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THE STEINHAUS-WEIL PROPERTY:
III. WEIL TOPOLOGIES

NICHOLAS H. BINGHAM AND ADAM J. OSTASZEWSKI

In memory of Harry I. Miller (1939 - 2018)

ABSTRACT. We study Weil topologies, linking the topological-group structure
with the measure-theoretic structure. This paper is a companion piece to Parts
I, II, IV [BinO7,8,9] on theorems of Steinhaus-Weil type. (See [BinO6] for the
fuller arXiv version combining all four.)

1. WEIL-LIKE TOPOLOGIES: PRELIMINARIES

We are concerned with relatives of theWeil topologyas generators of the Stein-
haus-Weil interior-point property [Ste]. For background,we refer to Weil’s book
[Wei, Ch. VII] and Halmos’s book [Hal, Ch. XII] (see also [BinO6, §8.4]). Weil
regarded his result as aConverse Haar Theorem,in retrieving the topological-
group structure from the measure-algebra structure [Fre] as encoded by the Haar-
measurable subsets – cf. [Kod]. (Here one may work either, following Weil, to
within a dense embedding in a locally compact group, as in theRemark to Theo-
rem 1M below, or, following Mackey, uniquely up to homeomorphism, granted the
further assumption of an analytic Borel structure [Mac, Th.7.1]; for further infor-
mation see [BinO6, §8.16].) The alternative view below throws light on this result
in that the measure structure is already encoded by the density topologyD via the
Haar density theorem, for which see [Mue], [Hal, §61(5), p. 268], cf. [BinO1,
§7; Th. 6.10], [BinO3]. This view is partially implicit in [Amb]: writing M+(µ)
for theµ-measurable sets of positiveµ-measure, refinement of one invariant mea-
sureµ1 by anotherµ2 holds when sets inM+(µ2) contain sets inM+(µ1) (as in the
refinement of one topology by another). This falls within thebroader aim of re-
trieving atopologicalgroup structure from a given (one-sidedly) invariant topology
τ on a groupG, whenτ arises from refinement of a topological group structure (i.e.
starting from asemitopologicalgroup structure(G,τ)). Also relevant here areCon-
verse Steinhaus-Weilresults, as in Part II Prop. 1 of [BinO6,§3], [BinO8, §2] (see
also [BinO6, §8.5]). For background on group-norms see the textbook treatment in
[ArhT, §3.3] (who trace this notion back to Markov) or [BinO1], but note their use
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of ‘pre-norm’ for what we call (following Pettis [Pet]) apseudo-norm; for quasi-
interiors and regular open sets see [BinO6, §8.6]. Thus a norm || · || : G → [0,∞)
satisfies all the three conditions 1-3 below and generates a right-invariant metric
d(x,y) = ||xy−1|| and so a topologyT = T d, just as a right-invariant metricd de-
rives from a separable topologyTG and generates, via the Birkhoff-Kakutani Theo-
rem ([HewR, Th. 8.3], [Gao, Th. 2.1.1]), the norm||x||= d(x,1G). A pseudo-norm
differs in possibly lacking condition 1.i. (so generates apseudo-metric).

1.i (positivity): ||g||> 0 for g 6= 1G, and 1.ii: ||1G||= 0;
2 (subadditivity):||gh|| ≤ ||g||+ ||h||,
3 (symmetry):||g−1||= ||g||.

With U(G) the universally measurable subsets ofG, recall from the Introduction
of Part I [BinO6,7] thatλ ∈ Msub if λ is a set functionλ defined onU(G) and is
a submeasure,i.e. is monotone and subadditive withλ( /0) = 0 (Introduction, [Fre,
Ch. 39, §392], [Tal]); by analogy with the termfinitely additive measure(for back-
ground see [Bin], [TomW, Ch. 12]; cf. [Pat]), this is afinitely subadditive outer
measure, similarly as in Maharam [Mah], albeit in the context of Boolean algebras,
but without her positivity condition. Recall from Halmos [Hal, Ch. II §10] that a
submeasure is anouter measureif in addition it is countably subadditive. The set
functionλ is left invariant if λ(gE) = λ(E) for all g∈ G andE ∈ U(G).

Propositions 1 and 2 below are motivated by [Hal, Ch. XII §62,cf. Ch. II §9
(2-4)], whereG is a locally compact group withλ its left Haar measure, but here
the context is broader, allowing inamenablegroupsG (cf. [TomW, Ch. 12], [Pat]).
The two results enable the introduction in §2 of Weil-like topologies generated
from families of left-invariantpseudo-metricsderived from invariant submeasures.
The latter rely on the naturalmeasure-metric, also known as theFréchet-Nikodym
metric ([Fre, §323Ad], [Hal, §40 Th. A], [Bog, p. 53, 102-3, 418]); see [Dre1,2]
(cf. [Web]) for the related literature of Fréchet-Nikodym topologies and their re-
lation to the Vitali-Hahn-Saks Theorem. Maharam [Mah] studies sequential conti-
nuity of the order relation (of inclusion, here in the measure algebra), and requires
positivity to obtain a (measure-)metric; see Talagrand [Tal] (cf. [Fre, §394] and the
literature cited there) for a discussion of pathological submeasures (the only mea-
sures they dominate under≪ being trivial), and [ChrH] for corresponding exotic
abelian Polish groups.

In the setting of a locally compact groupG, these pseudo-metrics are implicit
in work of Struble: initially, in 1953 [Str1], he used a (‘sampler’) family of pre-
compact open sets{Et : t > 0} to construct a mean onG, thereby referring to a
one-parameter family of pseudo-metrics corresponding to the setsEt ; some twenty
years later in 1974 [Str2] (cf. [DieS, Ch. 8]) identifies a left-invariant (proper)
metric onG by taking the supremum of pseudo-metrics, each generated from some
open set in a countable open base at 1G. The pseudo-metric makes a very brief
appearance in Yamasaki’s textbook treatment [Yam, Ch. 1] ofWeil’s theorem.
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Proposition 1.1(Weil pseudo-norm, cf. [Fre, § 392H], [Yam, Ch. 1, Proof of Th.
4.1]). For G a Polish group,λ ∈ Msub(G), a left-invariant submeasure onU(G),
and E∈ U(G) with λ(E)> 0, put

||g||λE := λ(gE△E) (g∈ G).

Then||.||E defines a group pseudo-norm with associated right-invariant pseudo-
metric

dλ
E(g,h) = ||gh−1||λE (g,h∈ G).

Likewise, forλ right-invariant, a pseudo-norm is defined by

||g||λE := λ(E△Eg) (g∈ G).

Proof. Sinceλ( /0) = 0, ||1G||
λ
E = 0. By left invariance undera,

||a−1||λE = λ(a−1E△E) = λ(a(a−1E△E)) = λ(E△aE) = ||a||λE.

Also,
||ab||λE ≤ ||a||λE + ||b||λE

follows from monotonicity, subadditivity andλ(abE△aE) = λ(bE△E) :

λ(abE\E∪E\abE)≤ λ(abE\aE)∪ (aE\E)∪ (E\aE)∪ (aE\abE))

= λ(abE\aE)∪ (aE\abE)∪ (aE\E)∪ (E\aE))

≤ λ(abE△aE)+λ(E△aE) = λ(bE△E)+λ(E△aE). �

Corollary 1.1. (Kneser for Haar measure, [Kne, Hilfs. 4]). For G a Polish group,
λ ∈ Msub(G), a left-invariant submeasure onU(G), and E∈ U(G) with λ(E)> 0,
the set H := {g∈ G : λ(gE△E) = 0}

is a subgroup of G closed under the norm||g||λE.

Proof. IndeedH = {g∈ G : ||g||λE = 0}, and soH is a subgroup, since forg,h∈ H,

||gh−1||λE ≤ ||g||λE + ||h||λE = 0. �

Recall now that a subsetA of a Polish groupG is left Haar null if it is contained
in a universally measurable setB such that for someµ∈ P (G)

µ(gB) = 0 (g∈ G).

It is Haar null: A ∈ H N amb [Sol1] (cf. [HofT, p. 374]), if it is contained in a
universally measurable setB such that for someµ∈ P (G)

µ(gBh) = 0 (g,h∈ G).

This motivates the following application of Proposition 1.1. beyond Haar measure.
Extending the notation of [BinO6,§3], Part II §1, belowM L

0 (G) (resp. M0(G))
denotes the family of left-Haar-null (resp. Haar-null) sets of G, and we write

UL
+(G) := U(G)\M L

0 (G), U+(G) := U(G)\M0(G).

Prop. 1.1. may be applied to the following measures; those constructed fromµ a
normalized counting measure (of finite support) are studiedin [Sol1].
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Proposition 1.2. In a Polish group G, for µ∈ P (G) put

µ∗L(E) := sup{µ(gE) : g∈ G} (E ∈ U(G)),

µ̂(E) := sup{µ(gEh) : g,h∈ G} (E ∈ U(G)).

Then µ∗L (resp. µ̂) is a left invariant (resp. bi-invariant) submeasure onU(G),
which is positive for E∈ UL

+(G) (resp. for E∈ U+(G)), i.e. for universally mea-
surable, non-left-Haar null (resp. non-Haar-null) sets.

Proof. We consider only ˆµ, as the caseµ∗L is similar and simpler (through the omis-
sion ofh andb below). The set function ˆµ is well defined, with

µ(E)≤ µ̂(E)≤ 1 (E ∈ U(G)),

sinceµ is a probability measure; it is bi-invariant, since

µ̂(aEb) := sup{µ(gaEbh) : g,h∈ G}= sup{µ(gEh) : g,h∈ G},

andG is a group. Furthermore, forB∈ U(G)

µ(gBh)≤ µ̂(B)≤ 1, (g,h∈ G).

So, forµ∈ P (G)
0< µ̂(B)≤ 1 (B∈ U+(G)),

since there areg,h∈ G with µ(gBh) > 0. Countable subadditivity follows (on tak-
ing suprema of the leftmost term overg,h) from

µ(g(
⋃

n
An)h)≤ ∑n

µ(gAnh)≤ ∑n
µ̂(gAnh) = ∑n

µ̂(An),

for any sequence of setsAn ∈ U(G). �

Definition 1.1. For µ∈ P (G),E ∈ U(G), put

BE
ε (µ) := {x∈ G : ||x||µE < ε}.

Our next step uses Prop. 1.2. to inscribe these balls into EE−1 for all small enough
ε > 0.

Lemma 1.1. (Self-intersection Lemma). In a Polish group G for E∈ U+(G), and
respectively for E∈ UL

+(G), and µ∈ P (G),

1G ∈ BE
ε (µ̂)⊆ EE−1 (0< ε < µ̂(E)),

1G ∈ BE
ε (µ

∗
L)⊆ EE−1 (0< ε < µ∗L(E)).

Equivalently, for0< ε < µ̂(E), and respectively for0< ε < µ∗L(E),

E∩xE 6= /0 (x∈ BE
ε (µ̂)); E∩xE 6= /0 (x∈ BE

ε (µ
∗
L)).

Proof. We check only the ˆµ case; the other is similar and simpler (through the
omission ofh below). ForE ∈ U+(G), sinceµ̂(E)> 0 by Prop. 1.2, we may pick
g,h∈ G such thatεE := µ(gEh) > 0. Considerx andε > 0 with ||x||µ̂E < ε ≤ εE. If
E andxE are disjoint, then
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εE = µ(gEh) ≤ µ(g(E∪xE)h)≤ µ̂(g(E∪xE)h) = µ̂(E∪xE)

= µ̂(xE△E) = ||x||µ̂E < ε ≤ εE,

a contradiction. SoE andxE do meet. Now first pickt ∈ xE∩E and nexts∈ E
so thatt = xs; thenx = ts−1 ∈ EE−1. The argument is valid whenεE = µ(gEh)
assumes any value in(0, µ̂(E)]. The converse is clear. �

We need a simple analogue of a result due to Weil ([Wei, Ch. VII, §31], cf. [Hal,
Ch. XII §62]). Belowτ1 denotes theτ-openneighbourhoods of1G. ForG locally
compact withλ = η = ηG (Haar measure), the identity

2η(E)−2η(E∩xE) = η(E△xE) = 1−2
∫

1E(t)1E−1(t−1x)dη(t) (†)

connects the continuity of the (pseudo-) norm toTd-continuity of translation in the
topological group structure(G,Td) of the locally compact group, and to continuity
of the convolution function here (forE of finite η-measure) – see [HewR, Th.
20.16]; see also [HewR, Th. 20.17] for the well-known connection between the
Steinhaus-Weil Theorem and convolution. Such continuity guarantees thatBE

ε (η)
contains points other than 1G.

Lemma 1.2. (Fragmentation Lemma; cf. [Hal, Ch. XII §62 Th. A]). Forλ ∈
Msub(G) a left-invariant submeasure onU(G) in a Polish group G equipped with
a finer right-invariant topologyτ with 1G-open-nhd familyτ1 ⊆ UL

+(G): if the map

x 7→ ||x||λE
is continuous underτ at x= 1G for each E∈ UL

+(G)
– then, for each/0 6= E,F ∈ τ and ε > 0 with ε < λ(E), there exists H∈ τ1 with
HH−1 ⊆ FF−1 and

||h′h−1||λE < ε (h,h′ ∈ H) : HH−1 ⊆ BE
ε ,

so that diamλ
E(H)≤ ε.

Proof. Pick any f ∈ F, andD ∈ τ1 satisfying||x||λE < ε/2 for all x ∈ D. As τ is
right-invariant and 1G ∈ D∩F f−1 ∈ τ, pick H ∈ τ1 with H ⊆ D∩F f−1; then

HH−1 = H f f−1H−1 ⊆ FF−1.

For h,h′ ∈ H, ash,h′ ∈ D,

||h′ f (h f)−1||λE = ||h′h−1||λE ≤ ||h′||λE + ||h−1||λE = ||h′||λE + ||h||λE < ε. �

In the presence of a refinement topologyτ on the groupG, the lemma motivates
further notation: writePcont(G,τ), or just

P (τ) := {µ∈ P (G,Td) : g 7→ ||g||µ̂E := µ̂(gE△E) is τ-continuous at 1G}.

Of necessity attention here focuses on continuity. The characterization question
as to which topologiesτ yield a non-emptyP (τ) is in part answered by Theorem
1M below. Indeed, for Haar measureη in the locally compact case,
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µ∈ P (τ) (µ≪ η,τ ⊇ Td),

by (†) in the presence ofdµ/dη as a kernel:

||x||µE = 1−2
∫

1E(t)1E−1(t−1x)
dµ
dη

dη(t). (††)

However,P (G) will contain measuresµ singular with respect toη : for suchµ, by
the Simmons-Mospan Theorem [BinO6,8, Th. SM] there will be Borel subsetsB
of positiveµ-measure such thatBB−1 has voidTd-interior.

2. WEIL-LIKE TOPOLOGIES: THEOREMS

Prop. 1.2. now yields the following result, which embraces known Hashimoto
topologies [BinO3] in both the Polish abelian setting, where the left Haar null sets
form a σ-ideal (Christensen [Chr]), and likewise in (the not necessarily abelian)
Polish groups that areamenable at1 (Solecki [Sol1,2]); this includes, as additive
groups,F- (hence also Banach) spaces – cf. [BinO3,4], where use is made of
Hashimoto topologies.

Theorem 1. Let G be a Polish group andτ both a left- and a right-invariant
refinement topology with1G-open-nhd familyτ1 ⊆ U+(G).
Then both the families{AA−1 : A∈ τ1} and{BE

ε (µ̂) : /0 6= E ∈ τ,µ∈ P (τ) and0<
ε ≤ µ̂(E)} generate neighbourhoods of the identity under which G is a topological
group. Moreover, the pseudo-norms

{||.||
µ̂
E : /0 6= E ∈ τ,µ∈ P (τ)}

are downward directed by refinement as follows: for/0 6=E,F ∈ τ1, λ,µ∈ P (τ) and
ε < min{λ̂(E), µ̂(F)}}, there is H∈ τ1 such that for0< δ < min{λ̃(H), µ̂(H)}

BH
δ (λ)∩BH

δ (µ)⊆ BE
ε (λ)∩BF

ε (µ).

Proof. The proof is similar to but simpler than that of [Hal, Ch. XII §62 Th. A].
With the notation of Prop. 1.2. forλ,µ∈ P (τ), given two (non-left-Haar-null) sets
E,F ∈ τ1 andε < min{λ̂(E), µ̂(F)}, by the Fragmentation Lemma (Lemma 1.2. of
§1) applied separately tôλ and toµ̂, there areA,B∈ τ1 with

AA−1 ⊆ BE
ε (λ̂), BB−1 ⊆ BF

ε (µ̂).

Take anyH ∈ τ1 with H ⊆ A∩B; then

HH−1 ⊆ AA−1∩BB−1.

SinceH ∈ U+(G) (asτ1 ⊆ U+(G)), takeδ with 0< δ < min{λ̂(H), µ̂(H)}; then
by (∗) of I, Lemma 1.1,

BH
δ (λ̂)∩BH

δ (µ̂)⊆ HH−1 ⊆ AA−1∩BB−1 ⊆ BE
ε (λ̂)∩BF

ε (µ̂).

(So ‘mutual refinement’ holds between the sets of the formAA−1 and those of the
form BE

ε .) As || · ||µ̂E is a pre-norm,
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BE
ε/2(µ̂)B

E
ε/2(µ̂)

−1 = BE
ε/2(µ̂)B

E
ε/2(µ̂)⊆ BE

ε (µ̂).

By the Fragmentation Lemma again, given anyx ∈ G andε > 0, chooseH ∈ τ1

with HH−1 ⊆ BE
ε (µ̃). Then withF := xH ∈ τ,

BF
ε (µ̂) = {z : ||z||µ̂F < ε} ⊆ (xH)(xH)−1 = xHH−1x−1 ⊆ xBE

ε (µ̂)x
−1.

Finally, for anyx0 with ||x0||
µ̂
E < ε, put δ := ε−||x0||

µ̂
E. Then for||y||µ̂E < δ,

||x0 ·y||
µ̂
E ≤ ||x0||

µ̂
E + ||y||µ̂E < ||x0||

µ̂
E + ε−||x0||

µ̂
E < ε,

i.e.
x0BE

δ (µ̂)⊆ BE
ε (µ̂). �

Specializing to locally compact groups yields as a corollary, on writing BE
ε :=

BE
ε (η) :

Theorem 1M. For G a locally compact group with left Haar measureη, if:

(i) τ is both a left- and a right-invariant refinement topology with τ1 ⊆ M+,
(ii) for every non-empty E∈ τ, the pseudo-norm

g 7→ ||g||E := η(gE△E) (g∈ G)

is continuous underτ at g= 1G

– then both the families{AA−1 : A∈ τ1} and{BE
ε : /0 6= E ∈ τ and0< ε ≤ 2η(E)}

generate neighbourhoods of the identity under which G is a topological group.
Moreover, the pseudo-norms

{||.||E : /0 6= E ∈ τ}
are downward directed by refinement; indeed, for/0 6= E,F ∈ τ and
ε < 2min{η(E),η(F)}, there is H∈ τ1 such that for0< δ < η(H)

BH
δ ⊆ BE

ε ∩BF
ε .

Proof. It is enough to replaceP (G) by {η} (so thatλ andµ both refer toη), and
to note that ifxE andE are disjoint, thenη(xE△E) = 2η(E), so that in Lemma
1.1. the boundη∗(E) in the restriction governing inclusion may be replaced by
2η(E). �

Remark2.1. As in [Hal, Ch. XII §62 Th. F], but by the Fragmentation Lemma
(and by the countable additivity ofη), the Weil-like topology on a locally compact
G in Theorem 1M is locally bounded (norm-totally-bounded in some ball). ThenG
with the Weil-like topology may be densely embedded in its completionĜ, which
is in turn locally compact, being locally complete and (totally) bounded. However,
the corresponding argument in the case of the preceeding more general Theorem 1
fails, sinceµ̂ there is not necessarily countably additive.

Finally, we give a category version of Theorem 1M, as an easy corollary; indeed,
our main task is merely to define what is meant by ‘mutatis mutandis’ in the present
context. Denote byB+(τ) the non-meagreBaire sets (= with the Baire property,
[Oxt2]) of a topologyτ. Given the assumptionτ1 ⊆ B+ below, we are entitled to



136 NICHOLAS H. BINGHAM AND ADAM J. OSTASZEWSKI

refer to the usual quasi-interior of anyE ∈ B+, denoted below bỹE, as in Part I
Cor. 2′ [BinO6, Cor. 2′]; we also writeB̃E

ε for BẼ
ε (η).

Theorem 1B. For G a locally compact group with left Haar measureη, if:

(i) τ is both a left- and a right-invariant refinement topology with τ1 ⊆ B+ and
with the left Nikodym property (preservation of category under left shifts),

(ii) for every non-empty E∈ τ the pseudo-norm

g 7→ ||g||Ẽ := η(gẼ△Ẽ) (g∈ G)

is continuous underτ at g= 1G

– then both the families{AA−1 : A∈ τ1} and{B̃E
ε : /0 6= E ∈ τ and0< ε ≤ 2η(Ẽ)}

generate neighbourhoods of the identity under which G is a topological group.
Moreover, the pseudo-norms

{||.||Ẽ : /0 6= E ∈ τ}
are downward directed by refinement; indeed, for/0 6= E,F ∈ τ and
ε < 2min{η(Ẽ),η(F̃)}, there is H∈ τ1 such that for0< δ < 2η(H̃)

B̃H
δ ⊆ B̃E

ε ∩ B̃F
ε .

Proof. In place of the inclusion of Lemma 1.1. we note a result stronger than
that valid for Ẽ (i.e. inclusion only inẼẼ−1): since meagreness is translation-
invariant (the ‘Nikodym property’ of [BinO3]),(xE)˜= xẼ for non-meagre Baire
E, soxẼ∩ Ẽ 6= /0 impliesxE∩E 6= /0, and so again

B̃E
ε = BẼ

ε ⊆ EE−1;

here again in Lemma 1.1. the boundη∗(E) in the restriction governing inclusion
may be replaced by 2η(E). The proof of Theorem 1 may now be followed ver-
batim, but for the replacement ofP (G) by {η}, using the stronger inclusion just
observed, and ofB·

ε(η) by B̃·
ε. �

Remark2.2. The last result follows more directly from Th. 1M in a contextwhere
there exists onG a Marczewski measure(see [TomW, Ch. 13, cf. Ch. 11]), i.e. a
finitely additive invariant measure onB vanishing on bounded members ofB0; this
includesR, R2,S1, albeit under AC [TomW, Cor. 13.3]; cf. [Myc], but notRd for
d ≥ 3 [DouF].

With the groundwork of Part I [BinO6,7] on translation-continuity for compacts
completed, we close by establishing the promised dichotomyassociated with the
map

x 7→ ||x||µE = µ(xE△E),

for measurableE : the Fubini Null Theorem [BinO6,7, Th. FN (Part I §1)] creates
a duality between the vanishing of theF-based pseudo-norm and adichotomyfor
x-translates ofE−1 in relation toF according asx ∈ E or x /∈ E, which are thus
unable in each case to distinguish between the points ofF. Below we write∀µ for
the generalized quantifier “forµ-a.a.’ (cf. [Kec, 8.J]).
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Theorem 2 (Almost Inclusion-Exclusion).For G a Polish group µ∈ P (G) and
non-null µ-measurable E,F, the vanishing µ-a.e. on F of the E-norm under µ:

||x||µF = µ(xE△E) = 0 (x∈ F),

is equivalent to the following Almost Inclusion-Exclusionfor translates of E−1:

(i) Inclusion:F is µ-almost covered by µ-almost every translate xE−1for x∈ E:

µ(F\xE−1) = 0 (∀µx∈ E),

(ii) Exclusion:F is µ-almost disjoint from µ-almost every translate xE−1for x /∈
E:

µ(F ∩xE−1) = 0 (∀µx /∈ E).

Proof. By the Fubini Null Theorem [BinO6,7, Th. FN (Part I §1)], applied to the
setH of Part I Prop. 3 [BinO6, Prop. 3], i.e.

H :=
⋃

x∈F
{x}× (xE△E),

H has vertical sectionsHx almost allµ-null iff µ-almost all of its horizontal sections
Hy areµ-null. But, sincey∈ xE iff x∈ yE−1, Hy = F\yE−1 for y∈ E andHy :=
F ∩yE−1 for y∈ G\E. �

Remark2.3. If the inclusion side of the dichotomy of Th. 8 holds for allx ∈ E,
then F ⊆ EE−1. The converse direction may fail: considerE = (1,2) ⊆ R and
F = (−1,1), so thatE−E = F, but no translate of−E may coverF.

3. COMPLEMENTS

1. Inclusion-Exclusion dichotomy.Above we focus on inclusions amongst sets of
the formEE−1, for E ∈ U(G), the exception being the Inclusion-Exclusion of a
setF ∈ U(G) by anE-, or non-E, x-translate ofE−1 in Theorem 2 (a dichotomy
as betweenE and its complement). This places most of our study on one sideof a
related inclusion-exclusion dichotomy – for subsetsH,B∈ U(G) in a groupG one
has either inclusion, or ‘near-disjointness’:

HH−1 ⊆ BB−1, or HH−1∩BB−1 = {1G}.

Inclusion may be equivalently re-phrased to the meeting of distinct pairs ofH−1-
translates ofB :

kB∩k′B 6= /0 (k,k′ ∈ H−1), (In)

whereas exclusion to their disjointness:

kB∩k′B= /0 (distinctk,k′ ∈ H−1). (Ex)

The duality of the relation of (Ex) to the results in Th. 2 is clarified by observing
thatµ(F ∩xE−1) = 0, for a.a.x∈C, is equivalent toµ(C∩yE) = 0, for a.a.y∈ F .
Indeed,

0=
∫∫

1C(x)1F (y)1xE−1(y)d(µ×µ) =
∫∫

1F(y)1C(x)1yE(x)d(µ×µ).
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The condition (Ex) gives rise toI0, the σ-ideal introduced in Balcerzak et al.
[BalRS], generated by Borel setsB having perfectly many disjoint translates, as
in (Ex) above withH−1 a perfect compact set (i.e. compact and dense-in-itself);
continuum-many disjoint translates of a compactum also emerge in a theorem of
Ulam concerning a non-locally compact Polish group: see [Oxt1, Th. 1]. Such
perfect exclusionsoffer a combinatorial tool, akin toshift-compactness(as in Part
I Th. 3 or [BinO6, Th. 3], the latter requiring a subsequence embedding under
translation of any null sequence into a non-negligible set –cf. [BinO1,2] [MilO],
[BanJ]), and play a key role in the context of groups withample generics; see for
instance the small-index property of [HodHLS].

Solecki [Sol3] proves a ‘Fubini for negligibles’-type theorem (cf. Theorem FN
in Part I §1 or [BinO6, §1]): the non-negligible vertical sections (relative to a uni-
formly Steinhaus ideal) of a planarI0-negligible set form a horizontalI0-negligible
set. The idealI0 is of particular interest, as it violates the countable (anti)-chain
condition, [BalRS].

2. Regular open sets.Recall that, in a topological spaceX, U is regular open
if U =int(clU), and that int(clU) is itself regular open; for background see e.g.
[GivH, Ch. 10]. ForD = DB the Baire-density topology of a normed topological
group, letDRO

B denote the regular open sets. ForD ∈ DRO
B , put

ND := {t ∈ G : tD∩D 6= /0}= DD−1, N1 := {ND : 1G ∈ D ∈ DRO};

thenN1 is a base at 1G (since 1G ∈C∈ DRO and 1G ∈ D ∈ DRO yield 1G ∈C∩D ∈
DRO) comprisingT -neighbourhoods that areDB -open (sinceDD−1 =

⋃
{Dd−1 :

d ∈ D}). We raise the (metrizability) question, by analogy with theWeil topology
of a measurable group (see §1 and §3.1 above): withDB above replaced by a
general density topologyD on a groupG, when is the topology generated byN1 on
G a norm topology? Some indications of an answer may be found in[ArhT, §3.3].
We note the following answer in the context of Theorem 1B; compare Struble’s
Theorem [Str2], or [DieS, Ch. 8]. If there exists a separating sequenceDn, i.e.
such that for eachg 6= 1G there isn with ||g||Dn = 1, then

||g|| := ∑n
2−n||g||Dn

is a norm, since it is separating and, by the Nikodym property, (D∩ g−1D) =
g−1(gD∩D) ∈ B0.

3. The Effros Theoremasserts that a transitive continuous action of a Polish group
G on a spaceX of second category in itself is necessarily ‘open’, or more accu-
rately ismicrotransitive(the (continuous) evaluation mapex : g 7→ g(x) takes open
neighbourhoodsE of 1G to open neighbourhoods that are the orbit setsE(x) of x).
It emerges that this assertion is very close to the shift-compactness property: see
[Ost]. The Effros Theorem reduces to the Open Mapping Theorem whenG,X are
Banach spaces regarded as additive groups, andG acts onX by a linear surjection



THE STEINHAUS-WEIL PROPERTY: III. WEIL TOPOLOGIES 139

L : G→ X via g(x) = L(g)+ x. Indeed, heree0(E) = L(E) for e0 evaluation at 0.
For a neat proof, choose an open neighbourhoodU of 0 in G with E ⊇U −U ; then
L(U) is Baire (being analytic) and non-meagre (since{L(nU) : n∈ N} coversX),
and soL(U)−L(U)⊆ L(E) is an open neighbourhood of 0 inX.

4. Beyond local compactness: Haar category-measure duality.In the absence of
Haar measure, the definition of left Haar null subsets of a topological groupG re-
quiresU(G), the universally measurable sets – by dint of the role of the totality
of (probability) measures onG. The natural dual ofU(G) is the classUB(G) of
universally Baire sets, defined forG with a Baire topology as those setsB whose
preimagesf−1(B) are Baire in any compact Hausdorff spaceK for any continu-
ous f : K → G. Initially considered in [FenMW] forG= R, these have attracted
continued attention for their role in the investigation of axioms of determinacy and
large cardinals – see especially [Woo], cf. [MarS] – and is a key notion in [BanJ].

Analogously to the left Haar null sets, define aleft Haar meagreset as any set
M coverable by a universally Baire setB for which there are a compact Hausdorff
spaceK and a continuousf : K →G with f−1(gB) meagre inK for all g∈G. Here,
as recently noted in [BanGJS, Prop. 5.1],K may be replaced by the Cantor space
2N. These were introduced, in the abelian Polish group setting with K metrizable,
by Darji [Dar], cf. [Jab], and shown there to form aσ-ideal of meagre sets (co-
extensive with the meagre sets forG locally compact).

5. Metrizability and Christensen’s Theorem.An analytic topological group is met-
rizable; so if also it is a Baire space, then it is a Polish group – [HofT, Th. 2.3.6].

6. Metrizability of refinements.Underlying the Disaggregation Theorem (Part II
Th. 1) which refines the topologyTd of G there are refining metrics:

dK(x,y) := d(x,y)+ |µ(Kx)−µ(Ky)|

(for a family of setsK ∈ K+(µ) – cf. the Struble sampler of §1 above), reminiscent
of Theorem 1 above.

7. Quasi-invariance and the Mackey topology of analytic Borelgroups.We com-
ment on the force of full quasi-invariance of a measure in connection with aStein-
haus triple(H,G,µ) [BinO5] with H andG completely metrizable. Both groups,
being absolutely Borel, are analytic spaces. So both carry a‘standard’ Borel struc-
tures withH a Borel substructure ofG. Mackey [Mac] investigates such Borel
groups, defining also a (Borel) measureµ to be ‘standard’ if it has a Borel support.
It emerges that everyσ-finite Borel measure in an analytic Borel space is standard
[Mac, Th. 6.1]. Of interest to us is Mackey’s notion of a ‘measure class’Cµ, com-
prising all Borel measuresν with the same null sets asµ : M0(ν) = M0(µ). Such
a measure class may be closed under translation, and may be right or left invari-
ant; then their mutually common null sets are themselves invariant, and so may
be viewed as witnessing quasi-invariance of the measureµ. Mackey shows that a
Borel group with a one-sided invariant measure class has a both-sidedly invariant
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measure class [Mac, Lemma 7.2]; furthermore, if the class iscountably generated,
then the class contains a left-invariant and a right-invariant measure [Mac, Lemma
7.3]. This enables Mackey to improve on Weil’s theorem in showing that an an-
alytic Borel groupG with a one-sidedly invariant measure class, in particular one
generated by a quasi-invariant measure, has a unique locally compact topology
on G both yielding a topological group structure and generatingthe given Borel
structure.
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[BanGJS] T. Banakh, S. Głąb, E. Jabłońska, J. Swaczyna,Haar-I sets: looking at small sets in
Polish groups through compact glasses, arXiv: 1803.06712.

[Bin] N. H. Bingham,Finite additivity versus countable additivity.Electronic J. History of Proba-
bility and Statistics,6 (2010), 35p.

[BinO1] N. H. Bingham and A. J. Ostaszewski,Normed groups: Dichotomy and duality.Dissert.
Math.472(2010), 138p.

[BinO2] N. H. Bingham and A. J. Ostaszewski,Dichotomy and infinite combinatorics: the theorems
of Steinhaus and Ostrowski,Math. Proc. Camb. Phil. Soc.150(2011), 1-22.

[BinO3] N. H. Bingham and A. J. Ostaszewski,Beyond Lebesgue and Baire IV: Density topologies
and a converse Steinhaus-Weil theorem.Topology and its Applications239 (2018), 274-292
(arXiv:1607.00031).

[BinO4] N. H. Bingham and A. J. Ostaszewski,Additivity, subadditivity and linearity: Auto-
matic continuity and quantifier weakening, Indag. Math.(N.S.) 29 (2018), 687–713. (arXiv
1405.3948v3).

[BinO5] N. H. Bingham and A. J. Ostaszewski,Beyond Haar and Cameron-Martin: the Steinhaus
support,Topology Appl.260(2019), 23–56. (arXiv: 1805.02325v2).

[BinO6] N. H. Bingham and A. J. Ostaszewski,The Steinhaus-Weil property and its converse: sub-
continuity and amenability,arXiv:1607.00049.

[BinO7] N. H. Bingham and A. J. Ostaszewski,The Steinhaus-Weil property: I. Subcontinuity and
amenability,Sarajevo J. Math Vol. 16 (29), No.1 (2020), 13-32.

[BinO8] N. H. Bingham and A. J. Ostaszewski,The Steinhaus-Weil property: II. The Simmons-
Mospan converseSarajevo J. Math Vol. 16 (29), No.1 (2020), 179-186.

[BinO9] N. H. Bingham and A. J. Ostaszewski,The Steinhaus-Weil property: IV. Other interior-
point properties,Sarajevo J. Math Vol. 18 (31), No.1 (2020), to appear.

[Bog] V. I. Bogachev,Measure theory.Vol. I, II, Springer-Verlag, Berlin, 2007.
[Chr] J. P. R. Christensen,On sets of Haar measure zero in abelian Polish groups,Proceedings of

the International Symposium on Partial Differential Equations and the Geometry of Normed
Linear Spaces (Jerusalem, 1972).Israel J. Math.13 (1972), 255–260 (1973).

[ChrH] J. P. R. Christensen, W. Herer,On the existence of pathological submeasures and the con-
struction of exotic topological groups,Math. Ann.213(1975), 203–210.

[Dar] U. B. Darji, On Haar meager sets.Topology Appl.160(2013), 2396–2400.



THE STEINHAUS-WEIL PROPERTY: III. WEIL TOPOLOGIES 141

[DieS] J. Diestel, A. Spalsbury,The joys of Haar measure.Grad. Studies in Math.150. Amer. Math.
Soc., 2014.

[DouF] R. Dougherty, M. Foreman,Banach-Tarski decompositions using sets with the propertyof
Baire,J. Amer. Math. Soc. 7 (1994), no. 1, 75–124.

[Dre1] L. Drewnowski,Topological rings of sets, continuous set functions, integration. I, II, III, Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.20 (1972), 269–276;20 (1972), 277–286;
20 (1972), 439–445.

[Dre2] L. Drewnowski,On control submeasures and measures.Studia Math.50 (1974), 203–224.
[FenMW] Q. Feng, M. Magidor, H. Woodin, Universally Baire sets of reals, in H. Judah, W. Just, H.

Woodin (eds.),Set theory of the continuum, 203–242, Math. Sci. Res. Inst. Publ.26, Springer,
1992.

[Fre] D. Fremlin,Measure theoryVol. 3: Measure algebras. Corrected 2nd printing of the 2002
original. Torres Fremlin, Colchester, 2004.

[Gao] Su Gao,Invariant descriptive set theory. Pure and Applied Mathematics293. CRC Press,
2009.

[GivH] S. Givant and P. Halmos,Introduction to Boolean algebras, Springer 2009.
[Hal] P. R. Halmos,Measure theory, Grad. Texts in Math.18, Springer 1974 (1st ed. Van Nostrand,

1950).
[HewR] E. Hewitt, K. A. Ross,Abstract harmonic analysis, Vol. I, Grundl. math. Wiss.115,

Springer 1963 [Vol. II, Grundl.152, 1970].
[HodHLS] W. Hodges, I. Hodkinson, D. Lascar, S. Shelah,The small index property forω-stable

ω-categorical structures and for the random graph.J. London Math. Soc.48 (1993), 204–218.
[HofT] J. Hoffmann-Jørgensen, F. Topsøe,Analytic spaces and their application, in [Rog, Part 3].
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