In this paper, a new kind of covering axiom pre-ω-closedness (P_ω-closedness, for short), stronger than p-closedness due to J. Dontchev et. al. [7] is introduced in terms of pre-ω-open sets [16]. Several characterizations via filter bases and grills [23] along with various properties of this concept are obtained. Grill generalizations of P_ω-closedness and associated concepts have also been investigated.

1. Introduction

The notion of ω-open sets introduced by H. Z. Hdeib [8] has been studied extensively in recent years by a good number of researchers. Some of the recent research works related to ω-open sets are found in the papers of H. Z. Hdeib [8, 9], Noiri, Omari and Noorani [16, 17], Omari and Noorani [18, 19], and Zoubi and Nashef [25].

For a long time, topologists have been interested in investigating properties closely related to compactness using different kinds of open-like sets, some of which can be found in papers [2, 3, 4, 5, 6, 7, 11, 14, 20, 24]. Every new invention neighboring compactness, at some stage or other, yields tremendous applications not only within topology itself but also in other branches of applied sciences. Keeping this in mind, a new kind of covering property, P_ω-closedness, stronger than the celebrated concept of p-closedness due to J. Dontchev et. al. [7] is introduced in terms of ω-open sets and allied concepts. We have obtained several properties and investigated various properties along with its grill generalization.

2. Prerequisites

Throughout this paper spaces (X, τ) and (Y, σ) (or simply X and Y) represent non-empty topological spaces. The closure and the interior of
a subset A of a space X are denoted by $cl(A)$ and $int(A)$ respectively. Let $A \subset X$. A point $x \in X$ is called a condensation point of A if for each open set U containing x, $A \cap U$ is uncountable. A set A is called ω-closed [8] if it contains all of its condensation points and the complement of an ω-closed set is called an ω-open set or equivalently, $A \subset X$ is ω-open if and only if for each $x \in A$ there exists an open set U containing x such that $U - A$ is countable. The set of all ω-open sets of a topological space (X, τ) is denoted by τ_ω. It is to be noted that τ_ω is a topology on (X, τ) finer than τ. The interior and the closure of a subset A of a space X with respect to the topology τ_ω are denoted by $int_\omega(A)$ (or simply by $int(A)$) and $cl_\omega(A)$ (or simply by $cl(A)$) respectively. A subset A of a space X is called semi-open [12] (resp. regular open, α-open [15], preopen [13], β-open [1], semi-ω-open [16], α-ω-open [16], pre-ω-open [16], β-ω-open [16]) if $A \subset cl(int(A))$ (resp. $A = int(cl(A))$, $A \subset int(cl(A)))$, $A \subset cl(int(A)))$, $A \subset cl(int(cl(A)))$, $A \subset cl(int_\omega(A))$, $A \subset cl(int_\omega(cl(A)))$, $A \subset cl_\omega(cl(A))$ and $A \subset cl(int_\omega(cl(A))))). The family of all semi-open (resp. regular open, α-open, preopen, β-open, semi-ω-open α-ω-open, pre-ω-open, β-ω-open) subsets of (X, τ) is denoted by $SO(X)$ (resp. $RO(X)$, τ^n, $PO(X)$, $\beta O(X)$, $S\omega O(X)$, τ^n_ω, $P\omega O(X)$, $\beta \omega O(X)$). It is well known that every preopen set is pre-ω-open. The family of all preopen (resp. preclosed i.e. preclosed as well as preopen) pre-ω-open, regular open) subsets of X containing $x \in X$ is denoted by $PO(X, x)$ (resp. $P CO(X, x)$, $P\omega O(X, x)$, $RO(X, x)$). The complement of a pre-ω-open set is called a pre-ω-closed set. pcl(S) is the intersection of all preclosed subsets of X containing S. θ-preclosure [7] of a subset S of X is the set pcl$_\theta(S) = \{x \in X : pcl(U) \cap S \neq \emptyset$ for all $U \in PO(X, x)\}$. If $S = pcl_\theta(S)$, then S is called a θ-preclosed set [7]. The complement of a θ-preclosed set is called a θ-preopen set or equivalently, S is θ-preopen if for each $x \in S$, there exists $U \in PO(X, x)$ such that pcl(U) $\subset S$. A subset S of a space X is called a p-closed set relative to X [7] if every cover of S by preopen sets of X has a finite subfamily whose pre-closures cover S. If $S = X$ and S is p-closed set relative to X, then X is called a p-closed space. A topological space X is called strongly irresolvable if $S \in PO(X) \Rightarrow S \in SO(X)$. A space (X, τ) is called strongly compact [10] if every cover of X by preopen sets has a finite subcover.

A filter base \mathcal{F} on a topological space (X, τ) is said to pre-θ-converge [7] to a point $x \in X$ if for each $V \in PO(X, x)$, there exists an $F \in \mathcal{F}$ such that $F \subset pcl(V)$. A filter base \mathcal{F} is said to pre-θ-accumulate [7] (or pre-θ-adhere) at $x \in X$ if $pcl(V) \cap F \neq \emptyset$ for every $V \in PO(X, x)$ and every $F \in \mathcal{F}$. The collection of all points of X at which a filter base \mathcal{F} pre-θ-adheres is denoted by $p-\theta-ad\mathcal{F}$. Thron [23] has defined a grill as a non-empty family \mathcal{G} of non-empty subsets of X satisfying (a) $A \in \mathcal{G}$ and
Let $A \subset B \Rightarrow B \in \mathcal{G}$ and (b) $A \cup B \in \mathcal{G}$ \Rightarrow either $A \in \mathcal{G}$ or $B \in \mathcal{G}$. Thron [23] has also shown that $\mathcal{F}(\mathcal{G}) = \{A \subset X : A \cap F \neq \emptyset, \forall F \in \mathcal{G}\}$ is a filter on X and that there exists an ultrafilter \mathcal{F} such that $\mathcal{F}(\mathcal{G}) \subset \mathcal{F} \subset \mathcal{G}$. Let \mathcal{G} be a grill on a topological space (X, τ) and $\phi : P(X) \rightarrow P(X)$ be a mapping defined by $\phi(A) = \{x \in X : U \cap A \in \mathcal{G}, \text{ for all } U \in \tau(x)\}$. B. Roy and M. N. Mukherjee [21] proved that $\psi : P(X) \rightarrow P(X)$, where $\psi(A) = A \cup \phi(A)$ for all $A \in P(X)$, is a Kuratowski closure operator and hence induces a topology τ_G on X finer than τ.

3. pre-ω-θ-open sets

Definition 3.1. Let A be a subset of a topological space X. Then the pre-ω-interior (resp. pre-ω-closure) of A is denoted by $\text{pint}_\omega(A)$ (resp. $\text{pcl}_\omega(A)$) and is defined as the set $\text{pint}_\omega(A) = \bigcup \{G \subset A : G \in P\omega O(X)\}$ (resp. $\text{pcl}_\omega(A) = \bigcap \{G \supset A : X - G \in P\omega O(X)\}$). If no confusion arises, the pre-ω-interior (resp. pre-ω-closure) of A is denoted by $\text{pint}_\omega(A)$ (resp. $\text{pcl}_\omega(A)$).

Now we state following theorem.

Theorem 3.2. For subsets A, B of a topological space X, the following properties hold:

(a) $\text{pcl}_\omega(A) \subset \text{pcl}(A)$ and $\text{pcl}_\omega(A) \subset cl_\omega(A)$.

(b) $A \subset B$ implies $\text{pcl}_\omega(A) \subset \text{pcl}_\omega(B)$ and $\text{pint}_\omega(A) \subset \text{pint}_\omega(B)$.

(c) $\text{pcl}_\omega(\text{pcl}_\omega(A)) = \text{pcl}_\omega(A)$ and $\text{pint}_\omega(\text{pint}_\omega(A)) = \text{pint}_\omega(A)$.

(d) A is pre-ω-closed if and only if $\text{pcl}_\omega(A) = A$.

(e) A is pre-ω-open if and only if $\text{pint}_\omega(A) = A$.

(f) $\text{pcl}_\omega(X - A) = X - \text{pint}_\omega(A)$.

(g) $\text{pint}_\omega(X - A) = X - \text{pcl}_\omega(A)$.

Remark 3.3. For a subset A of a topological space, $\text{pcl}_\omega(A) \neq \text{pcl}(A)$ in general, which is reflected in the following example.

Example 3.4. Consider the space $X = \mathbb{N}$ with the topology generated by the base $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ where $B_n = \{1, n\}$. Then the topology on X is $\tau = \{\emptyset\} \cup \{G \subset \mathbb{N} : G \text{ contains } 1\} = P\omega O(X)$. Since \mathbb{N} is countable, $\tau_\omega = P(X) = P\omega O(X)$, where $P(X)$ is the power set of X. Let A be a subset of X containing 1. Then $\text{pcl}(A) = A$ and $\text{pcl}(A) = \mathbb{N}$.

Definition 3.5. A point $x \in X$ is said to be a pre-ω-θ-accumulation point of a subset A of a topological space (X, τ) if $\text{pcl}_\omega(U) \cap A \neq \emptyset$ for every $U \in P\omega O(X, x)$. The set of all pre-ω-θ-accumulation points of A is called the pre-ω-θ-closure of A and is denoted by $\text{pcl}_\theta(A)$. A subset A of a topological space (X, τ) is said to be pre-ω-θ-closed if $\text{pcl}_\theta(A) = A$. The complement of a pre-ω-θ-closed set is called a pre-ω-θ-open set.
Lemma 3.6. A subset A of a space X is pre-ω-θ-open if and only if for each $x \in A$, there exists $V \in PO(X,x)$ such that $pcl_\omega(V) \subset A$.

Proof. Let A be pre-ω-θ-open and $x \in A$. Since $X - A$ is pre-ω-θ-closed then for $x \in A$, there exists a $V \in PO(X,x)$ such that $pcl_\omega(V) \cap (X - A) = \emptyset$ and thus $pcl_\omega(V) \subset A$.

Conversely, suppose that the condition does not hold. Then there exists an $x \in A$ such that $pcl_\omega(V) \not\subset A$ for all $V \in PO(X,x)$. Thus $pcl_\omega(V) \cap (X - A) \neq \emptyset$ for all $V \in PO(X,x)$ and so x is a pre-ω-θ-accumulation point of $X - A$. Hence $X - A$ is not pre-ω-θ-closed. \hfill \qed

Theorem 3.7. Let A and B be any subsets of a space X. The following properties hold:

(a) θ-preclosed sets are pre-ω-θ-closed sets.
(b) $p_\omega cl_\theta(A) \subset pcl_\theta(A)$,
(c) if $A \subset B$, then $p_\omega cl_\theta(A) \subset p_\omega cl_\theta(B)$,
(d) the intersection of an arbitrary family of pre-ω-θ-closed sets is pre-ω-θ-closed in X.

Proof. The proof is straightforward and is thus omitted. \hfill \qed

Remark 3.8. In a topological space, $p_\omega cl_\theta(A) \neq pcl_\theta(A)$ and a pre-ω-θ-closed set may not be θ-preclosed in general, which is reflected in the following example.

Example 3.9. In Example 3.4, consider $A = N - \{1\}$. Then $1 \not\in p_\omega cl_\theta(A)$ because $\{1\} \in PO(X,1)$ and $pcl_\omega(\{1\}) \cap A = \emptyset$ but $pcl_\theta(A) = N$. It is also clear from this example that A is a pre-ω-θ-closed set but not a θ-preclosed set in X.

Definition 3.10. Let X be a topological space and $A \subset X$. Then A is called a ω-regular (resp. mist-ω-regular) open set if $A = int_\omega(cl(A))$ (resp. $A = int(cl_\omega(A))$). The family of all ω-regular open sets of X is denoted by $R_\omega O(X)$.

Lemma 3.11. The family $R_\omega O(X)$ of all ω-regular open sets of X is a base of some topology on X.

Proof. Let $x \in X$. Suppose A and B are any two ω-regular open sets of X containing x. Consider $C = A \cap B$. Then C is ω-open (so pre-ω-open) containing x and so $int_\omega(cl(C)) \supset C$. On the other hand, $C = int_\omega(cl(A)) \cap int_\omega(cl(B)) = int_\omega(cl(A) \cap cl(B)) \supset int_\omega(cl(A \cap B)) = int_\omega(cl(C))$. Hence the family $R_\omega O(X)$ of all ω-regular open sets of X is a base of some topology on X. \hfill \qed

In this paper, we consider τ_{R_ω} as the topology generated by the base $R_\omega O(X)$.
4. P_ω-closed spaces

Definition 4.1. A topological space X is called P_ω-closed (resp. quasi-H-ω-closed) iff every preopen cover of X has a finite subfamily whose pre-ω-closures (resp. ω-closures) cover X.

Theorem 4.2. Let (X, τ) be quasi-H-ω-closed and strongly irresolvable. Then (X, τ) is p-closed.

Proof. Let $\{U_\alpha : \alpha \in \Delta\}$ be a preopen cover of (X, τ). Since (X, τ) is quasi-H-ω-closed, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $X = \bigcup_{i=1}^n cl_\omega(U_{\alpha_i})$. Since X is strongly irresolvable then each $U_\alpha \in SO(X)$ and so $cl_\omega(U_\alpha) \subset cl(U_\alpha) = cl(int(U_\alpha)) = pcl(U_\alpha)$ for each $\alpha \in \Delta$. Thus (X, τ) is p-closed. \square

Definition 4.3. A filter base F (resp. a grill G) on a topological space (X, τ) is said to pre-ω-θ-converge to a point $x \in X$ if for each $V \in PO(X, x)$, there exists $F \in F$ (resp. $F \in G$) such that $F \subset pcl_\omega(V)$. A filter base F is said to pre-ω-θ-accumulate (or pre-ω-θ-adhere) at $x \in X$ if $pcl_\omega(V) \cap F \neq \emptyset$ for every $V \in PO(X, x)$ and every $F \in F$. The collection of all points of X at which the filter base F pre-ω-θ-adheres is denoted by $p_{\omega, \theta}$-adF.

Theorem 4.4. For a topological space (X, τ) the following conditions are equivalent:

(a) (X, τ) is P_ω-closed,
(b) every ultrafilter base pre-ω-θ-converges to some point of X,
(c) every filter base pre-ω-θ-accumulates at some point of X,
(d) for every family $\{V_\alpha : \alpha \in \Delta\}$ of preclosed subsets such that $\cap\{V_\alpha : \alpha \in \Delta\} = \emptyset$, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $\cap_{i=1}^n pint_\omega(V_{\alpha_i}) = \emptyset$.

Proof. (a)\Rightarrow(b). Let (X, τ) be P_ω-closed and F be an ultrafilter base on X which does not pre-ω-θ-converge to any point of X. Since F is an ultrafilter base on X, then it can not pre-ω-θ-accumulate at any point of X. Thus for each $x \in X$, there is an $F_x \in F$ and a $V_x \in PO(X, x)$ such that $pcl_\omega(V_x) \cap F_x = \emptyset$. Then the family $\{V_x : x \in X\}$ forms a cover of X by preopen subsets. Since X is P_ω-closed, there exists a finite number of points $x_1, x_2, \ldots, x_n \in X$ such that $X = \bigcup_{i=1}^n pcl_\omega(V_{x_i})$. Since F is a filter base on X, there exists an $F' \in F$ such that $F' \subset \cap_{i=1}^n (F_{x_i})$ and thus $F' = \emptyset$ which is a contradiction.

(b)\Rightarrow(c). Let F be any filter base on X. Then there is an ultrafilter base F' containing F. By the hypothesis, F' pre-ω-θ-converges to some point $x \in X$. Now consider $V \in PO(X, x)$ and every $F \in F$. Then there exists an $F' \in F'$ such that $F' \subset pcl_\omega(V)$ and $F \cap F' \neq \emptyset$. Hence $\emptyset \neq F \cap F' \subset pcl_\omega(V) \cap F$. So the filter base F pre-ω-θ-accumulates at $x \in X$.

(c)⇒(d). Let \(\{V_{\alpha} : \alpha \in \Delta \} \) be a family of preclosed subsets of \(X \) such that \(\cap \{V_{\alpha} : \alpha \in \Delta \} = \emptyset \). Let \(\mathcal{G} \) be the family of all finite subsets of \(\Delta \). Suppose \(\cap \{\text{pint}_\omega(V_{\beta}) , \beta \in \delta \} \neq \emptyset \) for each \(\delta \in \mathcal{G} \). Then \(\mathcal{F} = \{\cap \{\text{pint}_\omega(V_{\beta}) , \beta \in \delta \} : \delta \in \mathcal{G} \} \) is a filter base on \(X \). For, if \(F_1, F_2 \in \mathcal{F} \), then \(F_1 = \cap \{\text{pint}_\omega(V_{\beta}) , \beta \in \delta \} \) and \(F_2 = \cap \{\text{pint}_\omega(V_{\gamma}) , \gamma \in \delta' \} \) for some \(\delta, \delta' \in \mathcal{G} \) and so \(F_3 = F_1 \cap F_2 = \cap \{\text{pint}_\omega(V_{\lambda}) , \lambda \in \delta \cup \delta' \} \in \mathcal{F} \). Then by (c), \(\mathcal{F} \) pre-\(\omega \)-\(\theta \)-accumulates at some point \(x \) of \(X \). Since \(\{X - V_{\alpha} : \alpha \in \Delta \} \) is a preopen cover of \(X, x \in X - V_{\alpha_0} \) for some \(\alpha_0 \in \Delta \). Let \(G = X - V_{\alpha_0} \). Then \(G \in PO(X,x) \) and \(\text{pint}_\omega(V_{\alpha_0}) \in \mathcal{F} \) such that \(\text{pcl}_\omega(G) \cap \text{pint}_\omega(V_{\alpha_0}) = \emptyset \) which is a contradiction.

(d)⇒(a). Let \(\{U_{\alpha} : \alpha \in \Delta \} \) be a family of preopen subsets of \(X \) covering \(X \). Then \(\{X - U_{\alpha} : \alpha \in \Delta \} \) is a family of preclosed subsets of \(X \) having empty intersection. Thus by (d), there exist \(\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta \) such that
\[
\cap_{i=1}^n \text{pint}_\omega(X - U_{\alpha_i}) = \emptyset \quad \text{i.e.} \quad \cup_{i=1}^n \text{pcl}_\omega(U_{\alpha_i}) = X.
\]
So \((X, \tau) \) is \(P_\omega \)-closed.

Theorem 4.5. If the topological space \(X \) is \(P_\omega \)-closed, then every pre-\(\omega \)-\(\theta \)-open cover of \(X \) has a finite subcover.

Proof. Let \(X \) be \(P_\omega \)-closed. Let \(\Sigma = \{U_{\alpha} : \alpha \in \Delta \} \) be a cover of \(X \) by pre-\(\omega \)-\(\theta \)-open sets of \(X \). Let \(x \in X \) and \(x \in U_{\alpha_x} \) for some \(\alpha_x \in \Delta \). Then by the Lemma 3.6, there exists a \(V_{\alpha_x} \in PO(X,x) \) such that \(\text{pcl}_\omega(V_{\alpha_x}) \subset U_{\alpha_x} \). Therefore \(\Sigma = \{V_{\alpha_x} : x \in X \} \) is a preopen cover of \(X \) and hence there exist \(x(1), x(2), \ldots, x(n) \in X \) such that \(X = \cup_{i=1}^n \text{pcl}_\omega(V_{\alpha_{x(i)}}) \). So \(X = \cup_{i=1}^n U_{\alpha_{x(i)}} \). Hence \(\{U_{\alpha_x(i)} : x(i) \in X, i = 1, 2, \ldots, n \} \) is the required finite subcover of \(\Sigma \).

It is clear that every \(P_\omega \)-closed space is p-closed but the converse need not be true. This fact has been established with the following example.

Example 4.6. Consider the space \((X, \tau) \) from Example 3.4. Then clearly, \(X \) is p-closed because for any \(A \in PO(X), \text{pcl}(A) = N \). Now observe the cover \(\{A_n = \{1, n\} : n \in \mathbb{N} \} \) of \(X \) by preopen sets of \(X \). Again it is noted that \(\text{pcl}_\omega(A_n) = \{1, n\} \) and so \(\{A_n : n \in \mathbb{N} \} \) is a cover of \(X \) by pre-\(\omega \)-\(\theta \)-open sets of \(X \). But it has no finite subcover. Hence by theorem 4.5, \(X \) is not \(P_\omega \)-closed.

Definition 4.7. A topological space \((X, \tau) \) is said to be strongly \(P_\omega \)-regular if for each point \(x \in X \) and each preclosed set \(F \) such that \(x \notin F \), there exist \(V \in PO(X,x) \) and \(W \in P(\omega\mathcal{O}(X)) \) such that \(F \subset W \) and \(V \cap W = \emptyset \).

Theorem 4.8. A topological space \(X \) is strongly \(P_\omega \)-regular if and only if for each \(x \in X \) and for each preopen set \(U \) containing \(x \), there exists \(V \in PO(X,x) \) such that \(x \in V \subset \text{pcl}_\omega(V) \subset U \).

Proof. Let \(X \) be a strongly \(P_\omega \)-regular space. Suppose \(x \in X \) and \(U \in PO(X,x) \). Then \(F = X - U \) is a preclosed set not containing \(x \). Then
there exist a \(V \in PO(X, x) \) and a \(W \in \mathcal{P} \omega O(X) \) such that \(F \subset W \) and \(V \cap W = \emptyset \). So \(x \in V \subset \mathcal{P} \omega(V) \subset X - W \subset X - F = U \).

Conversely, let \(x \in X \) and \(F \) be preclosed with \(x \notin F \). Then there exists \(V \in PO(X, x) \) such that \(x \in V \subset \mathcal{P} \omega(V) \subset X - F \). Consider \(W = X - \mathcal{P} \omega(V) \). Then \(F \subset W \) and \(V \cap W = \emptyset \). So \(X \) is strongly \(\mathcal{P} \omega \)-regular.

Theorem 4.9. If a topological space \(X \) is \(\mathcal{P} \omega \)-closed and strongly \(\mathcal{P} \omega \)-regular, then \(X \) is strongly compact.

Proof. Let \(X \) be \(\mathcal{P} \omega \)-closed and strongly \(\mathcal{P} \omega \)-regular. Suppose \(\{U_\alpha : \alpha \in \Delta\} \) is a preopen cover of \(X \). For each \(x \in X \) there exists \(\alpha(x) \in \Delta \) such that \(U_{\alpha(x)} \in PO(X, x) \) and since \(X \) is strongly \(\mathcal{P} \omega \)-regular by Theorem 4.8, there exists \(V_x \in PO(X, x) \) such that \(x \in \mathcal{P} \omega(V_x) \subset U_{\alpha(x)} \). Then \(\{V_x : x \in X\} \) is a family of preopen subsets of \(X \) covering \(X \) and as \(X \) is \(\mathcal{P} \omega \)-closed, there exist \(x_1, x_2, \ldots, x_n \in X \) such that \(X = \bigcup_{i=1}^n \mathcal{P} \omega(V_{x_i}) \subset \bigcup_{i=1}^n U_{\alpha(x_i)} \). Hence \(X \) is strongly compact. \(\square \)

Definition 4.10. A subset \(S \) of a topological space \((X, \tau) \) is said to be \(\mathcal{P} \omega \)-closed relative to \(X \) if every cover \(\{V_\alpha : \alpha \in \Delta\} \) of \(S \) by preopen subsets of \((X, \tau) \) has a finite subfamily whose pre-\(\omega \)-closures cover \(S \).

Theorem 4.11. For a topological space \((X, \tau) \) and for a subset \(S \) of \(X \), the following conditions are equivalent:

(a) \(S \) is \(\mathcal{P} \omega \)-closed relative to \(X \),
(b) every ultrafilter base on \(X \) which meets \(S \) pre-\(\omega \)-converges to some point of \(S \),
(c) every filter base on \(X \) which meets \(S \) pre-\(\omega \)-accumulates at some point of \(S \),
(d) for every family \(\{V_\alpha : \alpha \in \Delta\} \) of pre-closed subsets of \((X, \tau) \) such that \(\cap\{V_\alpha : \alpha \in \Delta\} \cap S = \emptyset \), there exists a finite number of indices \(\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta \) such that \(\cap_{i=1}^n \mathcal{P} \omega(V_{\alpha_i}) \cap S = \emptyset \).

Proof. The proof is quite similar to the proof of the Theorem 4.4 and is thus omitted. \(\square \)

Theorem 4.12. For a topological space \((X, \tau) \) and for a subset \(S \) of \(X \) the following two conditions are equivalent:

(a) \(S \) is \(\mathcal{P} \omega \)-closed relative to \(X \),
(b) every grill \(\mathcal{G} \) on \(X \) containing \(S \) pre-\(\omega \)-converges to some point of \(S \).

Proof. (a)\(\Rightarrow \)(b). Let \(\mathcal{G} \) be a grill on \(X \) containing \(S \) which does not pre-\(\omega \)-converge to any point of \(S \). Then for each \(x \in S \) and for each \(U_x \in PO(X, x) \), \(F \not\subset \mathcal{P} \omega(U_x) \) for all \(F \in \mathcal{G} \). Thus \(\mathcal{P} \omega(U_x) \notin \mathcal{G} \). Now consider
the cover \(\{ U_x : x \in S \} \) of \(S \). Since \(S \) is \(\omega \)-closed relative to \(X \), there exist \(x_1, x_2, \ldots, x_n \in S \) such that \(S \subset \bigcup_{i=1}^n \text{pcl}_\omega(U_{x_i}) \). Then \(\bigcup_{i=1}^n \text{pcl}_\omega(U_{x_i}) \in \mathcal{G} \) is a contradiction.

(b) \(\Rightarrow \) (a). Let \(S \) not be \(\omega \)-closed relative to \(X \). Then there exists a cover \(\{ U_\alpha \in PO(X) : \alpha \in \Delta \} \) of \(S \) such that \(F = \{ S - \bigcup_{i=1}^n \text{pcl}_\omega(U_{\alpha_i}) : n < \aleph_0 \} \) is a filterbase on \(X \). Now consider \(\mathcal{G} \), an ultrafilter base containing \(F \). Then \(\mathcal{G} \) is a grill containing \(S \) and hence by (b), \(\mathcal{G} \) converges at some point \(x \in S \). Now let \(x \in U_\alpha \) for some \(\alpha \in \Delta \), there exists \(F \in \mathcal{G} \) such that \(F \subset \text{pcl}_\omega(U_\alpha) \). So \(\text{pcl}_\omega(U_\alpha) \in \mathcal{G} \). But \(S - \text{pcl}_\omega(U_\alpha) \in \mathcal{G} \) which is a contradiction. \(\square \)

Corollary 4.14. A topological space \(X \) is \(\omega \)-closed if and only if every grill on \(X \) \(\omega \)-converges to some point of \(X \).

Theorem 4.15. Let \(A, B \) be subsets of a space \(X \). If \(A \) is \(\omega \)-\(\theta \)-closed and \(B \) is \(\omega \)-closed relative to \(X \), then \(A \cap B \) is \(\omega \)-closed relative to \(X \).

Proof. Let \(\{ U_\alpha : \alpha \in \Delta \} \) be a cover of \(A \cap B \) by preopen subsets of \(X \). Since \(A \) is \(\omega \)-\(\theta \)-closed, then for each \(x \in B - A \) there exists \(V_x \in PO(X, x) \) such that \(\text{pcl}_\omega(V_x) \cap A = \emptyset \). Then the family \(\{ U_\alpha : \alpha \in \Delta \} \cup \{ V_x : x \in B - A \} \) is a cover of \(B \) by preopen subsets of \(X \). Since \(B \) is \(\omega \)-closed relative to \(X \), then there exists a finite number of points \(x_1, x_2, \ldots, x_n \in B - A \) and a finite number of indices \(\alpha_1, \alpha_2, \ldots, \alpha_m \in \Delta \) such that \(B \subset (\bigcup_{i=1}^n \text{pcl}_\omega(V_{x_i})) \cup (\bigcup_{j=1}^m \text{pcl}_\omega(U_{\alpha_j})) \) and so \(A \cap B \subset \bigcup_{i=1}^n \text{pcl}_\omega(U_{\alpha_i}) \). So \(A \cap B \) is \(\omega \)-closed relative to \(X \). \(\square \)

Corollary 4.16. If \(X \) is a \(\omega \)-closed space, then every \(\omega \)-\(\theta \)-closed subset of \(X \) is \(\omega \)-closed relative to \(X \).

Definition 4.17. Let \(X \) be a topological space and \(A \subset X \). Then \(\text{mist}\omega \)-boundary of \(A \) is the set \(\omega\text{-Fr}(A) = \text{cl}_\omega(A) - \text{int}(A) \).

Definition 4.18. A topological space \(X \) is called \(\omega \)-\(\kappa \)-nearly compact if every cover of \(X \) by \(\omega \)-\(\kappa \)-regular open sets has a finite subcover.

Definition 4.19. For an infinite cardinal number \(\kappa \), a topological space \(X \) is called \(\omega \)-\(\kappa \)-extremely disconnected if the cardinality of the \(\omega \)-boundary of every \(\omega \)-\(\kappa \)-regular open set is less than \(\kappa \).

Theorem 4.20. If a topological space \(X \) is \(\omega \)-closed and \(\omega \)-\(\aleph_0 \)-extremely disconnected, then \(X \) is \(\omega \)-\(\kappa \)-nearly compact.

Proof. Let \(\Sigma = \{ U_\alpha : \alpha \in \Delta \} \) be a cover of \(X \) by \(\omega \)-\(\kappa \)-regular open sets of \(X \). Since \(U_\alpha = \text{int}(\text{cl}_\omega(U_\alpha)) \subset \text{int}(\text{cl}(U_\alpha)) \) for each \(\alpha \in \Delta \), \(\Sigma \) is a preopen cover of \(X \). Since \(X \) is \(\omega \)-closed, there exists a finite set \(\Delta_0 \subset \Delta \) such that \(X = \bigcup_{\alpha \in \Delta_0} \text{pcl}_\omega(U_\alpha) \subset \bigcup_{\alpha \in \Delta_0} \text{cl}_\omega(U_\alpha) \). Therefore \(X = \bigcup_{\alpha \in \Delta_0} \text{cl}_\omega(U_\alpha) \). Now for each \(\alpha \in \Delta_0 \), \(\text{cl}_\omega(U_\alpha) = U_\alpha \cup F_\alpha \) where \(F_\alpha = \text{cl}_\omega(U_\alpha) - U_\alpha = \)]
\[\text{Let (It is obvious that if } \text{Let } \text{Let } \text{Let} \text{∪ } \text{cl } G \subset \text{∪ } \text{quasi-} \in \text{and so } \text{pcl } U \text{α } \text{α } \text{X } \text{X } \text{relative to } \text{cl } \text{the grill } G \text{X of any topological space } H \text{closed (resp. quasi-} \text{X } \text{H } \text{Proof. } \text{in the topological space } \text{Proof. } \text{Proof. } G \text{is pre-} \text{G } \text{is cover of } \text{g } 0 \text{− } \Delta \in \text{∈ } \text{ω } \text{G } \text{− closed set relative to any grill } \text{− closed) with respect to any grill } \text{− closed) space } X \text{ is closed in the topological space } (X, \tau). \text{Proof. } \text{Let } x \in X − G. \text{ Then for each } g \in G, \text{ there exist two open sets } U_g \text{ and } V_g \text{ such that } x \in U_g \text{ and } g \in V_g \text{ and } U_g \cap V_g = \emptyset. \text{ Then } \{V_g : g \in G \} \text{ is a cover of } G \text{ by open (and so preopen) sets of } X. \text{ Since } G \text{ is a } p_\omega \text{-closed set relative to } X, \text{ there exist } g_1, g_2, \ldots, g_n \in G \text{ such that } G \subset \cup_{i=1}^n \text{pcl}_\omega(V_{g_i}) \subset \text{pcl}_\omega(\cup_{i=1}^n (V_{g_i})). \text{ Now consider } U = \cap U_{g_i} \text{ and } V = \cup V_{g_i}. \text{ Then } U \cap V = \emptyset \text{ and so } \text{pcl}_\omega(V) \subset \text{cl}(V) \subset X − U. \text{ Therefore } \text{pcl}_\omega(V) \cap U = \emptyset \text{ and so } \text{int}(\text{pcl}_\omega(V)) \cap U = \emptyset. \text{ Hence } \text{int}(\text{pcl}_\omega(V)) \cap \text{cl}(U) = \emptyset \text{ and since } G \text{ is pre-} \omega \text{-open, } G \cap \text{pcl}_\omega(U) = \emptyset. \text{ Thus } G \text{ is pre-} \omega \text{-closed.} \]
Theorem 4.25. Let \mathcal{G} be a grill on a topological space (X, τ) containing all nonempty ω-open sets and X be quasi-H-ω-closed with respect to the grill \mathcal{G}. Then X is quasi-H-ω-closed.

Proof. Let X be quasi-H-ω-closed with respect to the grill \mathcal{G} and $\{U_\alpha : \alpha \in \Delta\}$ be a cover of X by the preopen sets of X. Then there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i}) \notin \mathcal{G}$. If $\text{int}_\omega(X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i})) \neq \emptyset$, then $\text{int}_\omega(X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i})) \in \mathcal{G}$. But $\text{int}_\omega(X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i})) = X - \text{cl}_\omega(\bigcup_{i=1}^n U_{\alpha_i}) = X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i})$. So $X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i}) \in \mathcal{G}$, which is a contradiction. Hence $\emptyset = \text{int}_\omega(X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i})) = X - \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i})$. Thus $X = \bigcup_{i=1}^n \text{cl}_\omega(U_{\alpha_i})$. Therefore X is quasi-H-ω-closed.

Definition 4.26. A topological space X is called weakly P_ω-closed (resp. strongly P_ω-closed, strongly compact) with respect to a grill \mathcal{G} if every preopen (resp. open, preopen) cover $\{V_{\alpha} : \alpha \in \Delta\}$ of X has a finite subfamily $\{V_{\alpha_i} : \alpha_i \in \Delta, i = 1, 2, \ldots, n\}$ such that $X - \bigcup_{i=1}^n \text{int}_\omega(V_{\alpha_i}) \notin \mathcal{G}$ (resp. $X - \bigcup_{i=1}^n \text{pcl}_\omega(V_{\alpha_i}) \notin \mathcal{G}$, $X - \bigcup_{i=1}^n V_{\alpha_i} \notin \mathcal{G}$).

Definition 4.27. A topological space X is called strongly pre-ω-regular with respect to a grill \mathcal{G} if for each $x \in X$ and preclosed set F not containing x. Then there exist disjoint sets $U \in \text{PO}(X, x)$ and $V \in \text{P}_\omega\text{O}(X)$ such that $F - V \notin \mathcal{G}$.

Theorem 4.28. A P_ω-closed strongly pre-ω-regular space with respect to a grill \mathcal{G} is strongly compact with respect to the grill \mathcal{G}.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a cover of X by preclosed sets of X. Then for each $x \in X$, there exists $\alpha(x) \in \Delta$ such that $x \in U_{\alpha(x)}$. Since X is strongly pre-ω-regular with respect to the grill \mathcal{G}, there exist disjoint sets $P_{\alpha(x)} \in \text{PO}(X, x)$ and $Q_{\alpha(x)} \in \text{P}_\omega\text{O}(X)$ such that $(X - U_{\alpha(x)}) - Q_{\alpha(x)} \notin \mathcal{G}$. Here $\{P_{\alpha(x)} : x \in X\}$ is a cover of X by preopen sets of X. Since X is P_ω-closed, there exist $x(1), x(2), \ldots, x(n) \in X$ such that $X = \bigcup_{i=1}^n \text{pcl}_\omega(P_{\alpha(x(i))})$. Consider $S_{\alpha(x)} = (X - U_{\alpha(x)}) - Q_{\alpha(x)}$. Here $P_{\alpha(x)} \cap Q_{\alpha(x)} = \emptyset$ implies that $\text{pcl}_\omega(P_{\alpha(x)}) \cap Q_{\alpha(x)} = \emptyset$. Now we claim that $\text{pcl}_\omega(P_{\alpha(x)}) \subset S_{\alpha(x)} \cup U_{\alpha(x)}$. Since $x \notin \text{pcl}_\omega(P_{\alpha(x)})$, but $x \notin U_{\alpha(x)}$ implies that $q \in X - Q_{\alpha(x)}$ and so $q \in ((X - U_{\alpha(x)}) - Q_{\alpha(x)}) = S_{\alpha(x)}$. Thus $X = \bigcup_{i=1}^n \text{pcl}_\omega(P_{\alpha(x(i))}) \subset \bigcup_{i=1}^n (S_{\alpha(x(i)}) \cup U_{\alpha(x(i))})$, and so $X - \bigcup_{i=1}^n U_{\alpha(x(i))} \subset \bigcup_{i=1}^n (S_{\alpha(x(i)}) \notin \mathcal{G}$. But for each $i = 1, 2, \ldots, n$, $S_{\alpha(x(i))} \notin \mathcal{G}$ and so $X - \bigcup_{i=1}^n U_{\alpha(x(i))} \notin \mathcal{G}$. Hence X is strongly compact with respect to the grill \mathcal{G}.

Theorem 4.29. A T_2 weakly P_ω-closed space with respect to a grill \mathcal{G} is strongly pre-ω-regular with respect to the grill \mathcal{G}.

Proof. Consider $x \in X$ and a preclosed set F not containing x. Then for each $y \in F$, there exist disjoint open sets U_y and V_y containing x and y. Then $X - \bigcup_{y \in F} (U_y \cup V_y) \notin \mathcal{G}$, which contradicts the assumption that X is strongly pre-ω-regular with respect to the grill \mathcal{G}. Thus X is strongly pre-ω-regular with respect to the grill \mathcal{G}.
respectively. Therefore \(\{ V_y : y \in F \} \cup \{ X - F \} \) is a preopen cover of \(X \).
Since \(X \) is a weakly \(P_\omega \)-closed space with respect to the grill \(G \), there exist \(y_1, y_2, \ldots, y_n \in F \) such that \(X - \left(\bigcup_{i=1}^n \text{int}_\omega(V_{y_i}) \cup \text{int}_\omega(X - F) \right) \notin G \). Now consider \(U = X - \text{pcl}(\bigcup_{i=1}^n V_{y_i}) \) and \(V = \bigcup_{i=1}^n V_{y_i} \). Then \(U \cap V = \emptyset \), \(U \in \text{PO}(X, x) \), \(V \in \text{PO}(X) \subset P_\omega \text{O}(X) \) and \(F - V = F \cap (X - V) = X - \left(\bigcup_{i=1}^n (V_{y_i}) \cup (X - F) \right) \subset X - \left[\bigcup_{i=1}^n \text{int}_\omega(V_{y_i}) \cup \text{int}_\omega(X - F) \right] \) and so \(F - V \notin G \). Hence \(X \) is strongly pre-\(\omega \)-regular with respect to the grill \(G \). \(\square \)

Theorem 4.30. Let \(G \) be a grill on a topological space \((X, \tau) \) and \((X, \tau) \) be strongly compact with respect to the grill \(G \). Then \((X, \tau_G) \) is strongly \(P_\omega \)-closed with respect to the grill \(G \).

Proof. Let \((X, \tau) \) be strongly compact with respect to the grill \(G \) and consider \(\Sigma \) to be a cover of \(X \) by open sets of \((X, \tau_G) \). Then for each \(x \in X \), there exists \(U_x \in \Sigma \) such that \(x \in U_x \). Then there exist a \(B_x \in \tau \) and a \(V_x \notin G \) such that \(x \in B_x - V_x \subset U_x \). Then \(\{ B_x : x \in X \} \) is a cover of \(X \) by open (and so preopen) sets of the space \((X, \tau) \). Since \((X, \tau) \) is strongly compact with respect to the grill \(G \), there exist \(x(1), x(2), \ldots, x(n) \in X \) such that \(X - \bigcup_{i=1}^n B_{x(i)} \notin G \). Now \(X - \bigcup_{i=1}^n \text{pcl}_\omega(U_{x(i)}) \subset X - \bigcup_{i=1}^n U_{x(i)} \subset X - \bigcup_{i=1}^n (B_{x(i)} - U_{x(i)}) \subset (X - \bigcup_{i=1}^n (B_{x(i)} \cup U_{x(i)})) \notin G \). Hence \((X, \tau_G) \) is strongly \(P_\omega \)-closed with respect to the grill \(G \). \(\square \)

Theorem 4.31. Let \(G \) be a grill on \(X \). A topological space \((X, \tau) \) is \(P_\omega \)-closed with respect to the grill \(G \) if and only if every \(\text{pre-}\omega-\theta \)-closed subset of \(X \) is \(P_\omega \)-closed with respect to the grill \(G \) and the space \(X \).

Proof. Let \((X, \tau) \) be \(P_\omega \)-closed with respect to the grill \(G \) and \(A \) be a \(\text{pre-}\omega-\theta \)-closed subset of \(X \) and let \(\Sigma = \{ V_\alpha : \alpha \in \Delta \} \) be a cover of \(A \) by preopen sets of \(X \). Since \(X - A \) is a \(\text{pre-}\omega-\theta \)-open set, for each \(x \in X - A \), by the Lemma 3.6, there exists \(U_x \in \text{PO}(X, x) \) such that \(\text{pcl}_\omega(U_x) \subset X - A \). Hence \(\Sigma \cup \{ U_x : x \in X - A \} \) is a preopen cover of \(X \) and so there exist \(\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta \) and \(x_1, x_2, \ldots, x_m \in X - A \) such that \(X - \left(\bigcup_{i=1}^n \text{pcl}_\omega(V_{\alpha_i}) \cup \bigcup_{i=1}^m \text{pcl}_\omega(U_{x_i}) \right) \notin G \). So \(X - \bigcup_{i=1}^n \text{pcl}_\omega(V_{\alpha_i}) = A - \left(\bigcup_{i=1}^n \text{pcl}_\omega(V_{\alpha_i}) \right) \subset A - \left(\bigcup_{i=1}^n \text{pcl}_\omega(V_{\alpha_i}) \right) \cup \left(\bigcup_{i=1}^m \text{pcl}_\omega(U_{x_i}) \right) \notin G \). Therefore \(A - \bigcup_{i=1}^n \text{pcl}_\omega(V_{\alpha_i}) \notin G \) and hence \(A \) is \(P_\omega \)-closed with respect to the grill \(G \) and \(X \). Again since \(X \) is a \(\text{pre-}\theta-\omega \)-closed subset of \(X \), the converse part of the theorem is obvious. \(\square \)

Acknowledgement. The authors are grateful to the learned referee for his valuable suggestions which improve the paper to a great extent.
REFERENCES