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ABSTRACT. In this note we report on a project in progress, where weystud
compactness of infinitary logics, including the logic of itts&a The motivation

of this project is to find logical reasons for the set-theéongthenomenon of com-
pactness at singular cardinals.

1. INTRODUCTION

In the world of infinite cardinals, combinatorial propestief singular cardinals
are somewhat special. This is especially visible by thetfzt they often exhibit
a compactness behaviour. The celebrated Shelah’s inggiid]

(VN < w)2Pn < O] = 270 < O,

is an example of such a behaviour, because we can interpmstsaying that if
powers of cardinals smaller than the singular cardinglare bounded, then so is
the power ofil,,. There are many compactness theorems about singular alsrdin
some of which we shall mention below. The cardiniglis also very special, often
because of the compactness. An important example is theamingss of the first
order logic. Therefore it is natural to ask if there is a cootgagic associated
to singular cardinals, a question that we explore. This peggorts on results in
progress obtained as part of a larger project and represemstended version of a
talk given by the first author at the conferendé@ddern Algebra and Analysis and
their Application$ organised by ANUBIH in Sarajevo in September 2018. Full
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exposition of the results mentioned here and other resliltbawritten as a full
length paper in the future.

2. INFINITARY LOGIC

A logic that might serve the purpose of compactness at a lsingardinal was
discovered by Carol Karp. She introduced the chain logiceanPh.D. thesis in
1959 with Henkin [7], and continued working on it, on her ovamd with her
students, throughout her career. Her motivation was torgése recursion theory
through the use of infinitary logics. The part which is mogtvant to us concerns
the work of Ellen Cunningham from her Ph.D. thesis (1974, years after Karp’s
death) [1].

The beginning of this work is to consider logics of the fogy . Herek andA
are infinite cardinals and we are allowed to make conjunstaiength< k and
iterations of< A-quantifiers, with other logical rules transported fromtfisder
logic, which in this notation becomes, ,. An interesting question is to find pairs
K,A which give the nice properties that we have gy, may it be completeness,
compactness and so on. This was an important research tofhe i1960s and
1970s, much about which can be found in the books by Jerryefgi0] onL,, ,
and Max Dikcmann [2] orL,, . It was found that if we want to recover the
properties of first order logic fok,A regular, most often we need to work with
K = A some large cardinal. Let us, for example, review the caseaigly compact
and the case of weakly compact cardinals.

We say that a set of sentencexisatisfiableif every subset of sizec Kk has
a model. Tarski [17] defined strongly compactardinal to be an uncountabie
such that everx-satisfiable set df «-sentences is satisfiable. As we know, strong
compactness is a large cardinal notion, equivalently defim@arious other ways.
Tarski [17] also defined weakly compaatardinal to be an uncountaltesuch that
everyk-satisfiable set ok x-sentences involving at mostnon-logical symbols,
is satisfiable. This is another large cardinal notion, ofrseu An important ex-
ception to the large cardinal rule is the cas&.gf, which shares some important
properties of first order logic, notably completeness (464)]

2.1. Completeness and compactness

We recall the relation between the completeness and theawingss properties
of a logic. It is easy to obtain the compactness of the firseiologic as a conse-
qguence of its completeness. Namely, supposeilimt set of first order sentences
that it is not satisfiable. By completene&sproves a contradiction. But the proof
must be finite, so it only involves a finite subggtC 3. HenceX is not satisfiable
and saX is not finitely satisfiable. Let us note that this argumentksdyecause the
notion of satisfaction and the notion of deduction are sd mekched. However,
there are logics which are complete but not compact, andstii® case oL, (,.
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Karp proved that this logic is complete in [8], yet let us alvseby a simple ex-
ample that this logic is not compact. Namely,dgfcs,...,c, be constant symbols
and letz be the following set oL, ., sentences:

{(v%) \/ X=Cn,Ce # C0,Ce # C1, .-, Cy # Cny .- .}

n<w
ThenZ is finitely satisfiable but not satisfiable.

This difference between the relative behaviour of complete and the com-
pactness in the cases of these two different logics comes tine fact that when
changing logic we have to use different rules of inferen@ntthose of the first
order logic. For example, we, naturally, need to use thenaxipb — ¢ for
any countable seb of formulas with¢g € ®. Yet, we still keep the same notion
of the finiteness in a proof, which is now less well-matchethwhe rules of in-
ference. In this way we obtain that for infinitary logics cammess is harder than
completeness.

Karp's Ph.D. student Judy Green [6] considered logics searching for results
analogous to those fdr,, , in particular completeness. She used different but
similar techniques in two caseg:successor of a regular cardinaltosingular or
successor of a singular. Green defined proof systems far thgies, with proofs of
length< K in a wayL ¢, becomes complete and shares many other nice properties
of the first order logic.

2.2. Chains

The next new idea that Karp brought to this subject is to amrsiot just the
logic but also the structure of the underlying model. In thisy she was able
to approach the logitk «, wherek is a singular cardinal of countable cofinality.
See Karp’s lecture [8]. She defined the notion of a chain motleizek as an
ordinary model of siz& along with a decomposition of it into an increasing union
of submodels of length ¢k). The most interesting case is that:

o cf(K) =w

e the chain consists of sets of strictly increasing cardiiesli
A typical chain modeA with decompositionA, : n < w) is denoted by(An)n. It
is mostly interesting when is a strong limit and 2l < |Ant1|. In order to define
the logic of chain models we need to change the definitiop-pflefining the new
notion =°, given as follows. For formulags(x) of L, « (SoXis a sequence of length
<K):

“(An)n E° X0 (X)” iff there is n such that A, = 3xd(X)".

There is a natural way to define a logic out of this, which weaterbyLy .

Karp and Cunnigham [1] proved thi§ , satisfies completeness, and has other
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nice properties, such as the Downward K)d_owenheim-Skolem theorernThe
spirit here is that ¢ . behaves very much likey,, .

In our joint work [4], we analysed the family of chain modelsded as the
elements of the topological spag®, k strong limit, c{k) = w (as well as other
cofinalities). Theorbit of a chain model coded bf € k* is the set of allg which
code models chain-isomorphic to the model. The main theafgd] is:

Theorem 2.1. The orbit of a chain model A is always3d set. The orbit is\} if
and only if there is a tree T of height and sizevith no branches of lengtk such
that for any chain model B, player | has a winning strategy iRE " (A,B) if
and only if A~® B.

This theorem has since had several applications, notalay agput to the work
of Vincenzo Dimonte, Luca Moto Ross and Xianghui Shi [3] whfarther devel-
ops descriptive set theory of sugl. One may say that Theorem 2.1 completed
the classical analysis of the chain logic.

3. THE PRESENT PROJECT

Completeness of the first order logic has many applicatigeisthe above com-
pleteness theorems seem purely abstract, and so is thefcBkeasem 2.1. Our
present project is to obtain combinatorial theorems abimgiutar cardinals such
asJ, as consequence of the known properties of strong logicsaiticplar the
chain logic and its fragments. Fixing a singular strongticairdinalk of cofinality
W, wWe may try to obtain the following known theorems as a teshefmethod.

Theorem 3.1. (Erdos-Tarski[5]) If a Boolean algebra has an antichain of any size
< K, then it has an antichain of size

Shelah’s Singular Cardinal Compactness theorem, or jusé gmnsequences of
it, such as:

Theorem 3.2. (Shelah[14]?) If every subset of size k of a graph G has the
coloring number< A < K, then so does G.

We would also like to address some open conjectures andigugssuch as:

Conjecture3.1 If a Banach space has a (semi)-biorthogonal system of esegyh
< K, then it has one of lengtk.

or

7o understand these results properly, one has to make adfisti between weak chain models
and proper chain models, which is a bit out of the scope ofiiapzr.

2A much simplified version of the proof of the Singular Comp&sis Theorem by Shelah himself
is to appear in Sarajevo Journal of Mathematics.
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Question3.2 If a completeL,, ,-sentence has a model of sizk, for everyn,
does it then have a model of sizk,?

A well known question coming from Shelah’s work is:

Question3.3. If every subset of of size: k of a graphG has the chromatic number
< A <K, then does s&?

4. WHICH LOGICS ARE COMPACT

Our first candidate for a logic compact at a singular cardisathain logic.
However, the following results we were able to prove, altifomot completely
conclusive, indicate that this logic is not compact. Namely have been able to
compare the chain logic with other logics which are known taobave singular
compactness, notably the lodig ,. For this we used the idea of a Chu transform,
defined as follows:

Definition 4.1. A Chu spaceover a set K is a triplgA,r,X) where A is a set of
points, X is a set of states and the functionA x X — K is a K-valued binary
relation between the elements of A and the elements of X. Wkef0, 1} we just
speak of Chu spaces and r becomes an ordinary relation.

A Chu transformbetween Chu spacé#, r,X) and (A',r, X’) over the same set
K is a pair of functiong f,g) where f: A— A’, g: X’ — X and which satisfies the
adjointness conditior'(f(a),x)) =r(a,g(x)).

This is relevant for us because of the following results.

We shall consider Chu spacék, =, S) wherelL is a set of sentences closed
under conjunctionsS a set or a class of structures of the same signature as the
sentences ih and}= a relation between the elements®#énd the elements df,
whose interpretation is a satisfaction relation whichsf@s Tarski's definition of
truth for the quantifier-free formulas.

Definition 4.2. We say thatL,|=,S) < (L', =/, S) if there is a Chu transfornif, g)
between(L,|=,S) and (L',|=',S) where f preserves the logical operations and
such that the range of g ensean the following sense

e for everyg € L for which there is & S with s= @, there is s= ran(g) with
SE @

As an example, ang which is onto will clearly satisfy the density condition.
Theorem 4.1. Suppose thatL,,S) < (L',E',S) and (L', S) is compact.
ThensoigL, =, 9).

Proof. Let (f,g) be the Chu transform which witnessféls =,S) < (L', ', S).

Suppose thaf C L is finitely satisfiable and I&&' = {f(¢) : ¢ € Z}. We now claim
thatX' is finitely satisfiable. Namely any finif€ C %' is of the form{f(¢): ¢ €'}
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for some finitel” C X. Therefore there iM € Swith M = ¢ for all € I'. Sinceg
is not necessarily onto, we cannot use it to obtain fiddran element o8.
However, we have that I' is a sentence df, by the closure under conjunctions.

Since |= satisfies Tarski’'s definition of truth for the quantifierdréormulas, we
have that the fact thadl = ¢ for all ¢ € I" implies thatM = AT". By the density re-
quirement ory, there isM’ € S such thag(M’) = AT and hencé/’ =’ f(AT). By
the preservation of the logical operations tyywe have thatf (AT") = Ager f(0)
so thatM’ =" f(¢) forall $ e T andM’ =’ T’. Sol” is finitely satisfiable inS,
which by the assumption implies that thereNse S with N’ = . Therefore

oN) = 5. 0

The proof of Theorem 4.1 with easy changes goes throughddrifher degrees
of compactness, let us specify.

Theorem 4.2. Suppose thafL,=,S) < (L',|=,S) as witnessed by a pairf,g)
and that the following conditions are satisfied:

1) L,L’ are closed under conjunctions afA sentences,

2) = satisfies Tarski's definition of truth for the quantifierdriormulas, including
the conjunctions and disjunctions of size\,

3) f preserves the conjunctions and disjunctions of size

Then, for anyp, if (L', =, S) is (A, 8)-compact, so isL, =, S).

Chain logic comes in several different versions, which wedlsiot define right
now, but one of them is the logic efeak chain mode)sienoted byLx. Using
Chu transforms, we were able to prove

Theorem 4.3. (Ly o, =, M) < Lk
and then conclude thanks to Theorem 4.1 that
Corollary 4.1. The logic Lk is notk-compact.

We are still studying the question of the transformation to$ tproof which
would allow us to conclude:

Conjecture4.1 Chain logic is nok-compact.

Some other logics are known to lgecompact, notably two logics considered
by Keisler in [9]: the ordered logic and the logic with an extuantifier “exists
at leastk”. We are considering other candidates, such as certaimiats of the
chain logic and Shelah’s logic: [16].

Once we have a supply of compact logics, we still need to seevmcan get
any combinatorial theorems as a consequence. A questibwéhare considering
at the moment is if Theorem 5.1 is a consequence of the comgecdf Keisler’s
ordered logic.
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5. MODEL EXISTENCE THEOREMS

Proofs of Completeness froin,, (, are based on a version of Henkin's argu-
ment involving the so calle@onsistency PropertieS hey prove Model Existence
Theorem (MET). As Keisler states in his book [10], the Modgistence Theorem
based on Consistency Properties is frequently uség,ip where Compactness is
used inL, . Consistency Properties were invented by Michael Makk2],[also
using ideas from earlier work by R. Smullyan.

A consistency propertigs a judiciously chosen set of sentences of a logic. The
precise definition depends on the logic, but the point is talble to prove the
following type of theorem:

Theorem 5.1. (Makkai [12]) A sentence of J,, , has a model iff it belongs to a
consistency property.

We call such theorems MET. As an example of an applicatioKgisler’'s book
[10] there is a proof based on MET of the following theoremown as the unde-
finability of Well Order):

Theorem 5.2. (Morley [13], Lopez-Escobafll]) Let T be a countable set of sen-
tences of L, , and letU, < be a unary and binary relation symbol of,L,. Suppose
that for all a < oy, T has a modefly = (Aq,Uq, <,...) such that< linearly or-
ders U and(a,<) C (Ug,<). Then T has a modé& = (B,U, <,...) such that<
linearly orders B andU, <) contains a copy of).

Consistency properties were found by Green for logics offthen L, (, and
by Cunnigham foLLg ., both working with or under the influence of Karp, as ex-
plained above. The definition of a consistency property dép@n the logic and
is somewhat lengthy, so we are not going into the details cf sudefinition here.
The point is that it is a non-trivial matter to develop thehtigind of consistency
property and for a logic to have it, and the proofs are verglon

In our work in progress we are interested in the second ondestricted sec-
ond order versions dfg . since the application in questions, as seen above; are
sometimes expressed in that way. In this context, set Vagaye bounded by an
element of the chain. We are in the process of verifying thieang theorem,
which at this stage we still address as a conjecture:

Conjecture5.1 LE’_& has a consistency property, so that a sentende%jbfhas a
model iff it belongs to a consistency property.

Recall that the full logid_« « does not have the consistency property or MET but
Lt « does. This is because it is easier for a sentence to have rarciogiel than a
full model, as the following example shows.

Example 5.1. Consider the sentence< is a well order”. We can construct a
chain model of this sentence which is not a real model by ¢aikicreasing disjoint
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blocks of sizel;,J, etc. and putting them below each other in the orelerThe
chain model so obtained satisfies tkais a well order because no bounded piece
of it contains an infinite<-decreasing sequence, yet the actual model contains such
a sequence.

Let us finish by proving that even the chain models are notggtarhelp us to
obtain a compact, or even countably compact second ordier log

Theorem 5.3. Second order logic is not countably compact even in chainatsod

Proof. Let 6 be a second order sentence which says<hiata well-order on some
predicateP. In chain models 0@ we have no guarantee thatis really a well-order
because a descending sequence may cross over all thg.sets

Let @ be the second order senten®évy(P(y) — X(y)). The chain models ap
are the chain models in whidhis contained in one level of the chain. In models
of @we have full second order quantification over subse®®. of

In models of8 A @ we know by the above that is really a well-order because
any potential descending chain is a subsd? ahd hence a subset of soe

We can now form a finitely consistent theof®, ®}} U U, {P(cn)} U{co >
C1 > Cz > ...}, which has no chain models. O
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