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GAUSSIAN QUATERNION INVOLVING LEONARDO NUMBERS

HASAN GÖKBAŞ

ABSTRACT. In this study, using the Leonardo numbers, we define a new type
of quaternion that is called a Leonard Gaussian quaternion. We also give a
negative-Leonardo Gaussian quaternion. These numbers are introduced from
the set of complex numbers and quaternions. Moreover, we obtain the Binet’s
formula, generating function formula, d’Ocagne’s identity, Catalan’s identity,
Cassini’s identity, Honsberger’s identity, like-Vajda’s identity and some formu-
las for these new types of numbers. Morever, we give the matrix representation
of the Leonardo Gaussian quaternion.

1. INTRODUCTION AND PRELIMINARIES

The Fibonacci sequence has delighted mathematicians and scientists alike for
centuries with its beauty and its propensity to pop up in quite unexpected places.
Leonardo de Pisa did not even guess that the number sequences would be so related
to the rabbit problem. However, the Fibonacci numbers are found in the Pascal’s
triangle, Pythagorean triples, computer algorithms, graph theory and many other
areas of mathematics. They also ocur in a variety of other fields such as physics,
finance, architecture, computer sciences, color image processing, geostatics, mu-
sic and art. There have been many studies in literature about this special number
sequence because of its numerous applications. There are many generalizations on
this sequence some of which can be seen in [1], [2], [3], [4], [6], [7], [8], [9], [10],
[11], [13], [14], [15], [16], [18], [19], [20], [21], [22], [23], [24], [25], [26].

Quaternions were investigated by Hamilton [12]. A quaternion is a hyper-
complex number and is defined by the following equation:

q = q0 + iq1 + jq2 + kq3

where q0,q1,q2 and q3 are real numbers. i, j and k are the standard ortohonormal
basis in R3.

The q0,q1,q2 and q3 are called the components of the quaternion q. The quater-
nion multiplication is defined by the following rules:

i2 = j2 = k2 = i jk =−1, i j = k =− ji, jk = i =−k j, ki = j =−ik.
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Leonardo’s recurring non-homogeneous sequence, which we shall denote by Len
is a linear recurrent sequence, having its characteristic recurrence formula defined
as:

Len = Len−1 +Len−2 +1 or Len = 2Len−1 −Len−3,n ≥ 2
with Len the nth term of the Leonardo sequence and the initial terms indicated
by Le0 = Le1 = 1. Leonardo’s numbers also have a relation to the emblematic
sequence of Fibonacci, thus there exists a recurrence relation with characteristics of
these two sequences. Remembering the formula for obtaining Fibonacci numbers
and Lucas numbers, respectively.Fn = Fn−1 +Fn−2, with the initial values defined
by F0 =F1 = 1 and Ln = Ln−1+Ln−2, with the initial values defined by L0 = 2,L1 =

1, respectively. The Leonardo numbers Binet’s formula, Len = 2
(

αn+1−βn+1

α−β

)
−1,

where α = 1+
√

5
2 and β = 1−

√
5

2 . The relation between Leonardo and Fibonacci
numbers is expressed in the following proposition Len = 2Fn+1 −1 [5].

Jordan [17], considered two of the complex Fibonacci sequences and extended
some relationships which are known about the common Fibonacci sequences. The
author gave many identities related to them GFn = Fn + iFn−1.

2. THE LEONARDO GAUSSIAN QUATERNION

In the following sections, the Leonardo Gaussian quaternion will be defined. In
this work, a variety of algebraic properties of both the bicomplex quaternions and
the Leonardo Gaussian quaternions are presented in a unified manner. Some iden-
tities will be given for the Leonardo Gaussian quaternion such as Binet’s formula,
generating function formula, d’Ocagne’s identity, Catalan’s identity, Cassini’s iden-
tity, Honsberger’s identity, like-Vajda’s identity and some formulas. The Leonardo
Gaussian quaternion’ properties will also be obtained using matrix representation.

Definition 2.1. For n ≥ 3, the Leonardo Gaussian quaternion LGSen is defined by
the recurrence relation

LGSen = Len + iLen−1 + jLen−2 + kLen−3

where Len is the nth Leonardo number.

The Leonardo Gaussian quaternion starting from n = 0 can be written as

LGSe0 = 1− i+ j−3k,LGSe1 = 1+ i− j+ k,LGSe2 = 3+ i+ j− k,

LGSe3 = 5+3i+ j+ k, ...
and

LGSen = LGSen−1 +LGSen−2 +M
or

LGSen = 2LGSen−1 −LGSen−3

where M = (1+ i+ j+ k) is a recurrence relationship in the Leonardo Gaussian
quaternion.
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Definition 2.2. For n ≥ 3, the negative-Leonardo Gaussian quaternion LGSe−n is
defined by the recurrence relation

LGSe−n = (−1)n [Len−2 − iLen−1 + jLen − kLen+1]−M

where Len is the nth Leonardo number and M is (1+ i+ j+ k).

Theorem 2.1. (Generating Function Formula) Let LGSen be the Leonardo Gauss-
ian quaternion. The generating function formula for this number is as follows

H(t) =
(1− i+ j−3k)+(−1+3i−3 j+7k) t +(1− i+3 j−3k) t2

(1−2t + t3)
.

Proof. Let H(t) be the generating function formula for the Leonardo Gaussian
quaternion as H(t) = ∑

∞
n=0 LGSentn. Using H(t), 2tH(t) and t3H(t), we get the

following equations 2tH(t) = ∑
∞
n=0 2LGSentn+1, t3H(t) = ∑

∞
n=0 LGSentn+3. After

the needed calculations, the generating function formula for the Leonardo Gaussian
quaternion is obtained as

(1−2t+t3)H(t) = LGSe0+(LGSe1−2LGSe0)t+(LGSe2−2LGSe1)t2

+
∞

∑
n=2

(LGSen+1−2LGSen+LGSen−2) tn+1.

H(t) =
LGSe0+(LGSe1−2LGSe0)t+(LGSe2−2LGSe1)t2

(1−2t+t3)

H(t) =
(1−i+ j−3k)+(−1+3i−3 j+7k) t+(1−i+3 j−3k) t2

(1−2t+t3)
. □

Theorem 2.2. (Binet’s Formula) The Binet’s formula for the Leonardo Gaussian
quaternion LGSen is

LGSen =
2αn−2ᾱ−2βn−2β̄

α−β
−M

where ᾱ = α3 + iα2 + jα+ k, β̄ = β3 + iβ2 + jβ+ k and M = (1+ i+ j+ k).

Proof. By using the definition of the Leonardo Gaussian quaternion and the Leon-
ardo numbers of Binet’s formula, we obtain the desired result. □

We can give the next theorem that will form the basis of the following equations.

Theorem 2.3. For nonnegative integer numbers n and m, with m ≥ n, LGSenis the
Leonardo Gaussian quaternion. We have

LGSemLGSen+r −LGSem+rLGSen =
4ᾱβ̄ [Lm−n+r − (−1)rLm−n−r]

(α−β)2 +

+M
2ᾱ(αr −1)

[
αm−2 −αn−2

]
+2β̄(βr −1)

[
βn−2 −βm−2

]
(α−β)

where Ln is the nth Lucas number and M is (1+ i+ j+ k).
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Proof.

LGSemLGSen+r −LGSem+rLGSen =

=

(
2ᾱαm−2 −2β̄βm−2

α−β
−M

)(
2ᾱαn+r−2 −2β̄βn+r−2

α−β
−M

)
−

−
(

2ᾱαm+r−2 −2β̄βm+r−2

α−β
−M

)(
2ᾱαn−2 −2β̄βn−2

α−β
−M

)
=

4ᾱβ̄(−1)n [Lm−n+r − (−1)rLm−n−r]

(α−β)2 +

+M
2ᾱ(αr −1)

[
αm−2 −αn−2

]
+2β̄(βr −1)

[
βn−2 −βm−2

]
(α−β)

where Ln is the nth Lucas number and M is (1+ i+ j+ k). □

Theorem 2.4. (Catalan’s Identity) For nonnegative integer numbers n and r, with
n ≥ r, LGSen is the Leonardo Gaussian quaternion. We have

LGSen−rLGSen+r −LGSe2
n =

4ᾱβ̄ [2(−1)r −L2r]

(α−β)2 (−1)r +

+M
ᾱαn−r−2

[
4αr −2

(
1+α2r

)]
+ β̄βn−r−2

[
2
(
1+β2r

)
−4βr

]
(α−β)

where Ln is the nth Lucas number and M is (1+ i+ j+ k).

Proof. Since Catalan’s identity is a special case of the Theorem 2.3, the proof is
seen by taking m = n− r. □

Theorem 2.5. (Cassini’s Identity) For n ≥ 1, LGSen is the Leonardo Gaussian
quaternion. We have

LGSen−1LGSen+1 −LGSe2
n = 4ᾱβ̄+M

ᾱαn−3
[√

5−3
]
+ β̄βn−3

[√
5+3

]
α−β

where M = (1+ i+ j+ k).

Proof. Since Cassini’s identity is a special case of Catalan’s identity, the proof is
seen by taking r = 1. □

Theorem 2.6. (d’Ocagne’s Identity) For nonnegative integer numbers n and m,
with m ≥ n, LGSenis the Leonardo Gaussian quaternion. We have

LGSemLGSen+1 −LGSem+1LGSen =
4ᾱβ̄(−1)n [Lm−n+1 +Lm−n−1]

(α−β)2 −
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−M
2ᾱβ

[
αm−2 −αn−2

]
+2β̄α

[
βn−2 −βm−2

]
(α−β)

where Ln is the nth Lucas number and M is (1+ i+ j+ k).

Proof. Since d’Ocagne’s identity is a special case of the Theorem 2.3, the proof is
seen by taking r = 1. □

Theorem 2.7. (Honsberger’s Identity) For nonnegative integer numbers n and m,
with m ≥ n, LGSenis the Leonardo Gaussian quaternion. We have

LGSemLGSen+LGSem+1LGSen+1=−4ᾱ2αn+m−3+4β̄2βn+m−3+16(−1)nᾱβ̄βm−n

(α−β)2

+M
2β̄α

[
βn−2+βm−2

]
−2ᾱβ

[
αm−2+αn−2

]
(α−β)

where M = (1+ i+ j+ k).

Proof.

LGSemLGSen +LGSem+1LGSen+1 =

=

(
2ᾱαm−2 −2β̄βm−2

α−β
−M

)(
2ᾱαn−2 −2β̄βn−2

α−β
−M

)
+

+

(
2ᾱαm−1 −2β̄βm−1

α−β
−M

)(
2ᾱαn−1 −2β̄βn−1

α−β
−M

)
=−4ᾱ2αn+m−3 +4β̄2βn+m−3 +16(−1)nᾱβ̄βm−n

(α−β)2 +

+M
2β̄α

[
βn−2 +βm−2

]
−2ᾱβ

[
αm−2 +αn−2

]
(α−β)

where M = (1+ i+ j+ k). □

Theorem 2.8. (Like-Vajda’s Identity) For nonnegative integer numbers n and m,
with m ≥ n, LGSenis the Leonardo Gaussian quaternion. We have

LGSe2
n+1 −LGSenLGSen+2 = 4(−1)n

ᾱβ̄+M
2ᾱαn−2 (α−1)2 −2β̄βn−2 (β−1)2

(α−β)

where M = (1+ i+ j+ k).

Proof.

LGSe2
n+1−LGSenLGSen+2=

(
2ᾱαn−1−2β̄βn−1

α−β
−M

)(
2ᾱαn−1−2β̄βn−1

α−β
−M

)
−
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−
(

2ᾱαn−2 −2β̄βn−2

α−β
−M

)(
2ᾱαn −2β̄βn

α−β
−M

)
= 4(−1)n

ᾱβ̄+M
2ᾱαn−2 (α−1)2 −2β̄βn−2 (β−1)2

(α−β)

where M = (1+ i+ j+ k). □

Lemma 2.1. Let Fn be the Fibonacci number. In this case
n

∑
i=1

Fi = Fn+2 −1

n

∑
i=0

F2i+1 = F2n+2

n

∑
i=1

F2i = F2n+1 −1

Proof. The proofs are seen by induction on n. □

In the next theorem, we can give the sum of the finite, finite odd and finite even
terms of the Leonardo Gaussian quaternion numbers.

Theorem 2.9. Let LGSen be the Leonardo Gaussian quaternion. In this case
n

∑
m=0

LGSem = 2Fn+3 +2iFn+2 +2 j (Fn+1 +1)+2kFn − (n+3)M

n

∑
m=0

LGSe2m+1 = 2F2n+3 +2i(F2n+2 +1)+2 jF2n+1 +2k (F2n +2)− (n+3)M

n

∑
m=1

LGSe2m = 2F2n+2 +2iF2n+1 +2 j (F2n +1)+2kF2n−1 − (n+2)M

where M = (1+ i+ j+ k).

Proof.
n

∑
m=0

LGSem=
n

∑
m=0

(Lem+iLem−1+ jLem−2+kLem−3)

=
n

∑
m=0

Lem+i
n

∑
m=0

Lem−1+ j
n

∑
m=0

Lem−2+k
n

∑
m=0

Lem−3

=
n

∑
m=0

(2Fm+1−1)+i
n

∑
m=0

(2Fm−1)+ j
n

∑
m=0

(2Fm−1−1)+k
n

∑
m=0

(2Fm−2−1)

=(2Fn+3−n−3)+i(2Fn+2−n−3)+ j (2Fn+1−n−1)+k (2Fn−n−3)

=2Fn+3+2iFn+2+2 j (Fn+1+1)+2kFn−(n+3)M

where M = (1+ i+ j+ k).
Other sum formulas are proven using through the same method. □
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With the next theorem, we can give the matrix representations of the positive
and negative index terms of the Leonardo Gaussian quaternion numbers.

Theorem 2.10. Let LGSen be the Leonardo Gaussian quaternion. Let for n ≥ 1 be
an integer. Then LGSen+3 LGSen+2 LGSen+1

LGSen+2 LGSen+1 LGSen
LGSen+1 LGSen LGSen−1

=

 LGSe3 LGSe2 LGSe1
LGSe2 LGSe1 LGSe0
LGSe1 LGSe0 LGSe−1

 2 1 0
0 0 1
−1 0 0

n

and LGSe−n+3 LGSe−n+2 LGSe−n+1
LGSe−n+2 LGSe−n+1 LGSe−n
LGSe−n+1 LGSe−n LGSe−n−1

=

 LGSe3 LGSe2 LGSe1
LGSe2 LGSe1 LGSe0
LGSe1 LGSe0 LGSe−1

 0 0 −1
1 0 2
0 1 0

n

.

Proof. The proof is seen by induction on n. □

3. CONCLUSION

This study presents the Leonardo Gaussian quaternion. We obtain this new
quaternion not defined in the literature before. We generate Binet’s formula, gen-
erating function formula and matrix representation. Also we give d’Ocagne’s iden-
tity, Catalan’s identity, Cassini’s identity, Honsberger’s identity and like-Vajda’s
identity. Since this study includes some new results, it contributes to literature by
providing essential information concerning the bicomplex quaternions. The main
contribution of this research that is one can get a great number of distinct quater-
nion sequences by providing the initial values in the Leonardo sequence. For fur-
ther studies, we plan to find some properties of these new numbers.
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