RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR’S f–DIVERGENCE

GEORGE A. ANASTASSIOU

Abstract. Here are established various tight probabilistic inequalities that give nearly best estimates for the Csiszar’s f-divergence. These involve Riemann-Liouville and Caputo fractional derivatives of the directing function f. Also a lower bound is given for the Csiszar’s distance. The Csiszar’s discrimination is the most essential and general measure for the comparison between two probability measures. This is continuation of [4].

1. Preliminaries

Throughout this paper we use the following.

1) Let f be a convex function from $(0, +\infty)$ into \mathbb{R} which is strictly convex at 1 with $f(1) = 0$. Let $(X, \mathcal{A}, \lambda)$ be a measure space, where λ is a finite or a σ-finite measure on (X, \mathcal{A}). And let μ_1, μ_2 be two probability measures on (X, \mathcal{A}) such that $\mu_1 \ll \lambda, \mu_2 \ll \lambda$ (absolutely continuous), e.g. $\lambda = \mu_1 + \mu_2$. Denote by $p = \frac{d\mu_1}{d\lambda}, q = \frac{d\mu_2}{d\lambda}$ the (densities) Radon-Nikodym derivatives of μ_1, μ_2 with respect to λ. Here we assume that $0 < a \leq \frac{p}{q} \leq b$, a.e. on X and $a \leq 1 \leq b$.

The quantity

$$
\Gamma_f (\mu_1, \mu_2) = \int_X q(x) f \left(\frac{p(x)}{q(x)} \right) d\lambda(x),
$$

was introduced by I. Csiszar in 1967, see [7], and is called f-divergence of the probability measures μ_1 and μ_2. By Lemma 1.1 of [7], the integral (1) is well-defined and $\Gamma_f (\mu_1, \mu_2) \geq 0$ with equality only when $\mu_1 = \mu_2$. In [7] the author without proof mentions that $\Gamma_f (\mu_1, \mu_2)$ does not depend on the choice of λ.

2000 Mathematics Subject Classification. 26A33, 26D15, 28A25, 60E15.

Key words and phrases. Csiszar’s discrimination, Csiszar’s distance, fractional calculus, Riemann-Liouville and Caputo fractional derivatives.
For a proof of the last see [4], Lemma 1.1.

The concept of \(f \)-divergence was introduced first in [6] as a generalization of Kullback’s “information for discrimination” or \(I \)-divergence (generalized entropy) [11], [12] and of Rényi’s “information gain” (\(I \)-divergence of order \(\alpha \)) [13]. In fact the \(I \)-divergence of order 1 equals

\[
\Gamma_{u \log_2 u} (\mu_1, \mu_2) .
\]

The choice \(f(u) = (u - 1)^2 \) produces again a known measure of difference of distributions that is called \(\kappa_2 \)-divergence, of course the total variation distance \(|\mu_1 - \mu_2| = \int_X |p(x) - q(x)| \, d\lambda(x) \) equals \(\Gamma_{|u-1|} (\mu_1, \mu_2) \).

Here by assuming \(f(1) = 0 \) we can consider \(\Gamma_f (\mu_1, \mu_2) \) as a measure of the difference between the probability measures \(\mu_1, \mu_2 \). But since \(f \) is convex and strictly convex at 1 (see Lemma 2, [4]) so is

\[
f^*(u) = uf \left(\frac{1}{u} \right)
\]

and as in [7] we get

\[
\Gamma_f (\mu_2, \mu_1) = \Gamma_{f^*} (\mu_1, \mu_2) .
\]

In Information Theory and Statistics many other concrete divergences are used which are special cases of the above general Csiszar \(f \)-divergence, e.g. Hellinger distance \(D_H \), \(\alpha \)-divergence \(D_\alpha \), Bhattacharyya distance \(D_B \), Harmonic distance \(D_{H_\alpha} \), Jeffrey’s distance \(D_J \), triangular discrimination \(D_\Delta \), for all these see, e.g. [5], [9]. The problem of finding and estimating the proper distance (or difference or discrimination) of two probability distributions is one of the major ones in Probability Theory.

The above \(f \)-divergence measures in their various forms have been also applied to Anthropology, Genetics, Finance, Economics, Political Science, Biology, Approximation of Probability distributions, Signal Processing and Pattern Recognition. A great inspiration for this article has been the very important monograph on the topic by S. Dragomir [9].

II) Here we follow [8].

We start with

Definition 1. Let \(\nu \geq 0 \), the operator \(J^\nu_a \), defined on \(L_1 (a, b) \) by

\[
J^\nu_a f (x) := \frac{1}{\Gamma (\nu)} \int_a^x (x - t)^{\nu - 1} f(t) \, dt
\]

for \(a \leq x \leq b \), is called the Riemann-Liouville fractional integral operator of order \(\nu \).

For \(\nu = 0 \), we set \(J^0_a := I \), the identity operator. Here \(\Gamma \) stands for the gamma function.
Let $\alpha > 0$, $f \in L_1(a,b)$, $a,b \in \mathbb{R}$, see [8]. Here $\lfloor \cdot \rfloor$ stands for the integral part of the number.

We define the generalized Riemann-Liouville fractional derivative of f of order α by

$$D^\alpha_a f(s) := \frac{1}{\Gamma(m-\alpha)} \left(\frac{d}{ds} \right)^m \int_a^s (s-t)^{m-\alpha-1} f(t) \, dt,$$

where $m := \lfloor \alpha \rfloor + 1$, $s \in [a,b]$, see also [1], Remark 46 there.

In addition, we set

$$D^0_a f := f,$$

$$J^{-\alpha}_a f := D^{-\alpha}_a f,$$
if $\alpha > 0$,

$$D_{-\alpha}^a f := J^\alpha_a f,$$
if $0 < \alpha \leq 1$,

$$D^n_a f = f^{(n)},$$
for $n \in \mathbb{N}$. \hfill (5)

We need

Definition 2. ([3]) We say that $f \in L_1(a,b)$ has an L_∞ fractional derivative $D^\alpha_a f$ ($\alpha > 0$) in $[a,b]$, $a,b \in \mathbb{R}$, iff $D^\alpha_a f \in C([a,b])$, $k = 1, \ldots, m := \lfloor \alpha \rfloor + 1$, and $D^{-\alpha}_a f \in AC([a,b])$ (absolutely continuous functions) and $D^\alpha_a f \in L_\infty(a,b)$.

Lemma 3. ([3]) Let $\beta > \alpha \geq 0$, $f \in L_1(a,b)$, $a,b \in \mathbb{R}$, have L_∞ fractional derivative $D^\alpha_a f$ in $[a,b]$, let $D^{\alpha-k}_a f(a) = 0$ for $k = 1, \ldots, \lfloor \beta \rfloor + 1$. Then

$$D^\alpha_a f(s) = \frac{1}{\Gamma(\beta-\alpha)} \int_a^s (s-t)^{\beta-\alpha-1} D^\beta_a f(t) \, dt, \forall s \in [a,b].$$ \hfill (6)

Here $D^\alpha_a f \in AC([a,b])$ for $\beta - \alpha \geq 1$, and $D^\alpha_a f \in C([a,b])$ for $\beta - \alpha \in (0,1)$.

Here $AC^n([a,b])$ is the space of functions with absolutely continuous $(n-1)$-st derivative.

We need to mention

Definition 4. ([8]) Let $\nu \geq 0$, $n := \lceil \nu \rceil$, $\lceil \cdot \rceil$ is ceiling of the number, $f \in AC^n([a,b])$. We call Caputo fractional derivative

$$D^\nu_{*a} f(x) := \frac{1}{\Gamma(n-\nu)} \int_a^x (x-t)^{n-\nu-1} f^{(n)}(t) \, dt, \forall x \in [a,b].$$ \hfill (7)

The above function $D^\nu_{*a} f(x)$ exists almost everywhere for $x \in [a,b]$.

We need

Proposition 5. ([8]) Let $\nu \geq 0$, $n := \lceil \nu \rceil$, $f \in AC^n([a,b])$. Then $D^\nu_{*a} f$ exists iff the generalized Riemann-Liouville fractional derivative $D^\alpha_a f$ exists.
Proposition 6. ([8]) Let \(\nu \geq 0 \), \(n := \lceil \nu \rceil \). Assume that \(f \) is such that both \(D_{\nu a}^\nu f \) and \(D_{a}^\nu f \) exist. Suppose that \(f^{(k)}(a) = 0 \) for \(k = 0, 1, \ldots, n-1 \). Then
\[
D_{\nu a}^\nu f = D_{a}^\nu f.
\]

In conclusion

Corollary 7. ([2]) Let \(\nu \geq 0 \), \(n := \lceil \nu \rceil \), \(f \in AC^n ([a, b]) \), \(D_{\nu a}^\nu f \) exists or \(D_{a}^\nu f \) exists, and \(f^{(k)}(a) = 0 \), \(k = 0, 1, \ldots, n-1 \). Then
\[
D_{\nu a}^\nu f = D_{a}^\nu f.
\]

We need

Theorem 8. ([2]) Let \(\nu \geq 0 \), \(n := \lceil \nu \rceil \), \(f \in AC^n ([a, b]) \) and \(f^{(k)}(a) = 0 \), \(k = 0, 1, \ldots, n-1 \). Then
\[
f(x) = \frac{1}{\Gamma(\nu)} \int_a^x (x-t)^{\nu-1} D_{\nu a}^\nu f(t) \, dt.
\]

We also need

Theorem 9. ([2]) Let \(\nu \geq \gamma + 1 \), \(\gamma \geq 0 \). Call \(n := \lceil \nu \rceil \). Assume \(f \in AC^n ([a, b]) \) such that \(f^{(k)}(a) = 0 \), \(k = 0, 1, \ldots, n-1 \), and \(D_{\nu a}^\nu f \in L_\infty (a, b) \). Then \(D_{\nu a}^\nu f \in AC ([a, b]) \), and
\[
D_{\nu a}^\nu f(x) = \frac{1}{\Gamma(\nu-\gamma)} \int_a^x (x-t)^{\nu-\gamma-1} D_{\nu a}^\nu f(t) \, dt, \quad \forall x \in [a, b].
\]

Theorem 10. ([2]) Let \(\nu \geq \gamma + 1 \), \(\gamma \geq 0 \), \(n := \lceil \nu \rceil \). Let \(f \in AC^n ([a, b]) \) such that \(f^{(k)}(a) = 0 \), \(k = 0, 1, \ldots, n-1 \). Assume \(\exists D_{a}^\nu f(x) \in \mathbb{R}, \forall x \in [a, b] \), and \(D_{\nu a}^\nu f \in L_\infty (a, b) \). Then \(D_{a}^\nu f \in AC ([a, b]) \), and
\[
D_{a}^\nu f(x) = \frac{1}{\Gamma(\nu-\gamma)} \int_a^x (x-t)^{\nu-\gamma-1} D_{a}^\nu f(t) \, dt, \quad \forall x \in [a, b].
\]

2. Results

Here \(f \) and the whole setting is as in 1. Preliminaries (I). We present first results regarding the Riemann-Liouville fractional derivative.

Theorem 11. Let \(\beta > 0 \), \(f \in L_1 (a, b) \), have \(L_\infty \) fractional derivative \(D_{a}^\beta f \) in \([a, b]\), let \(D_{a}^{\beta-k} f (a) = 0 \) for \(k = 1, \ldots, \lceil \beta \rceil + 1 \). Also assume \(0 < a \leq \frac{p(x)}{q(x)} \leq b \), a.e. on \(X, a < b \). Then
\[
\Gamma_f (\mu_1, \mu_2) \leq \frac{\| D_{a}^\beta f \|_{L_\infty([a, b])}}{\Gamma(\beta + 1)} \int_X q(x)^{1-\beta} (p(x) - aq(x))^{\beta} d\lambda(x).
\]
Proof. By (6), \(\alpha = 0 \), we get

\[
f (s) = \frac{1}{\Gamma (\beta)} \int_a^s (s - t)^{\beta - 1} D_\alpha^\beta f (t) \, dt, \quad \text{all } a \leq s \leq b.
\]

(14)

Then

\[
|f (s)| \leq \frac{1}{\Gamma (\beta)} \int_a^s (s - t)^{\beta - 1} \left| D_\alpha^\beta f (t) \right| \, dt
\]

\[
\leq \left\| D_\alpha^\beta f \right\|_{[a,b]} \int_a^s (s - t)^{\beta - 1} \, dt
\]

\[
= \frac{\left\| D_\alpha^\beta f \right\|_{[a,b]} (s - a)^\beta}{\Gamma (\beta)}
\]

(15)

I.e. we have that

\[
|f (s)| \leq \frac{\left\| D_\alpha^\beta f \right\|_{[a,b]} (s - a)^\beta}{\Gamma (\beta + 1)}
\]

(16)

Consequently we obtain

\[
\Gamma_f (\mu_1, \mu_2) = \int_X q(x) f \left(\frac{p(x)}{q(x)} \right) d\lambda (x)
\]

\[
\leq \left\| D_\alpha^\beta f \right\|_{[a,b]} \int_X q(x) \left(\frac{p(x)}{q(x)} - a \right)^\beta d\lambda (x)
\]

\[
= \frac{\left\| D_\alpha^\beta f \right\|_{[a,b]} (s - a)^\beta}{\Gamma (\beta + 1)}
\]

(17)

proving the claim. \(\square \)

Next we give an \(L_\delta \) result.

Theorem 12. Same assumptions as in Theorem 11. Let \(\gamma, \delta > 1 : \frac{1}{\gamma} + \frac{1}{\delta} = 1 \) and \(\gamma (\beta - 1) + 1 > 0 \). Then

\[
\Gamma_f (\mu_1, \mu_2) \leq \frac{\left\| D_\alpha^\beta f \right\|_{[a,b]}}{\Gamma (\beta) (\gamma (\beta - 1) + 1)^{1/\gamma}} \int_X q(x)^{2 - \beta - \frac{1}{\gamma}} (p(x) - aq(x))^{\beta - 1 + \frac{1}{\gamma}} d\lambda (x).
\]

(18)
Proof. By (6), $\alpha = 0$, we get again
\[
f(s) = \frac{1}{\Gamma(\beta)} \int_a^s (s-t)^{\beta-1} D^\beta_a f(t) \, dt, \text{ all } a \leq s \leq b.
\] (19)
Hence
\[
|f(s)| \leq \frac{1}{\Gamma(\beta)} \int_a^s (s-t)^{\beta-1} \left| D^\beta_a f(t) \right| \, dt
\]
\[
\leq \frac{1}{\Gamma(\beta)} \left(\int_a^s (s-t)^{\gamma(\beta-1)} \, dt \right)^{1/\gamma} \left(\int_a^s \left| D^\beta_a f(t) \right|^\delta \, dt \right)^{1/\delta}
\]
\[
\leq \frac{\|D^\beta_a f\|_{\delta, [a,b]}}{\Gamma(\beta)} \frac{(s-a)^{\beta-1+\frac{1}{\gamma}}}{(\gamma (\beta - 1) + 1)^{1/\gamma}}, \text{ all } a \leq s \leq b.
\] (20)
That is
\[
|f(s)| \leq \frac{\|D^\beta_a f\|_{\delta, [a,b]}}{\Gamma(\beta)} \frac{(s-a)^{\beta-1+\frac{1}{\gamma}}}{(\gamma (\beta - 1) + 1)^{1/\gamma}}, \text{ all } a \leq s \leq b.
\] (21)
Consequently we obtain
\[
\Gamma_f(\mu_1, \mu_2) \leq \int_X q \left| f \left(\frac{p}{q} \right) \right| \, d\lambda
\]
\[
\leq \frac{\|D^\beta_a f\|_{\delta, [a,b]}}{\Gamma(\beta)} \frac{(s-a)^{\beta-1+\frac{1}{\gamma}}}{(\gamma (\beta - 1) + 1)^{1/\gamma}} \int_X q \left(\frac{p}{q} - a \right)^{\beta-1+\frac{1}{\gamma}} \, d\lambda
\]
\[
= \frac{\|D^\beta_a f\|_{\delta, [a,b]}}{\Gamma(\beta)} \frac{(s-a)^{\beta-1+\frac{1}{\gamma}}}{(\gamma (\beta - 1) + 1)^{1/\gamma}} \int_X q^{2-\beta+\frac{1}{\gamma}} (p-aq)^{\beta-1+\frac{1}{\gamma}} \, d\lambda,
\] (22)
proving the claim. \hfill \Box

An L_1 estimate follows.

Theorem 13. Same assumptions as in Theorem 11. Let $\beta \geq 1$. Then
\[
\Gamma_f(\mu_1, \mu_2) \leq \frac{\|D^\beta_a f\|_{1, [a,b]}}{\Gamma(\beta)} \left(\int_X q(x)^{2-\beta} (p(x) - aq(x))^{\beta-1} \, d\lambda(x) \right)
\] (23)

Proof. By (19) we have
\[
|f(s)| \leq \frac{1}{\Gamma(\beta)} \int_a^s (s-t)^{\beta-1} \left| D^\beta_a f(t) \right| \, dt
\]
\[
\leq \frac{(s-a)^{\beta-1}}{\Gamma(\beta)} \int_a^b \left| D^\beta_a f(t) \right| \, dt = \frac{(s-a)^{\beta-1}}{\Gamma(\beta)} \|D^\beta_a f\|_{1, [a,b]}.
\] (24)
I.e.
\[|f(s)| \leq \frac{(s-a)^{\beta-1}}{\Gamma(\beta)} \left\| D_\alpha^\beta f \right\|_{1,[a,b]}, \tag{25} \]
for all \(s \) in \([a, b]\). Therefore
\begin{align*}
\Gamma_f(\mu_1, \mu_2) &\leq \int_X q \left| f \left(\frac{p}{q} \right) \right| d\lambda \\
&\leq \frac{\left\| D_\alpha^\beta f \right\|_{1,[a,b]}}{\Gamma(\beta)} \int_X q \left(\frac{p}{q} - a \right)^{\beta-1} d\lambda \\
&= \frac{\left\| D_\alpha^\beta f \right\|_{1,[a,b]}}{\Gamma(\beta)} \left(\int_X q^{2-\beta} (p - a q)^{\beta-1} d\lambda \right), \tag{26}
\end{align*}
proving the claim. □

We continue with results regarding the Caputo fractional derivative.

Theorem 14. Let \(\nu > 0 \), \(n := \lceil \nu \rceil \), \(f \in AC^n([a, b]) \) and \(f^{(k)}(a) = 0 \), \(k = 0, 1, \ldots, n-1 \). Assume \(D_\alpha^\nu f \in L_\infty(a, b) \), \(0 < a \leq \frac{p(x)}{q(x)} \leq b \), a.e. on \(X \), \(a < b \). Then
\[\Gamma_f(\mu_1, \mu_2) \leq \left\| D_\alpha^\nu f \right\|_{\infty,[a,b]} \left(\int_X q^{2-\nu} (p(x) - a q(x))^\nu d\lambda(x) \right). \tag{27} \]

Proof. Similar to Theorem 11, using Theorem 8. □

Next we give an \(L_\delta \) result.

Theorem 15. Assume all as in Theorem 14. Let \(\gamma, \delta > 1 : \frac{1}{\gamma} + \frac{1}{\delta} = 1 \) and \(\gamma (\nu - 1) + 1 > 0 \). Then
\[\Gamma_f(\mu_1, \mu_2) \leq \frac{\left\| D_\alpha^\nu f \right\|_{\delta,[a,b]}}{\Gamma(\nu) (\gamma (\nu - 1) + 1)^{1/\gamma}} \int_X q(x)^{2-\nu - \frac{1}{\gamma}} (p(x) - a q(x))^{\nu - 1 + \frac{1}{\gamma}} d\lambda(x). \tag{28} \]

Proof. Similar to Theorem 12, using Theorem 8. □

It follows an \(L_1 \) estimate.

Theorem 16. Assume all as in Theorem 14. Let \(\nu \geq 1 \). Then
\[\Gamma_f(\mu_1, \mu_2) \leq \frac{\left\| D_\alpha^\nu f \right\|_{1,[a,b]}}{\Gamma(\nu)} \left(\int_X (q(x))^{2-\nu} (p(x) - a q(x))^{\nu - 1} d\lambda(x) \right). \tag{29} \]

Proof. Similar to Theorem 13, using Theorem 8. □

Regarding again the Riemann-Liouville fractional derivative we need:
Corollary 17. Let $\nu \geq 0$, $n := \lceil \nu \rceil$, $f \in AC^n ([a, b])$, $\exists D^\nu_a f (x) \in \mathbb{R}$, $\forall x \in [a, b]$, $f^{(k)} (a) = 0$, $k = 0, 1, \ldots, n - 1$. Then
\[
f(x) = \frac{1}{\Gamma (\nu + 1)} \int_a^x (x-t)^{\nu-1} D^\nu_a f (t) \, dt. \tag{30}\]

Proof. By Corollary 7 and Theorem 8. \hfill \Box

We continue with results again regarding the Riemann-Liouville fractional derivative.

Theorem 18. Let $\nu > 0$, $n := \lceil \nu \rceil$, $f \in AC^n ([a, b])$, $\exists D^\nu_a f (x) \in \mathbb{R}$, $\forall x \in [a, b]$, $f^{(k)} (a) = 0$, $k = 0, 1, \ldots, n - 1$. Assume $D^\nu_a f \in L^\infty (a, b)$, $0 < a \leq p(x) \leq b$, a.e. on X, $a < b$. Then
\[
\Gamma (\mu_1, \mu_2) \leq \frac{\| D^\nu_a f \| \infty_{[a,b]}}{\Gamma (\nu + 1)} \int_X q(x)^{1-\nu} (p(x) - q(x))^{\nu} d\lambda (x). \tag{31}\]

Proof. Similar to Theorem 11, using Corollary 17. \hfill \Box

Next we give the corresponding L_δ result.

Theorem 19. Assume all as in Theorem 18. Let $\gamma, \delta > 1 : \frac{1}{\gamma} + \frac{1}{\delta} = 1$ and $\gamma (\nu - 1) + 1 > 0$. Then
\[
\Gamma (\mu_1, \mu_2) \leq \frac{\| D^\nu_a f \| L^\delta_{[a,b]}}{\Gamma (\nu + 1)} (\int_X q(x)^{2-\nu} (p(x) - q(x))^{\nu-1} d\lambda (x)). \tag{32}\]

Proof. Similar to Theorem 12, using Corollary 17. \hfill \Box

It follows the L_1 estimate.

Theorem 20. Assume all as in Theorem 18. Let $\nu \geq 1$. Then
\[
\Gamma (\mu_1, \mu_2) \leq \frac{\| D^\nu_a f \| L^1_{[a,b]}}{\Gamma (\nu)} (\int_X (q(x))^{2-\nu} (p(x) - q(x))^{\nu-1} d\lambda (x)). \tag{33}\]

Proof. Similar to Theorem 13, using Corollary 17. \hfill \Box

We need

Theorem 21. (Taylor expansion for Caputo derivatives, [8], p. 40) Assume $\nu \geq 0$, $n = \lceil \nu \rceil$, and $f \in AC^n ([a, b])$. Then
\[
f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)} (a)}{k!} (x-a)^k + \frac{1}{\Gamma (\nu)} \int_a^x (x-t)^{\nu-1} D^\nu_s f (t) \, dt, \forall x \in [a, b]. \tag{34}\]
We make

Remark 22. Let $\nu > 0$, $n = \lceil \nu \rceil$, and $f \in AC^n ([a, b])$.
If $D^\nu_{sa} f \geq 0$ over $[a, b]$, then

$$\int_a^x (x - t)^{\nu - 1} D^\nu_{sa} f (t) \, dt \geq 0 \quad \text{on } [a, b].$$

By (34) then we obtain

$$f (x) \geq (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)} (a)}{k!} (x - a)^k,$$

(35)

$\forall x \in [a, b]$. Hence

$$q f \left(\frac{p}{q} \right) \geq (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)} (a)}{k!} q \left(\frac{p}{q} - a \right)^k,$$

(36)

Consequently we get

$$\Gamma f (\mu_1, \mu_2) \geq (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)} (a)}{k!} \int_X q^{1-k} (p - aq)^k \, d\lambda.$$

(37)

We have established

Theorem 23. Let $\nu > 0$, $n = \lceil \nu \rceil$, and $f \in AC^n ([a, b])$. If $D^\nu_{sa} f \geq 0$ on $[a, b]$, then

$$\Gamma f (\mu_1, \mu_2) \geq (\leq) \sum_{k=0}^{n-1} \frac{f^{(k)} (a)}{k!} \left(\int_X (q (x))^{1-k} (p (x) - aq (x))^k \, d\lambda (x) \right).$$

(38)

We finish with

Remark 24. Using Lemma 3, Theorem 9 and Theorem 10 and in their settings, for g any of $D^n_{sa} f$, $D^\nu_{sa} f$, $D^\nu_{sa} f$, which fulfill the conditions and assumptions of 1. Preliminaries (I), we can find as above similar estimates for $\Gamma g (\mu_1, \mu_2)$.

References

(Received: January 14, 2008) Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, USA
E-mail: ganastss@memphis.edu