This paper is dedicated to G. Ćupona, S. Kurepa, W. Rudin, V. Perić and B. Schweizer who have passed away recently.

Abstract. D. Borwein and S. Z. Ditor have found a measurable subset A of the real line having positive Lebesgue measure and a decreasing sequence (d_n) of reals converging to 0 such that, for each x, $x + d_n \notin A$ for infinitely many n. The set they constructed is nowhere dense. This result prompted us to further explore the question of subsets of R and R^2 that are of "small size" and the existence of null sequences with the described property and hence attain some related results.

1. Introduction

D. Borwein and S.Z. Ditor [1] have proved the following theorem, answering a question of P. Erdos.

Theorem 1.1. (Borwein, Ditor 1978)

1. If A is a measurable set in R with $m(A) > 0$, and (d_n) is a sequence of reals converging to 0, then for almost all $x \in A$, $x + d_n \in A$ for infinitely many n.

2. There exists a measurable set A in R with $m(A) > 0$, and a (decreasing) sequence (d_n) converging to 0, such that, for each x, $x + d_n \notin A$ for infinitely many n.

We recollect that in the proof of (2), the set of natural numbers N is partitioned

$$N = \{1, 2, \ldots N_1\} \cup \{N_1 + 1, N_1 + 2, \ldots N_2\} \cup \ldots \cup \{N_k + 1, N_k + 2, \ldots N_{k+1}\} \cup \ldots$$

with $N_1 < N_2 < N_3 < \cdots < N_k < \cdots$ and A is constructed as follows:

2000 Mathematics Subject Classification. 40D25, 40G99, 28A12.
\[x = \sum_{n=1}^{\infty} \frac{a_n}{2^n}, \quad a_n \in \{0,1\}, \quad \text{is in } A \]

iff for every \(k \), there exist \(m \in I_k \) so that \(a_m = 0 \), and \(a_n = 1 \) for infinitely many \(n \), where

\[I_1 = \{1,2,\ldots,N_1\}, I_2 = \{N_1+1,\ldots,N_2\}, \ldots I_k = \{N_{k-1}+1,\ldots,N_k\}, \ldots. \]

A is closed and \(m(A) \) can be made arbitrarily close to 1.

The sequence \((d_n)\) is constructed as follows: For \(k \geq N \),

\[D_k = \left\{ x = \sum_{m \in I_k} \frac{a_m}{2^m}, \quad a_m \in \{0,1\}, \quad \text{at least one } a_m = 1 \right\} \]

\[x = 0.000 \ldots 0a_{N_{k-1}+1} \ldots a_{N_k}00 \ldots \text{ and } D = \bigcup_{k=1}^{\infty} D_k \] is countable. The elements of \(D \) converge to 0.

We see that \(m(A) > 0 \), but \(A \) is nowhere dense. In 2010, H. I. Miller [2] proved a generalization of part (2) of the Borwein-Ditor theorem for nowhere dense subsets of \([0,1]\) (and consequently of \(R \)).

Theorem 1.2. (H.I. Miller 2010) *Suppose \(A \) is a nowhere dense subset of \([0,1]\). There exists a (decreasing) sequence \((d_n)\) converging to 0, such that, for each \(x \), \(x + d_n \notin A \) for infinitely many \(n \).*

Here we show a two-dimensional version of the above theorem.

Theorem 1.3. *Suppose \(A \) is a nowhere dense subset of \([0,1] \times \[0,1]\). There exists a sequence \((d_n) \in \mathbb{R}^2\) converging to 0, such that, for each \(x \), \(x + d_n \notin A \) for infinitely many \(n \).*

Proof. Suppose \(n \in \mathbb{N} \) is arbitrarily fixed. Divide \([0,1] \times [0,1]\) into \(nxn \) squares by partitioning the interval \([0,1]\) into \(n \) subintervals \(0 < \frac{1}{n} < \frac{2}{n} < \cdots < 1 \). In each square, fix the disk of radius \(\frac{1}{4n} \) centered around the center of the square. Inside that disk, fix a disk that is disjoint with \(A \). There exists \(\delta_n \in \mathbb{N} \) and \(\epsilon_n > 0 \) such that: for each \(x \in [0,1] \times [0,1] \), one of the rays \(x + \lambda e^{\frac{\pi}{n}}, x + \lambda e^{\frac{2\pi}{n}}, x + \lambda e^{\frac{3\pi}{n}}, \ldots, x + \lambda e^{\frac{2(n-1)\pi}{n}} \) \((\lambda > 0) \) crosses one of the fixed \(nxn \) disks disjoint with \(A \) with a segment of length \(\epsilon_n > 0 \).

Fix the maximal \(k_n \in \mathbb{N} \) with \(k_n \epsilon_n < \frac{2}{n} \). Let

\[D_n = \left\{ \epsilon_n \cdot e^{\frac{\pi}{nn}}, 2\epsilon_n \cdot e^{\frac{\pi}{nn}}, \ldots, k_n \epsilon_n \cdot e^{\frac{\pi}{nn}}, \epsilon_n \cdot e^{\frac{2\pi}{nn}}, 2\epsilon_n \cdot e^{\frac{2\pi}{nn}}, \ldots, k_n \epsilon_n \cdot e^{\frac{2\pi}{nn}}, \epsilon_n \cdot e^{\frac{3\pi}{nn}}, 2\epsilon_n \cdot e^{\frac{3\pi}{nn}}, \ldots, k_n \epsilon_n \cdot e^{\frac{3\pi}{nn}}, \ldots, 2\epsilon_n \cdot e^{\frac{2(n-1)\pi}{nn}}, \ldots, k_n \epsilon_n \cdot e^{\frac{2(n-1)\pi}{nn}} \right\}. \]
For each \(x \in A \), there exists \(d \in D_n \), \(x + d \notin A \). Let \(D = \bigcup_{n=1}^{\infty} D_n \). \(D \) is countable. The elements of \(D \) converge to 0. If they are arranged as a sequence, the proof is complete.

The question naturally arises whether an analogous statement can be proved for other types of small sets in \(\mathbb{R} \), (for example sets of measure 0). We show that there exists a set of outer measure 0 in \(\mathbb{R} \) for which the opposite of the statement in part (2) of the Borwein-Ditor theorem holds. First we show a more general result.

Theorem 1.4. Suppose \(A = [0,1] \setminus X \), where \(X \) is a set of first category. Then for every sequence \((d_n)\) converging to 0, there exists \(x \in A \), \(x + d_n \notin A \) for \(n \) large enough.

Proof. Since \(X \) is a set of first category, \(X = \bigcup_{i=1}^{\infty} X_i \) where \(X_i \) is nowhere dense in \([0,1]\) for \(i \in N \). Then \(A = \bigcap_{i=1}^{\infty} A_i \) where \(A_i = [0,1] \setminus X_i \) for \(i \in N \).

Suppose \((d_n)\) is a sequence of reals converging to 0. Let \(n_0 \in N \) be fixed so that \(|d_n| < \frac{1}{4} \) for \(n \geq n_0 \). We need to find \(x \in R \) that satisfies:

- (A) \(x \in A_i \) for \(i \in N \),
- (B) \(x + d_n \in A_i \) for \(i \in N \), \(n \geq n_0 \).

There are countably many conditions in (A) as well as in (B), so we can order them together as a sequence of conditions \(C_1, C_2, \ldots C_k \ldots \).

Claim: The set of \(x \in [\frac{1}{4}, \frac{3}{4}] \) that satisfies condition \(C_k \) has a complement that is nowhere dense in \([\frac{1}{2}, \frac{3}{2}] \), for \(k \in N \).

Proof of claim: If \(C_k \) is the condition that \(x \in A_i \) for some \(i \), then since \(X_i \) is nowhere dense in \([0,1]\), the claim is true. Suppose \(C_k \) is the condition that \(x + d_n \in A_i \) for some \(n \geq n_0 \), and some \(i \in N \). Since \(A_i \) has a complement that is nowhere dense in \([0,1], -d_n + A_i \) has a complement that is nowhere dense in \([-d_n, 1 - d_n] \) and consequently nowhere dense in \([\frac{1}{4}, \frac{3}{4}] \) (since \(|d_n| < \frac{1}{4} \)).

So the set of \(x \) for which \(x + d_n \in A_i \) has a complement that is nowhere dense in \([\frac{1}{4}, \frac{3}{4}] \).

The claim is proved.

From the above claim, we see that the set of \(x \) in \([\frac{1}{4}, \frac{3}{4}] \) satisfying conditions \(C_1, C_2, \ldots C_k \ldots \), is an intersection of countably many sets that have nowhere dense complements. This set has a complement of first category and is therefore nonempty. This completes the proof.

Remark 1.5. In the proof of the above theorem, it has been shown that the set of \(x \) satisfying the conclusion is actually large (has a complement of first category).

The next theorem is a corollary of Theorem 1.4.
Theorem 1.6. There exists a set $A \subset [0, 1]$ with outer measure 0, such that for every sequence (d_n) converging to 0, there exists $x \in A$, $x + d_n \in A$ for n large enough.

Proof. By the proof of Borwein-Ditor (2) (see the first page), for each n we can construct $X_n \subset [0, 1]$, X_n nowhere dense, $m(X_n) = 1 - \frac{1}{n}$ (by choosing N_1, N_2, \ldots, N_k appropriately). Let

$$A = [0, 1] \setminus \bigcup_{n=1}^{\infty} X_n = \bigcap_{n=1}^{\infty} X_n^c.$$

Then A has outer measure 0 and the conclusion follows from Theorem 1.4. \qed

We add a natural generalization of Theorem 1.4 in two dimensions.

Theorem 1.7. Suppose $A = [0, 1] \times [0, 1] \setminus X$, where X is a set of first category. Then for every sequence $(d_n) \in \mathbb{R}^2$ converging to 0, there exists $x \in A$, $x + d_n \in A$ for n large enough.

Proof. Since X is a set of first category, $X = \bigcup_{i=1}^{\infty} X_i$ where X_i is nowhere dense in $[0, 1] \times [0, 1]$ for $i \in N$. Then $A = \bigcap_{i=1}^{\infty} A_i$ where $A_i = [0, 1] \times [0, 1] \setminus X_i$ for $i \in N$.

Suppose (d_n) is a sequence of vectors in \mathbb{R}^2 converging to 0. Let $n_0 \in N$ be fixed so that $|d_n| < \frac{1}{4}$ for $n \geq n_0$. We need to find $x \in \mathbb{R}^2$ that satisfies:

(A) $x \in A_i$ for $i \in N$,

(B) $x + d_n \in A_i$ for $i \in N$, $n \geq n_0$.

There are countably many conditions in (A) as well as in (B), so we can order them together as a sequence of conditions C_1, C_2, \ldots, C_k, etc.

Let B denote the closed disk of radius $\frac{1}{4}$ centered around $(\frac{1}{2}, \frac{1}{2})$. The following claim can be verified by the same reasoning that was used in the proof of Theorem 1.4:

The set of $x \in B$ that satisfies condition C_k has a complement that is nowhere dense in B, for $k \in N$.

From the above claim, we see that the set of x satisfying conditions C_1, C_2, \ldots, C_k, etc., is nonempty. This completes the proof. \qed

References

(Received: August 11, 2011) Harry I. Miller
Faculty of Engineering and Natural Sciences
International University of Sarajevo
Sarajevo, 71000
Bosnia-Herzegovina
E-mail: himiller@hotmail.com

Leila Miller-Van Wieren
Faculty of Engineering and Natural Sciences
International University of Sarajevo
Sarajevo, 71000
Bosnia-Herzegovina
E-mail: lejla.miller@yahoo.com