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ON BOUNDARY VALUE PROBLEMS WITH IMPLICIT RANDOM
NON-CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS

FOUZIA BEKADA AND ABDELKRIM SALIM

ABSTRACT. In this paper, we present some results on the existence, uniqueness
and Ulam stability for a class of problems for nonlinear implicit random frac-
tional differential equations with non-conformable derivatives. For our proofs,
we employ some suitable fixed point theorems. Finally, we provide some illus-
trative examples.

1. INTRODUCTION

Fractional calculus has emerged as a highly valuable tool in addressing the intri-
cate structures encountered across numerous research disciplines. Its focus lies in
extending the concepts of differentiation and integration, which traditionally apply
to whole numbers, to non-integer orders. The theory and application of fractional
calculus are substantial and have been extensively explored. For detailed informa-
tion, we recommend referring to the following monographs [1–3, 23], and the fol-
lowing papers [7–9, 14, 19, 21]. Recently, numerous papers and monographs have
been published, investigating a wide range of results pertaining to different forms
of differential equations and inclusions with various types of conditions. Relevant
works include [1, 17, 20, 22, 24, 25], along with the references cited within them.

In [11,18], the authors introduced a new conformable fractional derivative which
obeys all the above-mentioned classical properties. It can be considered as a gen-
eralization of the conformable derivatives introduced by Khalil et al. [15].

In [16], the authors discussed the existence of solutions for the following initial
value problem of conformable implicit impulsive fractional differential equations
with infinite delay:

T r
θk

χ(θ) = Ψ
(
θ,χθ,T r

k χ(θ)
)
, θ ∈ Ωk;k = 0,1, . . . ,m,

∆χ|θ=θk = ℏk(χθ
−
k
), k = 1,2, . . . ,m,

χ(θ) = ζ(θ), θ ∈ (−∞,a],
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where 0 ≤ a = θ0 < θ1 < · · · < θm < θm+1 = β < ∞, T r
θk

χ(θ) is the conformable
fractional derivative of order 0 < r < 1, Ψ : Ω×G×R→ R is a given continuous
function, Ω := [a,β], Ω0 := [a,θ1], Ωk :=(θk,θk+1];k = 1,2, . . . ,m, ζ : (−∞,a]→R
and ℏk : G →R are given continuous functions. The results are based on the ω−ψ-
Geraghty type contraction and the fixed point theory.

In this paper, we study the existence and uniqueness of solutions for the implicit
boundary value problem with nonlinear random fractional differential equation in-
volving the non-conformable fractional derivative:(

N
κ1

Dζ
ξ

)
(σ,℘) = ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζ
ξ

)
(σ,℘),℘

)
; σ ∈ Ω := [κ1,κ2],℘∈ ∇,

(1.1)
aξ(κ1,℘)+bξ(κ2,℘) = c(℘);℘∈ ∇, (1.2)

where 0 < ζ < 1, N
κ1

Dζ is the non-conformable fractional derivative defined in
[11, 18], ℑ : Ω×R2 ×∇ → R is a given function to be specified later, a,b ∈ R
are such that a+b ̸= 0, c : ∇ →R and ∇ is the sample space in a probability space.

The structure of this paper is as follows: Section 2 presents certain notations
and preliminaries about the non-conformable fractional derivatives used through-
out this manuscript. In Section 3, we present two existence and uniqueness results
for the problem (1.1)-(1.2) that are based on the Banach contraction principle and
Itoh’s fixed point theorem. Section 4 deals with the Ulam stability of our problem.
In the last section, an illustrative example is provided in support of the obtained
results.

2. PRELIMINARIES

We denote by 𭟋 :=C(Ω,R) the Banach space of all continuous functions from
Ω into R with

∥ξ∥∞ = sup
σ∈Ω

{|ξ(σ)|}.

Consider the space X p
b (κ1,κ2), (b ∈ R, 1 ≤ p ≤ ∞) of those complex-valued

Lebesgue measurable functions ℑ on [κ1,κ2] for which ∥ℑ∥X p
b
< ∞, where the

norm is defined by:

∥ℑ∥X p
b
=

(∫
κ2

κ1

|σb
ℑ(σ)|p dσ

σ

) 1
p

, (1 ≤ p < ∞,b ∈ R).

Definition 2.1 ( [11,18]). Let ℑ : [a,+∞)−→R be a given function, then the non-
conformable fractional derivative of ℑ of order ζ is defined by

(
N
κ1

Dζ
ℑ

)
(σ) = lim

ε→0

ℑ

(
σ+ εeσ−ζ

)
−ℑ(σ)

ε
,

for σ > 0 and ζ ∈ (0,1].
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If ℑ is ζ-differentiable in some (0,a), a > 0, and lim
σ→0+

(
N
κ1

Dζ
ℑ

)
(σ) exists, then

define
(

N
κ1

Dζℑ

)
(0) = lim

σ→0+

(
N
κ1

Dζ
ℑ

)
(σ). If the non-conformable fractional de-

rivative of ℑ of order ζ exists, then we simply say that ℑ is N-differentiable.

Lemma 2.1 ( [11,18]). If ζ ∈ [0,1], ℑ and g are two ζ-differentiable functions at a
point σ and m,n are two given numbers, the non-conformable fractional derivative
exhibits the following properties:
• N

κ1
Dζ( j) = 0, for any constant j;

• N
κ1

Dζ(mℑ+ng) = mN
κ1

Dζ(ℑ)+nN
κ1

Dζ(g);
• N

κ1
Dζ(ℑg) = gN

κ1
Dζ(ℑ)+ℑN

κ1
Dζ(g);

• N
κ1

Dζ

(
ℑ

g

)
=

gN
κ1

Dζ(ℑ)−ℑN
κ1

Dζ(g)
g2 .

Definition 2.2 (The N-fractional integral [11,18]). For ζ ∈ (0,1] and a continuous
function ℑ, let (

NI ζ

a+ℑ

)
(σ) =

∫
σ

a

ℑ(s)
es−ζ

ds.

Lemma 2.2 ( [11, 18]). If ζ ∈ (0,1], ℑ is N-differentiable function at a point σ,
then we have:
•
(

NI ζ

a+
N
a Dζ(ℑ)

)
(σ) = ℑ(σ)−ℑ(a);

• N
a Dζ

(
NI ζ

a+ℑ

)
(σ) = ℑ(σ).

Let βR be the σ−algebra of Borel subsets of R. A mapping γ : ∇ → R is said to
be measurable if for any k ∈ βR , one has

γ
−1(k) = {℘⊂ ∇ : γ(℘)⊂ k} ⊂ A.

The following details and the properties of completely continuous random opera-
tors in Banach spaces are available in Itoh [13] and Engl [10].

Definition 2.3. A mapping ℵ : ∇×R→ R is called jointly measurable if for any
k⊂ βR , one has

ℵ
−1(k) = {(℘,γ)⊂ ∇×R : ℵ(℘,γ)⊂ k} ⊂ A×βR,

where A×βR is the direct product of the σ−algebras A and βR those defined in ∇

and R respectively.

Lemma 2.3. Let ℵ : ∇×R→ R be a mapping such that ℵ(·,γ) is measurable for
all γ ⊂R, and ℵ(℘, ·) is continuous for all ℘⊂ ∇. Then the map (℘,γ)→ ℵ(℘,γ)
is jointly measurable.

Definition 2.4. A function ℑ : Ω×R×∇ → R is called random Carathéodory if
the following conditions are satisfied:
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(i) The map (σ,℘)→ ℑ(σ,η, η̄,℘) is jointly measurable for all η ⊂ R, and
(ii) The map η → ℑ(σ,η, η̄,℘) is continuous for almost all σ ∈ Ω and ℘⊂ ∇.

Definition 2.5. Let ℵ : ∇ ×R → R be a mapping. Then ℵ is called a ran-
dom operator if ℵ(℘,η) is measurable in ℘ for all η ⊂ R and it is expressed
as ℵ(℘)η = ℵ(℘,η). In this case we also say that ℵ(℘) is a random operator
on R. A random operator ℵ(℘) on R is called continuous (resp. compact, totally
bounded and completely continuous) if ℵ(℘,η) is continuous (resp. compact, to-
tally bounded and completely continuous)in η for all ℘⊂ ∇.

Definition 2.6. Let Λ(Θ) be the family of all nonempty subsets of Θ and Q be
a mapping from ∇ into Λ(Θ). A mapping ℵ : {(℘,η) : ℘⊂ ∇,ξ ⊂ Q(℘)} → Θ

is called a random operator with stochastic domain Q if Q is measurable (i.e
for all closed A ⊂ Θ, {℘⊂ ∇,Q(℘)∩ A ̸= /0} is measurable) and for all open
D ⊂ Θ and all η ⊂ Θ,{℘⊂ ∇ : η ⊂ Q(℘),ℵ(℘,η) ⊂ D} is measurable. ℵ will
be called continuous if every ℵ(℘) is continuous. For a random operator ℵ , a
mapping η : ∇ → Θ is called random (stochastic) fixed point of ℵ if for P-almost
all ℘⊂ ∇,η(℘) ⊂ Q(℘) and ℵ(℘)η(℘) = η(℘) and for all open D ⊂ Θ,{℘⊂
∇ : η(℘)⊂ D} is measurable.

Lemma 2.4. Let h : Ω→R be a continuous function. A function ξ∈𭟋 is a solution
of the problem { (

N
κ1

Dζξ

)
(σ) = h(σ); σ ∈ Ω := [κ1,κ2],

aξ(κ1)+bξ(κ2) = c,
(2.1)

where a,b ∈R, a+b ̸= 0, with c ∈R if and only if ξ satisfies the following integral
equation

ξ(σ) =C0 +
∫

σ

κ1

h(s)
es−ζ

ds, (2.2)

where

C0 =
1

a+b

[
c−a

(
NI ζ

a+h
)
(κ1)−b

(
NI ζ

a+h
)
(κ2)

]
.

Proof. From Lemma 2.2 and by applying the operator I ζ

a+(·) on equation (2.1), we
have

ξ(σ)−ξ(κ1) =
(

NI ζ

a+h
)
(σ).

From the condition (1.2), we get

aξ(κ1)+bξ(κ2) = a
(

NI ζh
)
(κ1)+aξ(κ1)+

(
NI ζh

)
(κ2)+bξ(κ2) = c,

thus we can obtain (2.2). The converse is easily demonstrated by employing Lemma
2.2. □
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3. EXISTENCE AND UNIQUENESS RESULTS

Lemma 3.1. By a random solution of problem (1.1)-(1.2), we mean a function
ξ ∈𭟋 that satisfies the equation

ξ(σ,℘) =C0(℘)+
∫

σ

κ1

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
es−ζ

ds,

where

C0(℘) =
1

a+b

[
c(℘)−a

(
NI ζ

a+ℑ

)
(κ1,℘)−b

(
NI ζ

a+ℑ

)
(κ2,℘)

]
.

In the sequel, the following hypotheses are used:
(H1): The function ℑ : Ω×R2 ×∇ → R is random Carathéodory.
(H2): There exist measurable functions p1, p2 : Ω → L∞(∇,R+),

|ℑ(σ,η1, η̄1,℘)−ℑ(σ,η2, η̄2,℘)| ≤ p1(σ,℘)|η1 −η2|+ p2(σ,℘)|η̄1 − η̄2|,

for σ ∈ Ω and η1,η2 ∈ R, and β̄1, β̄2 ∈ R, with

p∗1(℘) = sup
σ∈Ω

p(σ,℘) and p∗2(℘) = sup
σ∈Ω

p2(σ,℘)< 1.

(H3): There exist measurable functions li : Ω −→ L∞(∇,R+), i ∈ [1,3] such that

|ℑ(σ,η, η̄,℘)| ≤ l1(σ,℘)+ l2(σ,℘)
|η|

1+ |η|
+ l3(σ,℘)|η̄|,

for σ ∈ θ, η ∈ R, η̄ ∈ R and ℘∈ ∇.
Set

l∗i (℘) = sup
σ∈Ω

li(σ,℘), and l∗3(℘) = sup
σ∈Ω

l3(σ,℘)< 1.

Now we declare and demonstrate our first existence result for problem (1.1)-(1.2)
which is based on the Banach contraction principle [12].

Theorem 3.1. Assume that (H1)-(H2) hold. If

ℓ :=
p∗1(℘)(κ2 −κ1)

1− p∗2(℘)
< 1, (3.1)

then the problem (1.1)-(1.2) has a unique solution.

Proof. Let ℵ : 𭟋×∇ →𭟋 be the operator defined by

(ℵξ)(σ,℘) =C0(℘)+
∫

σ

κ1

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
es−ζ

ds, (3.2)

where G is a function satisfying the following functional equation

G(σ,℘) = ℑ(σ,ξ(·,℘),G(σ,℘),℘) .
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Let ξ1,ξ2 ∈𭟋, then we have

|(ℵξ1)(σ,℘)− (ℵξ2)(σ,℘)| ≤
∫

σ

κ1

|G1(s,℘)−G2(s,℘)|
es−ζ

ds, (3.3)

where G1,G2 are the functions satisfying the following functional equations

G1(σ,℘) = ℑ(σ,ξ1(σ,℘),G1(σ,℘),℘) ,

G2(σ,℘) = ℑ(σ,ξ2(σ,℘),G2(σ,℘),℘) .

By (H2), we have

|G1(σ,℘)−G2(σ,℘)|
= |ℑ(σ,ξ1(σ,℘),G1(σ,℘),℘)−ℑ(σ,ξ2(σ,℘),G2(σ,℘),℘) |
≤ p1(σ,℘)|ξ1(σ,℘)−ξ2(σ,℘)|+ p2(σ,℘)|G1(σ,℘)−G2(σ,℘)|
≤ p∗1(℘)|ξ1(σ,℘)−ξ2(σ,℘)|+ p∗2(℘)|G1(σ,℘)−G2(σ,℘)|,

thus

|G1(σ,℘)−G2(σ,℘)| ≤ p∗1(℘)

1− p∗2(℘)
|ξ1(σ,℘)−ξ2(σ,℘)|.

We may obtain now that

|(ℵξ1)(σ,℘)− (ℵξ2)(σ,℘)| ≤
∫

σ

κ1

p∗1(℘)

1− p∗2(℘)

es−ζ
|ξ1(s,℘)−ξ2(s,℘)|ds

≤ p∗1(℘)(κ2 −κ1)

1− p∗2(℘)
∥ξ1 −ξ2∥∞

≤ ℓ∥ξ1 −ξ2∥∞.

Thus

∥ℵξ1 −ℵξ2∥∞ ≤ ℓ∥ξ1 −ξ2∥∞.

Hence, by the Banach contraction principle, ℵ has a unique fixed point which is a
unique random solution of the problem (1.1)-(1.2). □

Now, we prove an existence result for the problem (1.1)-(1.2) based on Itoh’s
fixed point theorem [13].

Theorem 3.2. Assume that (H1)-(H3) hold. Then, the problem (1.1)-(1.2) has at
least one random solution.

Proof. The function ℑ is absolutely continuous for all ℘∈ ∇ and σ ∈ Ω, so then ξ

is a random solution for (1.1)-(1.2) if and only if ξ = (ℵξ)(σ,℘).
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Set

<(℘)ג
|C0(℘)|+ l∗1(℘)Ψ

1− l∗2(℘)Ψ
, ℘∈ ∇, (3.4)

where

Ψ =
(κ2 −κ1)

1− l∗3(℘)
.

Define the ball
kג(℘) := {ξ ∈𭟋 : ∥ξ∥ ≤ .{(℘)ג

For any ℘∈ ∇ and each σ ∈ Ω, we have

|(ℵξ)(σ,℘)| ≤ |C0(℘)|+
∫

σ

κ1

|G(σ,℘)|
es−ζ

ds. (3.5)

By the hypothesis (H3), for σ ∈ θ, we have

|G(σ,℘)|= |ℑ(σ,ξ(σ,℘),G(σ,℘),℘)|
≤ l1(σ,℘)+ l2(σ,℘)|ξ(σ,℘)|+ l3(σ,℘)|G(σ,℘)|,

which implies that

|G(σ,℘)| ≤ l∗1(℘)+ l∗2(℘)|ξ(σ,℘)|+ l∗3(℘)|G(σ,℘)|,

and then

|G(σ,℘)| ≤ l∗1(℘)+ l∗2(℘)ג(℘)

1− l∗3(℘)
.

Thus, for σ ∈ Ω and from (3.5), we obtain

|(T x)(σ,℘)| ≤ |C0(℘)|+ (κ2 −κ1)

1− l∗3(℘)
(l∗1(℘)+ l∗2(℘)ג(℘))

≤ .(℘)ג

This shows that ℵ(℘) transforms the ball kג(℘) into itself. We will demonstrate
that ℵ : ∇×kג(℘) → kג(℘) verifies all the requirements of Itoh’s random fixed point
theorem [13].

Step 1. ℵ(℘) is a random operator.
Since ℑ(σ,ξ,γ,℘) is random Carathéodory, the map ℘−→ ℑ(σ,η,℘) is measur-
able in view of Definition 2.6 and further the integral is a limit of a finite sum of
measurable functions so therefore the map

℘ 7→ C0(℘)+
∫

σ

κ1

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
es−ζ

ds

is measurable. As a result, ℵ(℘) is a random operator.
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Step 2. The operator ℵ is continuous and bounded.
Let {ξn} be a sequence such that ξn −→ x in 𭟋. We have

|(ℵξn)(σ,℘)− (ℵξ)(σ,℘)| ≤
∫

σ

κ1

|Gn(s,℘)−G(s,℘)|ds
es−ζ

ds,

where
Gn(σ,℘) = ℑ(σ,ξn(σ,℘),Gn(σ,℘),℘) ,

and
G(σ,℘) = ℑ(σ,ξ(σ,℘),G(σ,℘),℘) .

Since ξn −→ ξ, and by (H1), we get Gn(σ,℘) −→ G(σ,℘) as n −→ ∞ for each
σ ∈ I. Then, by the Lebesgue dominated convergence theorem and (H1), we get

∥ℵ(ξn)−ℵ(ξ)∥∞ −→ 0 as n −→ ∞.

Consequently, since ℵ(℘) is a continuous random operator with stochastic domain,
we may conclude also that ℵ(kג(℘))⊂ kג(℘).

Step 3. ℵ(kג(℘)) is equicontinuous.
For κ1 ≤ σ1 ≤ σ2 ≤ κ2, and ξ ∈ kג(℘), we have

|(ℵξ)(σ2,℘)− (ℵξ)(σ1,℘)|

≤
∣∣∣∣∫ σ2

κ1

G(σ2,℘)

es−ζ
ds−

∫
σ1

κ1

G(σ1,℘)

es−ζ
ds
∣∣∣∣

≤
∣∣∣∣∫ σ2

σ1

G(σ2,℘)

es−ζ
ds−

∫
σ1

κ1

G(σ1,℘)

es−ζ
ds+

∫
σ1

κ1

G(σ2,℘)

es−ζ
ds
∣∣∣∣

≤ (σ2 −σ1)

1− l∗3(℘)
(l∗1(℘)+ l∗2(℘)ג(℘)).

As σ1 −→ σ2 the right hand side of the above inequality tends to zero. As a con-
sequence of Step 1 to Step 3, together with the Arzela-Ascoli theorem, we can
conclude that ℵ is continuous and completely continuous. From an application of
Itoh’s random fixed point theorem [13], we conclude that ℵ has a fixed point which
is a random solution of the problem (1.1)-(1.2). □

4. ULAM STABILITY RESULTS

Now, we consider the Ulam stability for the problem (1.1)-(1.2). Let ε > 0 and
Ξ : Ω×∇ → R+ be a measurable function. We consider the following inequalities∣∣∣(N

κ1
Dζ

ξ

)
(σ,℘)−ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζ
ξ

)
(σ,℘),℘

)∣∣∣≤ ε; σ ∈ Ω, ℘∈ ∇. (4.1)∣∣∣(N
κ1

Dζ
ξ

)
(σ,℘)−ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζ
ξ

)
(σ,℘),℘

)∣∣∣≤ Ξ(σ,℘); σ ∈ Ω, ℘∈ ∇.

(4.2)∣∣∣(N
κ1

Dζ
ξ

)
(σ,℘)−ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζ
ξ

)
(σ,℘),℘

)∣∣∣≤ εΞ(σ,℘); σ∈Ω, ℘∈∇.

(4.3)
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Definition 4.1 ([3]). The problem (1.1)-(1.2) is Ulam-Hyers stable if there exists
a real number δℑ > 0 such that for each ε > 0 and for each solution ξ(·,℘) ∈𭟋 of
the inequality (4.1), there exists a solution γ ∈𭟋 of (1.1)-(1.2) with

|ξ(σ,℘)− γ(σ,℘)| ≤ εδℑ; σ ∈ Ω.

Definition 4.2 ([3]). The problem (1.1)-(1.2) is generalized Ulam-Hyers stable
if there exists δℑ ∈ C(R+,R+) with δℑ(0) = 0 such that for each ε > 0 and for
each solution ξ(℘) ∈ 𭟋 of the inequality (4.1), there exists a solution γ ∈ 𭟋 of
(1.1)-(1.2) with

|ξ(σ,℘)− γ(σ,℘)| ≤ δℑ(ε); σ ∈ Ω.

Definition 4.3 ([3]). The problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable with
respect to Ξ if there exists a real number δℑ,Ξ > 0 such that for each ε > 0 and
for each solution ξ(℘) ∈𭟋 of the inequality (4.3), there exists a solution γ ∈𭟋 of
(1.1)-(1.2) with

|ξ(σ,℘)− γ(σ,℘)| ≤ εδℑ,ΞΞ(σ,℘); σ ∈ Ω.

Definition 4.4 ( [3]). The problem (1.1)-(1.2) is generalized Ulam-Hyers-Rassias
stable with respect to Ξ if there exists a real number δℑ,Ξ > 0 such that for each
solution ξ ∈ 𭟋 of the inequality (4.2), there exists a solution γ ∈ 𭟋 of (1.1)-(1.2)
with

|ξ(σ,℘)− γ(σ,℘)| ≤ δℑ,ΞΞ(σ,℘); σ ∈ Ω.

Remark 4.1. A function ξ(·,℘) ∈𭟋 is a solution of the inequality (4.2) if and only
if there exist a function g(·,℘) ∈𭟋 (which depends on ξ) such that

|g(σ,℘)| ≤ Ξ(σ,℘),

and (
N
κ1

Dζ
ξ

)
(σ,℘) = ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζ
ξ

)
(σ,℘),℘

)
+g(σ,℘); for σ ∈ θ, and ℘∈ ∇.

The following hypotheses will be used in the sequel.
(H4) Let Ξ(·,℘) ∈ L1(R+), and there exists a constant jΞ > 0, such that for any

℘∈ ∇, and each σ ∈ Ω we have(
NI ζ

a+Ξ

)
(σ,℘)ds ≤ jΞΞ(σ,℘).

(H5) There exist measurable functions li : Ω −→ L∞(∇,R+); i = 1,2,3 such that

|ℑ(σ,η, η̄,℘)| ≤ l1(σ,℘)Ξ(σ,℘)+ l2(σ,℘)Ξ(σ,℘)
|η|

1+ |η|
+ l3(σ,℘)|η̄|,

for σ ∈ θ, η ∈ R, η̄ ∈ R and ℘∈ ∇.
Set

l∗i (℘) = sup
σ∈θ

li(σ,℘), and l∗3(℘) = sup
σ∈Ω

l3(σ,℘)< 1.
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Theorem 4.1. Assume that the hypotheses (H1)-(H5) hold. Then the problem
(1.1)-(1.2) is generalized Ulam-Hyers-Rassias stable.

Proof. Let ξ ∈ 𭟋 be a solution of the inequality (4.2). By Remark 4.1, for any
℘∈ ∇ and each σ ∈ Ω, we have

ξ(σ,℘) =C0(℘)+
∫

σ

κ1

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
+g(s,℘)

es−ζ
ds.

Then ξ is a solution of the following integral inequality

|ξ(σ,℘)−C0(℘)−
∫

σ

κ1

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
es−ζ

ds| ≤
(

NI ζ

a+Ξ

)
(σ,℘)ds.

(4.4)
Thus by (H3), we obtain

|ξ(σ,℘)−C0(℘)−
∫

σ

κ1

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
es−ζ

ds| ≤ jΞΞ(σ,℘).

There exists a random solution γ of the random problem (1.1)-(1.2). That is

γ(σ,℘) =C0(℘)+
∫

σ

κ1

ℑ

(
σ,γ(σ,℘),

(
N
κ1

Dζγ

)
(σ,℘),℘

)
es−ζ

ds,

where
H(σ,℘) = ℑ

(
σ,γ(σ,℘),

(
N
κ1

Dζ
γ

)
(σ,℘),℘

)
.

Let ξ be a solution of the inequality (4.2), for any ℘∈ ∇ and each σ ∈ Ω, we have

|ξ(σ,℘)− γ(σ,℘)| ≤

∣∣∣∣∣ξ(σ,℘)−C0(℘)−
∫

σ

κ1

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
es−ζ

ds

+κ1
σ

ℑ

(
σ,ξ(σ,℘),

(
N
κ1

Dζξ

)
(σ,℘),℘

)
es−ζ

ds

−
∫

σ

κ1

ℑ

(
σ,γ(σ,℘),

(
N
κ1

Dζγ

)
(σ,℘),℘

)
es−ζ

ds

∣∣∣∣∣
≤ jΞΞ(σ,℘)+

∫
σ

κ1

|G(σ,℘)|
es−ζ

ds+
∫

σ

κ1

|H(σ,℘)|
es−ζ

ds.

By the hypotheses (H4) and (H5), for σ ∈ Ω we have

|ξ(σ,℘)− γ(σ,℘)| ≤ jΞΞ(σ,℘)+2
l∗1(℘)+ l∗2(℘)

1− l∗3(℘)

(
NI ζ

a+Ξ

)
(s,℘)ds
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≤ jΞΞ(σ,℘)

[
1+2

l∗1(℘)+ l∗2(℘)

1− l∗3(℘)

]
≤ δℑ,ΞΞ(σ,℘).

Hence, the problem (1.1)-(1.2) is generalized Ulam-Hyers-Rassias stable. □

5. EXAMPLES

Example 5.1. We equip the space R∗
− := (−∞,0) with the standard σ-algebra,

which consists of Lebesgue measurable subsets of R∗
−. Now, we consider the fol-

lowing example of our problem (1.1)-(1.2):{(
N
0 D 1

2 ξ

)
(σ,℘) = ℑ

(
σ,ξ(σ,℘),

(
N
κ1

D 1
2 ξ

)
(σ,℘),℘

)
; σ ∈ Ω := [0,1],℘∈ ∇,

ξ(κ1,℘)+ξ(κ2,℘) = c(℘);℘∈ ∇.
(5.1)

Set

ℑ(σ,β1,β2,℘) =
cos(σ)(|β1|+ |β2|)

164eσ+5(|℘|+1)(1+ |β1|+ |β2|)
,

where ζ = 1
2 , κ1 = 0, κ2 = 1, a = b = 1, β1,β2 ∈ R.

It is clear that the function ℑ verifies the hypothesis (H1), and for each β1, β̄1,β2, β̄2 ∈
R and σ ∈ [0,1], we have

|ℑ(σ,β1,β2,℘)−ℑ(σ, β̄1, β̄2,℘)| ≤ cos(σ)
164eσ+5(|℘|+1)

[
|β1 − β̄1|+ |β2 − β̄2|

]
.

Therefore, (H2) is verified with

p1(σ,℘) = p2(σ,℘) =
cos(σ)

164eσ+5(|℘|+1)
,

and

p∗1(℘) = p∗2(℘) =
1

164e5(|℘|+1)
.

Also, for σ ∈ [0,1] we have

ℓ :=
p∗1(℘)(κ2 −κ1)

1− p∗2(℘)

=
1

164e5(|℘|+1)−1
< 1.

Then, the condition (3.1) is satisfied. Hence, as all conditions of Theorem 3.1 are
met, the problem (5.1) admits a unique random solution. Also, the hypotheses (H4)
and (H5) are satisfied with
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Ξ(σ,℘) = 4
√

π and li(σ,℘) =
cos(σ)

164eσ+5(|℘|+1)
; i = 1,2,3.

Hence, Theorem 4.1 implies that the problem (5.1) is generalized Ulam-Hyers-
Rassias stable.
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