertices of the form $\left\{r^{k}, r^{t}\right\} ; 1 \leq t \leq n, t \neq k, \frac{n}{2},\left\{r^{u}, r^{\frac{n}{2}}\right\} ; 1 \leq u \leq n, u \neq k, \frac{n}{2}$
and $\left\{s r^{i}, r^{\frac{n}{2}}\right\} ; 1 \leq i \leq n$. Hence $\operatorname{deg}_{G}\left(\left\{r^{k}, r^{\frac{n}{2}}\right\}\right)=(n-2)+(n-2)+n=3 n-4$ for $k \neq \frac{n}{2}, 1 \leq k \leq n-1$.

Theorem 2.3. Let $n \geq 3$ be any integer and let $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$. Then the number of edges in G,

$$
E(G)= \begin{cases}\frac{n^{3}-n}{2} & \text { if } n \text { is odd } \\ \frac{n^{3}+3 n^{2}+2 n}{2} & \text { if } n \text { is even } .\end{cases}
$$

Proof. Case i: n is odd
By the Fundamental theorem of Graph Theory and Theorem 2.1, we have

$$
\begin{aligned}
& 2 n^{2}-2 n+(n-1)(3 n-4)+\left(\frac{n(n-3)}{2}+1\right)(2 n-4)=2 q \\
& \Rightarrow q=\frac{n^{3}-n}{2} .
\end{aligned}
$$

Case ii: n is even

By the Fundamental theorem of Graph Theory and Theorem 2.2, we have

$$
\begin{aligned}
& 2 n^{2}+2 n^{2}+2 n+(n-2)(3 n-4)+(4 n-4)+\left(\frac{n^{2}-5 n+6}{2}\right)(2 n-4)+ \\
& \Rightarrow q=\frac{n^{3}+3 n^{2}+2 n}{2} .
\end{aligned}
$$

Theorem 2.4. Let $n \geq 3$ be any integer and let $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$. Then $\omega(G)=$ $\chi(G)=2 n-1$.
Proof. Consider the subset
$\alpha_{1}=\left\{\{1, r\},\left\{1, r^{2}\right\}, \cdots,\left\{1, r^{n-1}\right\},\{1, s r\},\left\{1, s r^{2}\right\}, \cdots,\left\{1, s r^{n}\right\}\right\}$.
Then $L\left(C\left(D_{2 n}, \alpha_{1}\right)\right)$ is a complete subgraph of G.
Claim: $L\left(C\left(D_{2 n}, \alpha_{1}\right)\right)$ is a clique of G.
Case i: n is odd
Consider the vertex $\left\{r^{k}, r^{l}\right\} ; k<l, 1 \leq k \leq n-2,2 \leq l \leq n-1$. Now $\left\{r^{k}, r^{l}\right\}$ is not adjacent with any of $\left\{1, s r^{i}\right\} ; 1 \leq i \leq n$. Thus the graph $L\left(C\left(D_{2 n}, \alpha_{1} \cup\left\{r^{k}, r^{l}\right\}\right)\right)$ is not complete.

Hence $M=L\left(C\left(D_{2 n}, \alpha_{1}\right)\right)$ is a clique of G, when n is odd and $|M|=2 n-1$.
Let M_{1} be a maximum clique of G. Let $\{a, b\}$ and $\{c, d\}$ be any two vertices of $M_{1} .\{a, b\}$ and $\{c, d\}$ are adjacent when $a=c$ or $b=d$. When $a=c$, there are $2 n-1$ such vertices and when $b=d$, there are $n-1$ such vertices. Hence $\left|M_{1}\right|=2 n-1$.
Case ii: n is even
Consider the vertex $\left\{r^{k}, r^{l}\right\} ; k<l, 1 \leq k \leq n-2,2 \leq l \leq n-1$. Now $\left\{r^{k}, r^{l}\right\}$ is not adjacent with any of $\left\{1, s r^{i}\right\} ; 1 \leq i \leq n$. Thus the graph $L\left(C\left(D_{2 n}, \alpha_{1} \cup\left\{r^{k}, r^{l}\right\}\right)\right)$ is not complete.
Consider the vertex $\left\{r^{\frac{n}{2}}, s r^{i}\right\} ; 1 \leq i \leq n$. Now $\left\{r^{\frac{n}{2}}, s r^{i}\right\}$ is not adjacent with any of $\left\{1, r^{j}\right\} ; j \neq \frac{n}{2}, 1 \leq j \leq n-1$. Thus the graph $L\left(C\left(D_{2 n}, \alpha_{1} \cup\left\{r^{\frac{n}{2}}, s r^{i}\right\}\right)\right)$ is not complete.

Consider the vertex $\left\{s r^{i}, s r^{i \oplus_{n} \frac{n}{2}}\right\} ; 1 \leq i \leq n$. Now $\left\{s r^{i}, s r^{i \oplus_{n} \frac{n}{2}}\right\}$ is not adjacent with any of $\left\{1, r^{j}\right\} ; 1 \leq j \leq n-1$. Thus the graph $L\left(C\left(D_{2 n}, \alpha_{1} \cup\left\{s r^{i}, s r^{i \oplus_{n} \frac{n}{2}}\right\}\right)\right)$ is not complete.

Hence $M=L\left(C\left(D_{2 n}, \alpha_{1}\right)\right)$ is a clique of G, when n is even and $|M|=2 n-1$.
Let M_{2} be a maximum clique of G. Let $\{a, b\}$ and $\{c, d\}$ be any two vertices of $M_{1} .\{a, b\}$ and $\{c, d\}$ are adjacent when $a=c$ or $b=d$. When $a=c$, there are $2 n-1$ such vertices and when $b=d$, there are $n+2$ such vertices. Hence $\left|M_{2}\right|=2 n-1$.

Hence $\omega(G)=2 n-1$.
Claim: $\chi(G)=2 n-1$
Since $\omega(G)=2 n-1,2 n-1$ colours are required to colour the subgraph induced by α_{1}. Let $c(x)$ denote the colour of the vertex x where $x \in \alpha_{1}$.
Case i: n is even Let $i<j, 1 \leq i \leq n-2$ and $2 \leq j \leq n-1$. Then assign

$$
c\left(\left\{r^{i}, r^{j}\right\}\right)= \begin{cases}c\left(\left\{1, r^{\left.\left.i \oplus_{n} j\right\}\right)}\right.\right. & \text { if } i+j \neq n \\ c\left(\left\{1, s r^{i}\right\}\right) & \text { if } i+j=n\end{cases}
$$

Let $1 \leq k \leq n$. Then assign

$$
c\left(\left\{r^{\frac{n}{2}}, s r^{k}\right\}\right)= \begin{cases}c\left(\left\{1, s r^{\frac{n}{2} \oplus_{n} k}\right\}\right) & \text { if } k+\frac{n}{2} \neq n \\ c\left(\left\{1, s r^{\frac{n}{2}+k}\right\}\right) & \text { if } k+\frac{n}{2}=n\end{cases}
$$

and

$$
c\left(\left\{s r^{k}, s r^{k \oplus_{n} \frac{n}{2}}\right\}\right)=c\left(\left\{1, r^{t}\right\}\right) \text { for any } t \in\{1,2,3, \cdots, n-1\}
$$

Case ii: n is odd
Let $i<j, 1 \leq i \leq n-2$ and $2 \leq j \leq n-1$. Then assign

$$
c\left(\left\{r^{i}, r^{j}\right\}\right)= \begin{cases}c\left(\left\{1, r^{i \oplus n} j\right\}\right) & \text { if } i+j \neq n \\ c\left(\left\{1, s r^{i}\right\}\right) & \text { if } i+j=n\end{cases}
$$

Theorem 2.5. Let $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$, where $n \geq 3$ is any integer. Then

$$
\operatorname{diam}(G)= \begin{cases}2 & \text { if } n \text { is odd } \\ 3 & \text { otherwise }\end{cases}
$$

Proof. Let n be an odd integer. Let $\{a, b\},\{c, d\}$ be any two vertices of G. If $\{a, b\}$ and $\{c, d\}$ are adjacent, then either $a=c$ or d or $b=c$ or d. Now, suppose $\{a, b\}$ and $\{c, d\}$ are not adjacent then $a \neq b \neq c \neq d$. In this case, $\{a, b\}$ is adjacent with $\{b, c\}$ which in turn is adjacent with $\{c, d\}$. Hence there exists a path of length 2. Hence $\operatorname{diam}(G)=2$, when n is odd.

But when n is even, the vertex $\left\{r^{k}, r^{l}\right\} ; k<l, 1 \leq k \leq n-2,2 \leq l \leq n-1, k, l \neq$ $\frac{n}{2}$ is not adjacent with the vertices $\left\{s r^{i}, s r^{i \oplus_{n} \frac{n}{2}}\right\} ; 1 \leq i \leq n$. In this case $\left\{r^{k}, r^{l}\right\}$ is adjacent with $\left\{r^{\frac{n}{2}}, r^{t}\right\} ; t=k$ or l which in turn is adjacent with $\left\{r^{\frac{n}{2}}, s r^{i}\right\} ; 1 \leq i \leq n$. Hence there exists a path of length 3. Hence $\operatorname{diam}(G)=3$, when n is even.
Corollary 2.1. Let $G=L\left(C\left(D_{2 n}, \alpha\right)\right)$, where α is any subset of the vertex set of $L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$.
i) If n is odd and
$\alpha=\left\{\left\{r^{i}, r^{j}\right\},\left\{1, s r^{k}\right\}: 1 \leq i \leq n-2,2 \leq j \leq n-1,1 \leq k \leq n\right\}$, then $\operatorname{diam}(G)=\infty$.
ii) If n is even and
$\alpha=\left\{\left\{r^{i}, r^{j}\right\},\left\{s r^{i}, s r^{i \oplus n} \frac{n}{2}\right\}: 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$, then $\operatorname{diam}(G)=\infty$.
Theorem 2.6. For $n \geq 3$, the line graph $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$ is non-planar.
Proof. For $n \geq 3$,
the induced subgraph $\left\langle\left\{\{1, s r\},\left\{1, s r^{2}\right\},\left\{1, s r^{3}\right\},\{1, r\},\left\{1, r^{2}\right\}\right\}\right\rangle$ is K_{5}.
Hence by Kuratowski's Theorem, $L\left(C\left(D_{2 n}, D_{2 n}\right)\right) ; n \geq 3$ is non-planar.
Theorem 2.7. For $n=3$, the genus of the line graph $G=L\left(C\left(D_{6}, D_{6}\right)\right)$ is 1 .
Proof. Let $G=L\left(C\left(D_{6}, D_{6}\right)\right)$.
Then $V(G)=\left\{\{1, s r\},\left\{1, s r^{2}\right\},\left\{1, s r^{3}\right\},\{1, r\},\left\{1, r^{2}\right\},\left\{r, r^{2}\right\}\right\}$.
The induced subgraph $\left\langle\left\{\{1, s r\},\left\{1, s r^{2}\right\},\left\{1, s r^{3}\right\},\{1, r\},\left\{1, r^{2}\right\}\right\}\right\rangle$ is K_{5}.
By Lemma 1.3, $\gamma\left(k_{5}\right)=1$.
Thus $\gamma(G) \geq 1$. On the other hand, we can embed G into S_{1} as shown in figure 2.1. Therefore, $\gamma(G)=1$.

Figure 2.1
Theorem 2.8. For $n>3$, the lower bound for the genus of the line graph $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$ is $\left\lceil\frac{(2 n-4)(2 n-5)}{12}\right\rceil$.
Proof. Let $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$.
Since $\omega(G)=2 n-1$, the genus of the graph G will be greater than $\gamma\left(K_{2 n-1}\right)$.
By Lemma 1.4, $\gamma\left(K_{2 n-1}\right)=\left\lceil\frac{(2 n-4)(2 n-5)}{12}\right\rceil$. Therefore,

$$
\gamma(G) \geq\left\lceil\frac{(2 n-4)(2 n-5)}{12}\right\rceil \text {. }
$$

Theorem 2.9. For $n>3$, the upper bound for the genus of the line graph $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right) i s$

$$
\gamma(G) \leq \begin{cases}\left\lceil\frac{n\left(n^{3}+2 n^{2}-13 n-14\right)}{48}\right] & \text { if } n \text { is odd } \\ \left\lceil\frac{n\left(n^{3}+8 n^{2}+2 n-56\right)}{48}\right] & \text { if } n \text { is even }\end{cases}
$$

Proof. Let $G=L\left(C\left(D_{2 n}, D_{2 n}\right)\right)$.
Case i: n is odd
Since the number of vertices in G is $\frac{n(n+1)}{2}$ and the graph is not complete, the genus of the graph G will be less than $\gamma\left(K_{\frac{n(n+1)}{2}}\right)$. By Lemma 1.4, $\gamma\left(K_{\frac{n(n+1)}{2}}\right)=$ $\left\lceil\frac{\left(n^{2}+n-6\right)\left(n^{2}+n-8\right)}{48}\right\rceil$. Therefore,

$$
\gamma(G)<\left\lceil\frac{\left(n^{2}+n-6\right)\left(n^{2}+n-8\right)}{48}\right\rceil
$$

Thus,

$$
\gamma(G) \leq\left\lceil\frac{n\left(n^{3}+2 n^{2}-13 n-14\right)}{48}\right\rceil
$$

Case ii: n is even
Since the number of vertices in G is $\frac{n(n+4)}{2}$ and the graph is not complete, the genus of the graph G will be less than $\gamma\left(K_{\frac{n(n+4)}{2}}\right)$. By Lemma 1.4, $\gamma\left(K_{\frac{n(n+4)}{2}}\right)=$ $\left\lceil\frac{\left(n^{2}+4 n-6\right)\left(n^{2}+4 n-8\right)}{48}\right]$. Therefore,

$$
\gamma(G)<\left\lceil\frac{\left(n^{2}+4 n-6\right)\left(n^{2}+4 n-8\right)}{48}\right\rceil
$$

Thus,

$$
\gamma(G) \leq\left\lceil\frac{n\left(n^{3}+8 n^{2}+2 n-56\right)}{48}\right\rceil
$$

REFERENCES

[1] David S. Dummit and Richard M. Foote, Abstract Algebra (Second Edition), John Wiley and Son, Inc(Asia) Pvt. Ltd, Singapore (2005).
[2] F. Harary, Graph Theory, Addision-Wesley Reading M.A, 1969.
[3] Huadong Su and Pailing Li, On the Genus of the Zero-Divisor Graph of \mathbb{Z}_{n}, International Journal of Combinatorics Vol.2014, Article ID 390732, 5 pages (2014).
[4] T. Tamizh Chelvam, K. Selvakumar and S. Raja, Commuting Graphs on Dihedral Group, The Journal of Mathematics and Computer Science Vol.2, No.2(2011) 402-406.
(Received: September 22, 2019)
(Revised: October 20, 2021)
R. Divya

Research Scholar
Reg. No. 18214222092007
Department of Mathematics
Sri Parasakthi College for Women, Courtallam
e-mail: divyaramakrishnan1224@gmail.com
and
P. Chithra Devi

Assistant Professor
Department of Mathematics
Sri Parasakthi College for Women, Courtallam
e-mail: chithradevi095@gmail.com
Affiliated to Manonmaniam Sundaranar University
Tirunelveli - 627 012, Tamil Nadu
India

