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THE DUAL OF THE SPACE OF REGULATED

FUNCTIONS IN SEVERAL VARIABLES

YUNYUN YANG AND RICARDO ESTRADA

Abstract. We consider a class of regulated functions of several vari-
ables, namely, the class of functions φ defined in an open set U ⊂ Rn

such that at each x0 ∈ U the “thick” limit

φx0 (w) = lim
ε→0+

φ (x0 + εw) ,

exists uniformly on w ∈ S, the unit sphere of Rn, and such that φx0 is
a continuous function of w at each x0 ∈ U.

We identify the elements of the dual spaces of several Banach space
of such regulated functions in several variables as signed measures with
absolutely convergent sums of “thick” delta functions concentrated at a
countable set.

1. Introduction

Regulated functions in one variable are those functions whose lateral lim-
its exist at every point [4]. In [5] a natural generalization to several variables
was introduced, namely, regulated functions φ in an open set U ⊂ Rn are
those for which for each x0 ∈ U the limit

φx0 (w) = lim
ε→0+

φ (x0 + εw) , (1.1)

exists uniformly for w ∈ S, the unit sphere of Rn. We call the function
φx0 (w) the “thick” limit of φ at the point x0, due to its relation to the
thick points introduced in [6].

We shall also ask that the thick limits of the regulated function φ to
be continuous functions of w ∈ S. It was shown in [5] that if the thick
limits φx0 (w) are continuous functions of w at each x0 ∈ U then the set
of singularities S, the set of points where the ordinary limit does not exist,
is countable: |S| ≤ ℵ0. Actually |S| ≤ ℵ0 even if distributional regulated
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functions [15, 16] in several variables are considered as long as the thick
limits are continuous.

We must point out that this not the only possible definition of regulated
functions in several variables. There are other characterizations of regulated
functions in one variable, namely as the uniform limit of step functions [4],
or as functions whose average variation is zero [1]. Therefore other possible
generalizations of the notion of regulated function to several variables [3]
and actually to general topological spaces [9] have been considered. Gener-
alizations obtained through the theory of integration [2] seem also possible.

However, considering functions that have continuous thick limits allows
us to construct interesting Banach spaces of regulated functions, and, more
generally, topological vector spaces of regulated functions whose dual spaces
can be described in a natural way, similar to the description of Radon signed
measures. Indeed, the ordinary Dirac delta function is a Radon signed
measure, and each Radon signed measure is the sum of a continuous part
plus a discrete part, a sum of Dirac delta functions. We show that in spaces
of regulated functions there is the notion of thick delta function and that
each element of the dual space is the sum of a continuous part plus a discrete
part, a sum of thick Dirac delta functions.

The dual spaces of several Banach spaces of regulated functions in one
variable have been given by various authors, who have used different inte-
grals to represent the continuous linear functionals. Kaltenborn [8], in 1934,
found the duals of the spaces of normalized and the space of all regulated
functions defined in a compact interval [a, b] by using the Dushnik interior
integral. Hildebrandt [7] considered the dual of spaces of regulated functions
in R. In several articles, Tvrdý [12, 13, 14] gave an alternative description of
the space of left continuous regulated functions in a compact interval [a, b]
by using Perron–Stieltjes integrals. Talvila [10, 11] has employed his distri-
butional integrals and those descriptions to find the dual of other interesting
spaces. Our results also apply to the case of one variable, of course, and
thus a new, equivalent description of dual spaces in one variable is obtained.

In order to consider Banach spaces of regulated functions, we need to
discuss a simple but annoying situation. Indeed, shall we consider regu-
lated functions as functions defined at all points?, or, shall we consider their
equivalence class in the almost everywhere sense? The problem is that when
one uses the supremum norm then functions equal to zero a.e. do not have
null length, as is the case in the spaces Lp for p <∞. Let Bmeas [a, b] be the
space of bounded, Lebesgue measurable functions defined in [a, b] , with the
supremum norm, and let L∞ [a, b] be the usual Lebesgue space of equivalence
classes of bounded measurable functions, equal a.e., with the essential supre-
mum norm. Then there is a natural projection π : Bmeas [a, b] → L∞ [a, b] ,
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but the two spaces are not the same. The characteristic function of a set of
null measure, χZ , has norm 1 in Bmeas [a, b] , even though π (χZ) = 0. What
this means is that we shall obtain two types of spaces of regulated functions
in one or several variables: one space, Rt, contains the totality of all regu-
lated functions, while another space, R, contains only functions normalized
in some fashion, and corresponds to the idea of working in a subspace of
L∞.

The plan of the article is as follows. In Section 2, for an open bounded set
U we introduce the Banach spaces Rt[U ] and R[U ] of all and of normalized
regulated functions in Rn that vanish outside of U. In Section 3 we define the
notion of thick delta functions and prove that if the support of an element
of R′[U ] is a single point, then it must be a thick delta. We also prove that
the set of regulated functions with a finite number of discontinuities is dense
in Rt[U ] and, correspondingly, in R[U ]. The elements of the dual spaces
R′t[U ] and R′[U ] are then described as the sum of a continuous part plus a
discrete part, a sum of thick Dirac delta functions. In Section 4 we consider
spaces of regulated functions over a general open set, spaces that are no
longer Banach spaces, and describe their duals. Our results also apply in
one dimension, thus in Section 5 we describe the linear functionals in spaces
of regulated functions in one variable and compare these results with the
known description of such functionals available in the literature.

2. Regulated functions in several variables

We first consider regulated functions in several variables [5].
Let X be a topological vector space of functions defined in the unit sphere

S of Rn. For example, X could be C (S) , the continuous functions on S, or
the Lebesgue spaces Lp (S) , or Bs (S) , the space of bounded functions in S
with the topology of uniform convergence, or Bw (S) , the space of bounded
functions in S with the topology of pointwise convergence.

Definition 2.1. Let φ be a function defined in a region U of Rn. We say
that φ is X−regulated if for each x0 ∈ U there exists r (x0) > 0, such that
if 0 < ε < r (x0) , then the function φ (x0 + εw) , w ∈ S, belongs to X , and
the limit

φx0 (w) = lim
ε→0+

φ (x0 + εw) , (2.1)

exists in X .

If the function φx0 (w) , w ∈ S, is not a constant, then we call it the thick
limit of f at the point x0. Otherwise if φx0 (w) ≡ φx0 , a constant, then we
call it an ordinary limit at the point x0; if φ (x0) = φx0 then φ would be
continuous, in some sense that depends on X , at the point x0 and naturally,
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in many cases, one can redefine the function φ at x0 to make it continuous
at x0 if the ordinary limit exists.

Observe that when n = 1 then S = {−1, 1} , so that the space of all func-
tions defined in S is basically RS ' R2. Since all Haussdorf vector topologies
in R2 are equivalent, there is just one space X in this case, and for this
space, X -regulated means regulated, namely, it means that the limits from
the right and left exist at each point.

We shall consider X−regulated functions where X = Bs (S) , the space of
bounded functions in S with the supremum norm.

Definition 2.2. Let U be an open bounded set in Rn. The space of regulated
functions Rt[U ] is the space of all Bs (S)-regulated functions defined in all
Rn, that vanish in Rn \U, and such that the thick limits φx0 are continuous
functions in S for each x0 ∈ Rn.

Observe that if φ ∈ Rt[U ] then for a given ε the function φ (x0 + εw)
may or may not be continuous, but the limit of such functions as ε → 0,
φx0 must be, that is, φx0 ∈ C (S) . It is known that if the thick limits are
continuous, then the set of points where φx0 is not constant is countable at
the most [5].

Definition 2.3. A regulated function φ ∈ Rt[U ] is normalized if

φ (x0) =
1

cn

∫
S
φx0 (w) dσ (w) , (2.2)

for each x0 ∈ Rn, where cn =
∫
S dσ (w) is the (n− 1)−measure of the unit

sphere S. The space R[U ] is the subspace of Rt[U ] formed by the normalized
regulated functions.

We shall now establish that R[U ] and Rt[U ] are Banach spaces with the
supremum norm.

Proposition 2.4. Any function φ ∈ Rt[U ] is bounded in Rn.

Proof. If φ were not bounded, we would be able to find a sequence {xn}∞n=1
of points where |φ (xn)| ≥ n. Clearly all the points xn belong to the compact
space U, and thus the sequence has a convergent subsequence, which for sim-
plicity we may assume is {xn}∞n=1 itself, xn → x∗.Hence sup0<|x−x∗|<r |φ (x)|
=∞ for all r > 0.

However, φ is Bs (S)-regulated at x∗, and thus there exists r0 > 0 such
that

max
w∈S
|φx∗ (w)− φ (x∗ + εw)| ≤ 1 , (2.3)

for 0 < ε < r0. But (2.3) implies that |φ (x)| ≤ M for 0 < |x− x∗| < r0,
where M = ‖φx∗‖sup + 1. �
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It is interesting that if X 6= Bs (S) then X−regulated functions do not
have to be bounded. For example, if p < ∞, there are functions which are
Lp (S)-regulated at each point but unbounded.

It follows from the Proposition 2.4 that Rt[U ] ⊂ Bs (Rn) . Therefore with
the supremum norm Rt[U ] becomes a normed space.

Proposition 2.5. Rt[U ] is closed in Bs (Rn) , and hence a Banach space.

Proof. Let {φn}∞n=1 be a sequence of Rt[U ] that converges uniformly in Rn
to φ ∈ Bs (Rn) ; we need to show that φ ∈ Rt[U ]. Since it is clear that φ
vanishes outside of U, what we need to show is that φ is Bs (S)−regulated
and that φx0 ∈ C (S) for each x0 ∈ Rn.

Fix x0 ∈ Rn. Let η > 0. There exists n0 ∈ N such that ‖φ− φn‖sup <

η/3 for n ≥ n0. There exists r0 > 0 such that if 0 < ε1, ε2 < r0 then
|φn0 (x0 + ε1w)− φn0 (x0 + ε2w)| < η/3. Hence

lim sup
ε1,ε2→0+

(
max
w∈S
|φ (x0 + ε1w)− φ (x0 + ε2w)|

)
≤ η , (2.4)

and it follows that φx0 , the limit of φ (x0 + εw) as ε→ 0+, exists in Bs (S) .
It is easy to see that (φn)x0

converges to φx0 in Bs (S) , and the continuity
of the (φn)x0

yields that φx0 ∈ C (S) . �

We can define a normalization operation in Rt[U ] as follows.

Definition 2.6. Let φ ∈ Rt[U ]. The function ψ = N (φ) is the normaliza-
tion of φ, given as

ψ (x) =
1

cn

∫
S
φx (w) dσ (w) , x ∈ Rn. (2.5)

The normalization of a regulated function of the space Rt[U ] is also regu-
lated, and in fact the normalized function coincides with the original function
save on a countable set.

Proposition 2.7. If φ ∈ Rt[U ] then ψ = N (φ) is Bs (S)-regulated, and
actually ψx = φx at each x ∈ Rn. The operator N satisfies N2 = N and is
a projection from Rt[U ] to R[U ]. Hence R[U ] is a Banach space.

Proof. Fix x0 ∈ Rn. Let η > 0. There exists δ > 0 such that if w1,w2 ∈ S
satisfy |w1 −w2| < δ, then |φx0 (w1)− φx0 (w2)| < η/2, and there exists r0

such that if 0 < ε < r0 then |φx0 (w)− φ (x0 + εw)| < η/2 for all w ∈ S.
Hence

|φx0 (w)− φ (x0 + εv)| < η if |w − v| < δ and 0 < ε < r0 . (2.6)

It follows that if ρ > 0 is small enough, then for any w ∈ S,∣∣∣∣φx0 (w)− 1

cn

∫
S
φ (x0 + εw+ρv) dσ (v)

∣∣∣∣ < η , (2.7)
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and since
∫
S φ (x+ρv) dσ (v)→ cnψ (x) as ρ→ 0+ for any x,

|φx0 (w)− ψ (x0 + εw)| ≤ η for 0 < ε < r0 .

We thus obtain that ψ is Bs (S)−regulated and ψx0 = φx0 .
The fact that N is a projection from Rt[U ] to R[U ] that satisfies N2 = N

is now clear. �

The Proposition 2.7 allows to write

Rt[U ] = R[U ]⊕Rn[U ] , (2.8)

where Rn[U ] = KerN. A function φ ∈ Rt[U ] belongs to Rn[U ] if and only
if φx = 0 for all x ∈ Rn. It is not hard to see that φ ∈ Rn [U ] if and only if
there exists a sequence of different points of U, {xn}∞n=1 , such that φ (x) = 0
if x 6= xn for all n, and limn→∞ φ (xn) = 0.

If π : Bmeas[U ]→ L∞[U ] is the projection, then we have that π (Rn[U ]) =
{0} , and thus

π (Rt[U ]) = π (R[U ]) . (2.9)

Therefore, the two Banach spacesR[U ] and the subspace π (Rt[U ]) of L∞[U ]
are isometric. This means that in a sense R [a, b] “is” the space of regulated
functions in the context of L∞ [a, b] .

3. The dual spaces R′t[U ] and R′[U ]

We shall now describe the dual spaces R′t[U ] and R′[U ]. If µ belongs to
the dual space of R[U ] or of Rt[U ], we shall denote the evaluation of µ on
a regulated function as 〈µ, φ〉 , or as 〈µ (x) , φ (x)〉 when we want to clearly
indicate the variable of evaluation. We will show that the elements of these

dual spaces, R′t[U ] and R′[U ], are signed measures with a sum of “thick
delta functions”. In what follows we shall denote by M (X) = (C (X))′ the
space of Radon measures on a compact space X.

We define Rt ([U ];F ) to be the set of regulated functions that are contin-
uous in U\F, where F ⊂ U is a finite set of points. Respectively, we denote
by R ([U ];F ) the subset of normalized regulated functions of Rt ([U ];F ) .

If F = ∅, then Rt ([U ]; ∅) is a closed subspace of C
(
U
)
. It is the space

of continuous functions in U that vanish on the boundary. Hence, if µ∅ ∈
Rt ([U ]; ∅) , then µ∅ gives a Radon measure in U, which can be written as

µ∅ = µcont + µdiscr , (3.1)

where µcont is the continuous part and where µdiscr is the discrete part,

µdiscr (x) =
∞∑
n=1

γnδ (x− xn) , (3.2)
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a sum of Dirac delta functions at some points {xn}∞n=1 of U that satisfies∑∞
n=1 |γn| <∞, since actually

‖µ∅‖ =

∫
U

d |µcont|+
∞∑
n=1

|γn| . (3.3)

Here ‖µ∅‖ = sup
{
〈µ∅, φ〉 : φ ∈ Rt ([U ]; ∅) , ‖φ‖sup = 1

}
is the norm of µ∅

in the space R′t ([U ]; ∅) .

3.1. Thick delta functions. In order to consider the spaces R′t ([U ];F )
when F 6= ∅ we need to introduce the idea of thick delta functions.

Definition 3.1. Let c ∈ U. Let ξ ∈M (S) . The formula

〈ξ (w) δw (x− c) , φ (x)〉R′t[U ]×Rt[U ]
= 〈ξ (w) , φc (w)〉M(S)×C(S) , (3.4)

defines an element of R′t[U ] which we call a thick delta function at x = c,
and which we denote as ξ (w) δw (x− c) or as ξδ∗ (x− c) .

If c ∈ U and γ ∈ R, then γδ (x− c) is an ordinary delta function at
x = c. In the space R′[U ] ordinary delta functions can be expressed as thick
deltas, because of (2.2), but in R′t [U ] ordinary deltas and thick deltas are
linearly independent.

Remark 3.2. The projection of a thick delta function ξ (w) δw (x− c) to

the usual space of Radon measures,
(
C
(
U
))′

, is given by a standard delta
at x = c, namely γδ (x− c) , where γ = 〈ξ (w) , 1〉 . This projection might
vanish even if the thick delta is not zero: The test functions of C

(
U
)

do not
have the ability to detect thick deltas, while the test functions of R [U ] do.

In order to obtain our first main results of this section, we need two short
lemmas.

Lemma 3.3. Let φ ∈ Rt[U ] and let g : R→ R be continuous with g (0) = 0.
Then g ◦ φ ∈ Rt[U ].

Proof. Indeed, it is easy to see that g ◦ φ has thick values at each point
x ∈ Rn given by (g ◦ φ)x = g ◦ φx, which is continuous in S. �

Lemma 3.4. Let φ1,φ2 ∈ Rt[U ], then max (φ1,φ2) and min (φ1, φ2) also
belong to Rt[U ].

Proof. It follows from the previous lemma, since max (φ1,φ2) = φ2 +(φ1−φ2

+ |φ1 − φ2|)/2, a composition of addition, substraction, and the absolute
value function which is continuous. Similarly, we have that min (φ1,φ2) =
φ2 + (φ1 − φ2 − |φ1 − φ2|) /2. �
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We can now characterize the elements of R′t[U ] and of R′[U ] with support
at a single point. The notion of support for an element ν ∈ R′t [U ] is the
standard one, namely, supp ν ⊂ K, where K is a closed subset of U if
〈ν, φ〉 = 0 for φ ∈ R′t [U ] with φ (x) = 0 for all x ∈ K.

Let us start with the space R′[U ].

Proposition 3.5. Let µ ∈ R′[U ] with suppµ = {c} . Then there exists
ξ ∈M (S) such that

µ (x) = ξ (w) δw (x− c) . (3.5)

Proof. Let us define a functional

ξ0 :E → R
φc 7−→ 〈µ, φ〉 (3.6)

where E = {φc : φ ∈ Rt [U ]} , a linear subspace of C (S) .
Observe first that ξ0 is well-defined. Namely, if φc = ψc for different φ

and ψ, then 〈ξ0, φc〉 = 〈µ, φ〉 = 〈µ, ψ〉 = 〈ξ0, ψc〉 since φ − ψ vanishes at c
and thus 〈µ, φ− ψ〉 = 0.

Next we shall show that there exists a ξ ∈ M (S) such that ξ|E = ξ0.

This gives µ (x) = ξ (w) δw (x− c) , as required. The existence of ξ would
follow from the Hahn-Banach theorem if we show that ξ0 is a continuous
linear functional. The linearity is clear, so we only need to prove continuity,
or equivalently, boundedness. Let φ ∈ R [U ] , and let φc = α ∈ E. For any
ε > 0, the function ζ defined by

ζ (x) =


φ (x) , if |φ (x)| ≤ ‖α‖sup + ε ,

‖α‖sup + ε , if φ (x) ≥ ‖α‖sup + ε ,

−
(
‖α‖sup + ε

)
, if φ (x) ≤ −

(
‖α‖sup + ε

)
,

(3.7)

belongs toRt [U ] because of the lemma 3.4. Let ψ = N (ζ) , so that ψ ∈ R[U ]

and ψc = ζc = φc = α. Hence, |〈ξ0, α〉| ≤ ‖µ‖ ‖ψ‖sup ≤ ‖µ‖
(
‖α‖sup + ε

)
.

Since ε is arbitrary,

|〈ξ0, α〉| ≤ ‖µ‖ ‖α‖sup . (3.8)

Therefore, there exists ξ ∈M (S) , with ‖ξ‖ = ‖µ‖ , that extends ξ0 to all of
C (S) . �

The corresponding result for R′t[U ] is the following.

Proposition 3.6. Let ν ∈ R′t[U ] with supp ν = {c} . Then there exists
ξ ∈M (S) and γ ∈ R such that

ν (x) = ξ (w) δw (x− c) + γδ (x− c) . (3.9)
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Proof. Let ν ∈ R′t[U ] with supp ν = {c} . Since Rt[U ] = R[U ] ⊕ Rn[U ] , ν
can be decomposed as µ1 + µ2, where µ1 ∈ R′[U ] and µ2 ∈ R′n[U ]. Clearly
both µ1 and µ2 have support contained in {c} . But φ ∈ Rn [U ] if and only if
there exists a sequence of different points of U, {xn}∞n=1 , such that φ (x) = 0
if x 6= xn for all n, and limn→∞ φ (xn) = 0. Therefore µ2 = γδ (x− c) for
some real number γ. Formula (3.9) now follows from Proposition 3.5 . �

In fact, if the support point c is not on the boundary ∂U, ξ could be
uniquely found in the following way.

Proposition 3.7. Let µ ∈ R′[U ] with suppµ = {c} ⊂ U. Then there exists
a unique ξ ∈M (S) such that

µ (x) = ξ (w) δw (x− c) . (3.10)

Uniqueness of ξ and γ in (3.9) also holds if ν ∈ R′t[U ] with supp ν = {c} ⊂
U.

Proof. Let ρ ∈ R[U ] be a continuous function in Rn that satisfies ρ (c) = 1
and 0 ≤ ρ (x) ≤ 1 in all Rn. If α ∈ C (S) , let A (α) ∈ R[U ] be the function
given by

A (α) (x) =


ρ (x)α

(
x−c
|x−c|

)
, x 6= c ,

1
cn

∫
S α (w) dσ (w) , x = c .

(3.11)

Then A : C (S)→ R[U ] is a continuous linear operator of norm 1. Hence the
linear functional ξ defined by 〈ξ, α〉 = 〈µ,A (α)〉 is continuous, ξ ∈M (S) .

If φ ∈ R[U ] we can write φ = A (φc) + ψ, where ψc = 0, and it follows
that

〈µ, φ〉 = 〈µ,A (φc)〉+ 〈µ, ψ〉 = 〈µ,A (φc)〉 = 〈ξ, φc〉 ,
so that µ (x) = ξ (w) δw (x− c) .

In the case of formula (3.9) in R′t[U ], it is clear that γ is unique, whether
c belongs to the interior or the boundary of U, while the uniqueness of ξ
follows from the first part of the proof when c ∈ U. �

Similarly, if ν ∈ R′t ([U ];F ) , where F = G ∪ {c} , is a finite set and the
restriction of ν to Rt ([U ];G) vanishes, then ν could be expressed as:

ν (x) = µ1 + µ2

= ξ (w) δw (x− c) + γδ (x− c) , (3.12)

where µ1 ∈ R′[U ] is a thick delta function and µ2 = γδ (x− c) ∈ R′n[U ] is
an ordinary delta function.

If we now start from (3.1) and (3.2), and employ an inductive argument,
we obtain the ensuing formula.
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Proposition 3.8. Let ν ∈ R′t ([U ];F ) , where F is a finite set of points,
then

ν = µcont +
∞∑
n=1

γnδ (x− xn) +
∑
c∈F

ξcδ∗ (x− c) , (3.13)

where ξc ∈M (S) so that ξcδ∗ (x− c) is a thick delta at x = c.

A similar formula holds in R′ [U ] .

Proposition 3.9. Let µ ∈ R′ ([U ];F ) , where F is a finite set of points,
then

µ = µcont +
∞∑
n=1
xn /∈F

γnδ (x− xn) +
∑
c∈F

ξcδ∗ (x− c) , (3.14)

where ξc ∈M (S) so that ξcδ∗ (x− c) is a thick delta at x = c.

Notice that if c ∈ F but c 6= xn for all n, then 〈ξc, 1〉 = 0, while if c = xn
for some n, then 〈ξc, 1〉 = γn.

We are almost ready to give a characterization of the dual spaces R′t[U ]
and R′[U ]. We need to use the fact that the family of restrictions {µF }F finite
of an element µ of R′t[U ] (or R′[U ]) to the spaces R′t ([U ];F ) (or R′ ([U ];F ))
determines µ uniquely. This will follow from the density result of the next
section.

3.2. A density result. Our next aim is to show that the union of the sets
Rt ([U ];F ) for F finite is dense inRt[U ], and a corresponding result inR[U ].

If f is a function defined in a set E and with real values we shall use the
notation

Var (f ;E) = sup{|f (x)− f (y)| : x, y ∈ E} , (3.15)

for the variation of f over the set E. If f is defined in an open set of Rn it
will also be convenient to introduce the variation functions

vf (x) = lim
ε→0

Var (f ;Bx (ε)) , (3.16)

v∗f (x) = lim
ε→0

Var (f ;B∗x (ε)) , (3.17)

where Bx (ε) is the ball of center x and radius ε and B∗x (ε) is the corre-
sponding punctured ball, B∗x (ε) = Bx (ε) \ {x} .

Notice that 0 ≤ v∗f (x) ≤ vf (x) ; also observe that if φ ∈ Rt[U ], then

v∗φ (x) = Var (φx;S) . (3.18)

Interestingly, if φ ∈ Rt[U ] then the variation function vφ actually belongs
to Rn[U ].
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Proposition 3.10. If φ ∈ Rt[U ], then for all x ∈ Rn,

lim
z→x

vφ (z) = 0 . (3.19)

Proof. Let x be fixed. Let ε > 0. Then there exists r0 > 0 such that

|φx (w)− φ (x + rw)| < ε

3
, 0 < r < r0 , ∀w ∈ S . (3.20)

But φx is continuous, so there exists δ > 0 such that if |w1 −w2| < δ, then
|φx (w1)− φx (w2)| < ε/3.

If z ∈ B∗x (r0) , and η > 0 is small, then for any y1,y2 ∈ Bz (η) , we can
write

y1 = x+r1w1 , y2 = x+r2w2 ,

with rj < r0, and |w1 −w2| < δ, so that we have

|φ (y1)− φ (y2)|
≤ |φ (y1)− φx (w1)|+ |φ (w1)− φx (w2)|+ |φ (w2)− φx (y2)| < ε .

Hence vφ (z) ≤ ε. �

Employing (3.19) it follows that if φ ∈ Rt[U ] then for any ε > 0 the set

Eε = {x : vφ (x) ≥ ε} , (3.21)

is finite. This allows us to obtain the following decomposition of regulated
functions of Rt[U ].

Proposition 3.11. Let φ ∈ Rt[U ] and let ε > 0. Then there exist functions
φε ∈ Rt ([U ];Eε) and ψ ∈ Rt[U ] with vψ (x) < ε for all x such that

φ = φε + ψ . (3.22)

Proof. We shall show that if c ∈ U then we can find a function ϕc ∈
Rt ([U ]; {c}) such that φc = (ϕc)c , while if c ∈ ∂U and η > 0 then we
can find a function ζc ∈ Rt ([U ]; {c}) such that vφ−ζc (c) ≤ η. Then one can
take η < ε and

φε =
∑

c∈Eε∩U
ϕc +

∑
c∈Eε∩∂U

ζc. (3.23)

First consider the simpler case when c ∈U. Let δ > 0 such that the closed
ball Bc (δ) ⊂ U and let ρ ∈ C (R) be such that ρ (t) = 0 for t ≥ δ and
ρ (t) = 1 for t ≤ δ/2. Then the function ϕc defined as

ϕc (c+tw) =

 ρ (t)φc (w) , t > 0 ,

φ (c) , t = 0 ,
(3.24)

belongs to Rt ([U ]; {c}) and φc = (ϕc)c .
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Suppose now that c ∈ ∂U and η > 0. There exists δ > 0 such that
|φc (w)− φ (c+tw)| < η/2 for 0 < t ≤ δ and for all w ∈ S. Let us also
consider the following closed subsets of S, H = {w ∈ S : |φc (w)| ≤ η/2}
and K = {w ∈ S : |φc (w)| ≥ η} . We can find a function χ ∈ C (S) with
0 ≤ χ ≤ 1 such that χ (w) = 0 for w ∈ H and χ (w) = 1 for w ∈ K. Let
α = χφc ∈ C (S) . Observe that ‖φc − α‖sup ≤ η.

Let ρ ∈ C (R) be such that ρ (t) = 0 for t ≥ δ and ρ (t) = 1 for t ≤ δ/2.
Define the function

ζc (c+tw) =

 ρ (t)α (w) , t > 0 ,

φ (c) , t = 0 .
(3.25)

Then ζc is a Bs (S)−regulated function, continuous in Rn \ {c} , and with
(ζc)c = α. If we show that ζc ∈ Rt[U ] the proof would be complete, and
in order to show that ζc ∈ Rt[U ] all we need to show is that ζc (x) = 0
if x ∈ Rn \ U. But ζc (x) = 0 if |x− c| ≥ δ, while if x ∈ Rn \ U and
|x− c| < δ, writing x = c+tw we have that w ∈ H, since φ (x) = 0, and
|φc (w)− φ (c+tw)| < η/2; thus α (w)= 0 and, consequently, ζc (x)= 0. �

We shall also need the following approximation result.

Proposition 3.12. Let φ ∈ Rt[U ] with vφ (x) < ε for all x ∈ Rn. Then
there exists a continuous function f ∈ Rt[U ] such that |φ (x)− f (x)| < 2ε
for all x ∈ Rn.

Proof. Since vφ (x) < ε for all x ∈ U, and U is compact, we have that
maxx∈U vφ (x) < ε. Furthermore, if maxx∈U vφ (x) < η < ε we can find
δ > 0 such that

Var (φ;Bx (δ)) < η , (3.26)

for all x ∈ Rn.
Let ρ ∈ C (Rn), be a continuous function on Rn such that ρ (x) = 0 when

|x| ≥ δ, ρ (x) ≥ 0 when |x| ≤ δ, and∫
Rn

ρ (x) dx = 1 . (3.27)

Then we can approximate any ψ ∈ Rt[U ] with the convolution g = ψ ∗ ρ,
which is a continuous function. Indeed, we have,

|g (x)− ψ (x)| =
∣∣∣∣∫

Rn

ψ (x− z) ρ (z) dz− ψ (x)

∣∣∣∣
=

∣∣∣∣∫
Rn

ψ (x− z) ρ (z) dz−
∫
Rn

ψ (x) ρ (z) dz

∣∣∣∣
≤
∫
|z|≤δ

|ψ (x− z)− ψ (x)| ρ (z) dz
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≤ η
∫
Rn

ρ (z) dz = η .

While g has compact support, this support may or may not be contained
in U. Therefore we proceed as follows. Let γ > 0 be such that η + γ < ε.
Let K = {x ∈ Rn : |g (x)| ≥ η + γ} ; we can find a continuous function h ∈
C (Rn) with 0 ≤ h ≤ 1, such that h (x) = 1 if x ∈ K and h (x) = 0 if
x ∈ Rn \ U, since g (x) ≤ η if x ∈ Rn \ U. Put f = hg. Then f ∈ Rt ([U ]; ∅)
and if x ∈ K, |f (x)− φ (x)| = |g (x)− φ (x)| ≤ η < 2ε, while if x /∈ K,

|f (x)− φ (x)| ≤ |f (x)− g (x)|+ |g (x)− φ (x)| ≤ 2η + γ < 2ε ,

so that ‖f − φ‖sup < 2ε. �

We can now prove the density of the union of the spaces Rt ([U ];F ) in
Rt[U ]. This means that if φ ∈ Rt[U ], then we can find a sequence of finite
sets {Fm}∞m=1 and regulated functions φm ∈ Rt ([U ];Fm) , such that φm → φ
uniformly in Rn.

Theorem 3.13. If U is an open bounded set of Rn then⋃
F finite

Rt ([U ];F ) = Rt[U ] . (3.28)

Proof. Indeed, if φ ∈ Rt[U ] and ε > 0, Proposition 3.11 allows us to write
φ = ζ + ψ, where ζ ∈ Rt ([U ];F ) , F is finite, and ψ ∈ Rt[U ] with vψ (x) <
ε/2 for all x. On the other hand, Proposition 3.12 gives the existence of
f ∈ Rt ([U ]; ∅) such that ‖ψ − f‖sup < ε. Then φF = ζ + f belongs to

Rt ([U ];F ) and ‖φ− φF ‖sup < ε. �

We also have a density result in R[U ].

Theorem 3.14. If U is an open bounded set of Rn then⋃
F finite

R ([U ];F ) = R[U ] . (3.29)

Proof. If φ ∈ R[U ] and ε > 0, we can find a finite set F and φF ∈
Rt ([U ];F ) such that ‖φ− φF ‖sup < ε. Then N (φF ) ∈ R ([U ];F ) and

‖φ−N (φF )‖sup = ‖N (φ− φF )‖sup ≤ ‖φ− φF ‖sup < ε. �

3.3. Description of the dual spaces R′t[U ] and R′[U ]. Each ν ∈ R′t[U ]
has associated a family of elements {µF }F finite of the duals of the spaces
Rt ([U ];F ) , for F finite, obtained by restriction. Our density results guar-
antee that this family determines ν uniquely. A similar situation holds in
R′[U ]. Since we know the form of the elements ofR′t ([U ];F ) andR′ ([U ];F ) ,
we immediately obtain the form of the elements of the spaces R′t[U ] and
R′[U ] as signed measures with a sum of thick deltas.
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Theorem 3.15. Let U be a bounded open set of Rn. Let µ ∈ R′[U ]. Then
there exists a countable set S ⊂ U, signed measures ξc ∈ M (S) for c ∈ S,
and a continuous Radon measure µcont of finite mass in U such that

µ (x) = µcont (x) +
∑
c∈S

ξcδ∗ (x− c) . (3.30)

The norm of µ in the space R′[U ], is given as

‖µ‖R′[U ] =

∫
U

d |µcont|+
∑
c∈S
‖ξc‖M(S) . (3.31)

Similarly, we have the ensuing characterization.

Theorem 3.16. Let U be a bounded open set of Rn. Let ν ∈ R′t[U ]. Then
there exists a countable set S ⊂ U, signed measures ξc ∈M (S) and numbers
γc for c ∈ S, and a continuous Radon measure µcont of finite mass in U
such that

ν (x) = µcont (x) +
∑
c∈S

(ξcδ∗ (x− c) + γcδ (x− c)) . (3.32)

The norm of ν in the space R′t[U ], is given as

‖ν‖R′t[U ] =

∫
U

d |µcont|+
∑
c∈S

(
‖ξc‖M(S) + |γc|

)
. (3.33)

4. Spaces over general 0pen sets

We shall now consider the dual spaces of several spaces of regulated func-
tions defined on a general open set Ω ⊂ Rn.

The space C0 (Rn) consists of the continuous functions that vanish at
infinity, a Banach space with the supremum norm. Similarly we can define
the spaces R0 (Rn) , the space of normalized Bs (S)-regulated functions such
that the thick limits φx0 are continuous functions in S for each x0 ∈ Rn and
that have limit zero at infinity, and Rt,0 (Rn) , the space of Bs (S)-regulated
functions such that the thick limits φx0 are continuous functions in S for
each x0 ∈ Rn and that have limit zero at infinity; both are Banach spaces
with the supremum norm. The dual space (C0 (Rn))′ is the space of signed
measures of total finite variation in Rn, and we obtain similar results for the
corresponding spaces of regulated functions.

Theorem 4.1. Let µ ∈ R′0 (Rn) . Then there exists a continuous Radon
measure in Rn, µcont, a countable subset S ⊂ Rn, and signed measures
ξc ∈M (S) for c ∈ S such that

µ (x) = µcont (x) +
∑
c∈S

ξcδ∗ (x− c) . (4.1)
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Furthermore, the norm of µ in the space R′0 (Rn) is

‖µ‖ =

∫
Rn

d |µcont|+
∑
c∈S
‖ξc‖M(S) . (4.2)

Let ν ∈ R′t,0 (Rn) . Then there exists a continuous Radon measure in Rn,
µcont, a countable subset S ⊂ Rn, signed measures ξc ∈M (S) and constants
γc ∈ R for c ∈ S such that

ν (x) = µcont (x) +
∑
c∈S

(ξcδ∗ (x− c) + γcδ (x− c)) (4.3)

Moreover, the norm of ν in the space R′t,0 (Rn) is

‖ν‖ =

∫
Rn

d |µcont|+
∑
c∈S

(
‖ξc‖M(S) + |γc|

)
. (4.4)

The spaces R (Ω) and Rt (Ω) are the analogous of C (Ω) . A function φ
belongs to Rt (Ω) if it is a Bs (S)-regulated functions defined in all Ω such
that the thick limits φx0 are continuous functions in S for each x0 ∈ Ω,
without any restriction on its behavior at the boundary; it belongs to R (Ω)
if it is a normalized function in Rt (Ω) . The spaces R (Ω) and Rt (Ω) are,
like C (Ω) , topological vector spaces, but not Banach spaces: Convergence
means uniform convergence over each compact subset of Ω. The dual space
(C (Ω))′ is the space of signed measures with compact support in Ω, and
thus the dual spaces of R (Ω) and Rt (Ω) are formed by signed measures
with thick deltas and compact support.

Theorem 4.2. Let µ ∈ R′ (Ω) . Then there exists a compact set K with
K ⊂ Ω, a continuous Radon measure of finite mass in K, µcont, a countable
subset S ⊂ K, and signed measures ξc ∈ M (S) for c ∈ S such that (4.1)
holds.

Let ν ∈ R′t (Ω) . Then there exists a compact set K with K ⊂ Ω, a contin-
uous Radon measure of finite mass in K, µcont, a countable subset S ⊂ K,
signed measures ξc ∈M (S) and constants γc ∈ R for c ∈ S such that (4.4)
holds.

The spaces Rc (Ω) and Rt,c (Ω) are the subspaces of R (Ω) and Rt (Ω) ,
respectively, formed by the functions with compact support in Ω. As with
Cc (Ω) , we give them the topology of the inductive limit of the spaces R [U ]
(or correspondingly Rt [U ]) for U a bounded open set with U ⊂ Ω as U ↗ .

The elements of the dual spaces R′c (Ω) and R′t,c (Ω) are measures with thick
delta functions over Ω with finite variation over each bounded open set U
with U ⊂ Ω, but whose variation over the whole set Ω might be infinite.
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5. Spaces of regulated functions in one variable

Our analysis of the spaces of regulated functions in several variables yields,
of course, the corresponding analysis in one variable. In this section we
describe the dual spaces in one variable and compare our results to those of
other authors.

If φ is a regulated function of one variable, defined in R, then φ is a
normalized regulated function if

φ (x) =
1

2
(φ (x+ 0) + φ (x− 0)) , (5.1)

for each x ∈ R. In one variable one may normalize in other ways, by asking,
for instance, continuity from the right, or perhaps continuity from the left,
and one can find such normalizations in the work of several authors.

We introduced the spaces Rt [U ] and R [U ] , if U is a bounded open set. If
U = (a, b) , a bounded interval, we obtain the spaces Rt [(a, b)] of regulated
functions defined in R which vanish outside of [a, b] and its subspaceR [(a, b)]
consisting of the normalized regulated functions of Rt [(a, b)] .

It will be also convenient to introduce another space, the space R [a, b] .
A function φ ∈ Rt [(a, b)] belongs to R [a, b] if it is normalized at each
point of (a, b) but not necessarily at the endpoints. Similarly, we introduce
the space RL [a, b] , the subspace of Rt [(a, b)] formed by those functions
that are left continuous at each point of R \ {a, b} . The spaces R [a, b] and
RL [a, b] are clearly isomorphic, and we denote by i : RL [a, b] −→ R [a, b]
the isomorphism. One may want to think of the elements of R [a, b] , or of
RL [a, b] , as regulated functions defined on [a, b] .

In one variable, thick delta functions are linear combinations of the one
sided deltas, that is, expressions of the form ξ+δ+ (x− c) + ξ−δ− (x− c) ,
where the right sided Dirac delta function at x = c is the element δ+ (x− c)
= δ (x− (c+ 0)) of R′ [a, b] given by

〈δ+ (x− c) , φ (x)〉 = φ (c+ 0) = lim
x→c+

φ (x) , (5.2)

and the left sided Dirac delta function at x = c is the element δ− (x− c) =
δ (x− (c− 0)) of R′ [a, b] given by

〈δ− (x− c) , φ (x)〉 = φ (c− 0) = lim
x→c−

φ (x) . (5.3)

Observe that if a point c is one of the endpoints, a or b, then the Dirac
delta functions δ (x− a) and δ (x− b) , are actually a multiple of the one
sided deltas in the space R′ [(a, b)] ,

δ (x− a) =
1

2
δ+ (x− a) , δ (x− b) =

1

2
δ− (x− b) , (5.4)
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but δ (x− a) and δ+ (x− a) are linearly independent in R′ [a, b] , and so are
δ (x− b) and δ− (x− b) .

It will be convenient, and it will simplify the notation, to think of δ− (x−a)
as δ (x− a) and of δ+ (x− b) as δ (x− b) when working in the space R′ [a, b] .

If µ ∈ R′ [a, b] then there exists a continuous Radon measure with support
in [a, b] , µcont, and two functions ξ+ and ξ−, defined in R, and that vanish
outside of a countable subset S of [a, b] , such that

µ (x) = µcont (x) +
∑
c∈S

(ξ+ (c) δ+ (x− c) + ξ− (c) δ− (x− c)) . (5.5)

Furthermore, the norm of µ in the space R′ [a, b] is

‖µ‖ =

∫ b

a
d |µcont|+

∑
c∈S

(|ξ+ (c)|+ |ξ− (c)|) . (5.6)

If ν ∈ R′t ([a, b]) then there exists a continuous Radon measure with sup-
port in [a, b] , µcont, and three functions ξ+, ξ−, and γ, defined in R, and
that vanish outside of a countable subset S of [a, b] , such that

ν (x) = µcont (x)

+
∑
c∈S

(ξ+ (c) δ+ (x− c) + ξ− (c) δ− (x− c) + γ (c) δ (x− c)) . (5.7)

Moreover, the norm of ν in the space R′t [a, b] is

‖ν‖ =

∫ b

a
d |µcont|+

∑
c∈S

(|ξ+ (c)|+ |ξ− (c)|+ |γ (c)|) . (5.8)

The spaces R (a, b) and Rt (a, b) are the analogous of C (a, b) . Here (a, b)
is a general open interval, which may be bounded or not. A function φ be-
longs to Rt (a, b) if it is regulated over (a, b) , without any restriction on its
behavior at the endpoints; it belongs toR (a, b) if it is a normalized regulated
function in (a, b) . The spaces R (a, b) and Rt (a, b) are, like C (a, b) , topo-
logical vector spaces, but not Banach spaces: Convergence means uniform
convergence over each compact subset of (a, b) . The dual space (C (a, b))′

is the space of signed measures with compact support in (a, b) , and thus
the dual spaces of R (a, b) and Rt (a, b) are formed by signed measures with
thick deltas and compact support. If µ ∈ R′ [c, d] , and [c, d] ⊂ (a, b) , then
µ has a natural extension to R′ (a, b) , which we shall denote with the same
notation, µ; similarly the elements of R′t [c, d] have a natural extension to
R′t (a, b) .

If µ ∈ R′ (a, b) , then there exists a closed interval [c, d] ⊂ (a, b) such that
µ ∈ R′ [c, d] . The form of µ, a signed measure with thick delta functions, is
given in (5.5).
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Let ν ∈ R′t (a, b) . Then there exists a closed interval [c, d] ⊂ (a, b) such
that ν ∈ R′t [c, d] . The form of ν is given in (5.7).

5.1. Comparison with other results in one variable. The dual spaces
R′t [(a, b)] and R′ [a, b] were described by Kaltenborn [8] in 1934, by using
the Dushnik interior integral. According to his results, any ν ∈ R′t [(a, b)] ,
it can be expressed as the integral

〈ν, φ〉 =

∫ b

a
φ dψ +

∞∑
i=0

[φ (ci)− φ (ci − 0)]ϕ (ci) , (5.9)

for φ ∈ Rt [(a, b)] , where ψ and ϕ are two functions.
Let

ζc (x) =

{
1 , when x = c ,
0 , when x 6= c .

(5.10)

We have that 〈ν, ζc〉 = ϕ (c) . On the other hand, if ν has the expansion
(5.7), we obtain 〈ν, ζc〉 = γ (c) , so that

ϕ (c) = γ (c) . (5.11)

Now let

λc (x) =

 0 , a ≤ x < c ,
1/2 , x = c ,
1 , c < x ≤ b ,

(5.12)

so that λc ∈ R [a, b] . We have that

〈ν, λc〉 = α (b)− α (c+ 0) +
1

2
(α (c+ 0)− α (c− 0)) , (5.13)

where
α (x) = 2ψ (x)− ψ (x+ 0) . (5.14)

Notice that ψ (x) is obtained by 〈ν (t) , κ (t, x)〉 , where κ (t, x) = 1 or 0
according as a ≤ t ≤ x or x < t ≤ b. Since (5.7) yields that 〈ν, λc〉 =∫ b
c dµcont + ξ+ (c) , we obtain

α (b)− α (c+ 0) =

∫ b

c
dµcont , (5.15)

and
1

2
(α (c+ 0)− α (c− 0)) = ξ+ (c) . (5.16)

Furthermore, Kaltenborn proved that any ν ∈ R′ [a, b] can be represented
as the Stieltjes mean integral,

〈ν, φ〉 = (m)

∫ b

a
φ dα , (5.17)

where (5.15) and (5.16) hold.
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It was shown by Tvrdý [12, 13, 14] that the dual of RL [a, b] , the space
of left continuous regulated functions in [a, b] , can be described as follows.
Each linear bounded functional Φ ∈ R′L [a, b] can be uniquely expressed by
a pair η = (p, q) ∈ BV [a, b]×R, where BV [a, b] are the functions of bounded
variation on [a, b] , as

〈Φ, φ〉 = Φη (φ) = qφ (a) +

∫ b

a
p dφ , (5.18)

for any φ ∈ RL [a, b] . The mapping

Φ : η ∈ BV [a, b]× R 7−→Φη ∈ R′L [a, b] , (5.19)

is an isomorphism [12, 13, 14]. The integral in (5.18) is a Perron-Stieltjes
integral, sometimes also called Henstock-Stieltjes integral.

If i : RL [a, b] → R [a, b] is the canonical isomorphism, and µ ∈ R′ [a, b]
then µ◦ i ∈ R′L [a, b] , and each element Φ ∈ R′L [a, b] is of this form, namely,
with µ = Φ ◦ i−1. If Φ = Φη, η = (p, q) ∈ BV [a, b] × R, and µ is given by
(5.5) then if φ ∈ RL [a, b] ,

〈µ ◦ i, φ〉 =

∫ b

a
φ (x) dµcont +

∑
c∈S

(ξ+ (c)φ (c+ 0) + ξ− (c)φ (c− 0)) . (5.20)

Therefore,

q =
〈
µ ◦ i, χ[a,b]

〉
=

∫ b

a
dµcont + ξ+ (a) + ξ− (b) , (5.21)

while

p (t) =
〈
µ ◦ i, χ(t,b]

〉
, t ∈ [a, b) , (5.22)

so that

p (t) =

∫ b

t
dµcont +

∑
c∈S,c<t

(ξ+ (c) + ξ− (c)) , t /∈ S , (5.23)

and

p (t) =

∫ b

t
dµcont + ξ+ (t) +

∑
c∈S,c<t

(ξ+ (c) + ξ− (c)) , t ∈ S . (5.24)

When t = b we obtain

p (b) =
〈
µ ◦ i, χ[b]

〉
= ξ+ (b) . (5.25)
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