SLANT LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN PRODUCT MANIFOLDS

TEJINDER KUMAR, SANGEET KUMAR ${ }^{1}$ AND PANKAJ KUMAR

Abstract

The aim of the present paper is to investigate geometric characteristics of slant lightlike submanifolds of semi-Riemannian product manifolds. We obtain characterization theorems for the existence of slant lightlike submanifolds of semi-Riemannian product manifolds. We also find a necessary and sufficient condition enabling the induced connection on slant lightlike submanifolds of semi-Riemannian product manifolds to be a metric connection. Then, we establish some results for the integrability of distributions associated with this class of lightlike submanifolds. Consequently, we investigate totally umbilical slant lightlike submanifolds of semi-Riemannian product manifolds. In particular, we prove that every totally umbilical slant lightlike submanifold of a semi-Riemannian product manifold is always totally geodesic.

1. Introduction

The concept of slant submanifolds arises from slant immersions, introduced by Chen [3] and has been studied extensively in [4]. Literature suggests that a variety of generalized classes of slant submanifolds have been investigated by Carriazo [2], Papaghiuc [12] and Sahin [13]. On the other hand, the study of slant submanifolds in contact geometry was introduced and developed by Lotta [10]- [11]. In the last two decades, the study of lightlike submanifolds is a topic of special interest for mathematicians and physicists. One may see that the geometry of lightlike submanifolds is significantly different from those of non-degenerate submanifolds. In the case of lightlike submanifolds, the tangent bundle is non-complementary with the normal bundle, which makes the theory of lightlike submanifolds more complicated and interesting than non-degenerate submanifolds. In recent years, the theory of lightlike submanifolds developed many potential applications in mathematical physics and relativity. For instance, the concept of lightlike submanifolds has been successfully employed in the study of black holes, asymptotically flat spacetimes, Killing horizon and electronic and radiation fields (see, [5] and [8]).

[^0]Then, considering the effectiveness of the concept of lightlike submanifolds and interesting geometric features of slant submanifolds, Sahin [14], introduced the idea of slant lightlike submanifolds of indefinite almost Hermitian manifolds. Later, Sahin proved the existence of slant lightlike submanifolds in Sasakian manifolds in [15]. Afterwards, several other generalizations of slant lightlike submanifolds namely screen slant lightlike submanifolds, pointwise slant lightlike submanifolds, screen pseudo slant lightlike submanifolds and semi-slant lightlike submanifolds of indefinite Kaehler manifolds were considered and investigated by many others (for details, see [7], [16], [17], [18]).

It is interesting to note that semi-Riemannian product manifolds are a generalization of Riemannian product manifolds in the semi-Riemannian case and they have rich geometric properties. Therefore, it is interesting to study lightlike submanifolds of semi-Riemannian product manifolds. In this regard, the concept of $G C R$-lightlike submanifolds of semi-Riemannian product manifolds has been introduced and investigated by Kumar et al. [9]. But the concept of slant lightlike submanifolds of semi-Riemannian product manifolds is yet to be explored.

Therefore, in the present paper, we investigate the geometry of slant lightlike submanifolds of semi-Riemannian product manifolds and justify their existence by obtaining several characterization theorems. Then, we give a non-trivial example of slant lightlike submanifolds of semi-Riemannian product manifolds. We also find a necessary and sufficient condition for the induced connection on a slant lightlike submanifold of a semi-Riemannian product manifold to be a metric connection. Then, we establish some results for the integrability of distributions arising in this class of lightlike submanifolds. Finally, we investigate totally umbilical slant lightlike submanifolds of semi-Riemannian product manifolds and show that every totally umbilical slant lightlike submanifold of a semi-Riemannian product manifold is totally geodesic.

2. Preliminaries

2.1. Geometry of lightlike submanifolds

Suppose we have a n-dimensional submanifold (K, g) of an $(m+n)$ real dimensional semi-Riemannian manifold (\bar{K}, \bar{g}) such that \bar{g} is a metric with constant index q satisfying $m, n \geq 1,1 \leq q \leq m+n-1$. If the metric \bar{g} is degenerate on $T K$, then $T_{p} K$ and $T_{p} K^{\perp}$ both are degenerate and there exists a radical (null) subspace $\operatorname{Rad}\left(T_{p} K\right)$ such that $\operatorname{Rad}\left(T_{p} K\right)=T_{p} K \cap T_{p} K^{\perp}$. If $\operatorname{Rad}(T K): p \in K \rightarrow \operatorname{Rad}\left(T_{p} K\right)$ is a smooth distribution on K of rank $r(>0), 1 \leq r \leq n$, then K is known as an r-lightlike submanifold of \bar{K} (see, [5]). Then the radical distribution $\operatorname{Rad}(T K)$ of $T K$ is defined as:

$$
\operatorname{Rad}(T K)=\cup_{p \in K}\left\{\xi \in T_{p} K \mid g(u, \xi)=0, \forall u \in T_{p} K, \xi \neq 0\right\}
$$

Further, let $S(T K)$ be the screen distribution in $T K$ such that $T K=\operatorname{Rad}(T K) \perp$
$S(T K)$ and similarly let $S\left(T K^{\perp}\right)$ be a screen transversal vector bundle in $T K^{\perp}$ such that $T K^{\perp}=\operatorname{Rad}(T K) \perp S\left(T K^{\perp}\right)$.
Moreover, there exists a local null frame $\left\{N_{i}\right\}$ of null sections with values in the orthogonal complement of $S\left(T K^{\perp}\right)$ in $S\left(T K^{\perp}\right)^{\perp}$ such that

$$
\begin{equation*}
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0 \tag{2.1}
\end{equation*}
$$

for any $i, j \in\{1,2, . ., r\}$, where $\left\{\xi_{j}\right\}$ is any local basis of $\Gamma(\operatorname{Rad}(T K))$. It implies that $\operatorname{tr}(T K)$ and $l \operatorname{tr}(T K)$, respectively, are vector bundles in $\left.T \bar{K}\right|_{K}$ and $S\left(T K^{\perp}\right)^{\perp}$ with the property

$$
\operatorname{tr}(T K)=\operatorname{ltr}(T K) \perp S\left(T K^{\perp}\right)
$$

and

$$
\begin{equation*}
\left.T \bar{K}\right|_{K}=T K \oplus \operatorname{tr}(T K)=S(T K) \perp(\operatorname{Rad}(T K) \oplus \operatorname{ltr}(T K)) \perp S\left(T K^{\perp}\right) \tag{2.2}
\end{equation*}
$$

Let $\bar{\nabla}$ and ∇, respectively, denote the Levi-Civita connection on \bar{K} and torsion-free linear connection on K. Then, the Gauss and Weingarten formulae are given as

$$
\begin{align*}
\bar{\nabla}_{Y} Z & =\nabla_{Y} Z+h^{l}(Y, Z)+h^{s}(Y, Z) \tag{2.3}\\
\bar{\nabla}_{Y} N & =-A_{N} Y+\nabla_{Y}^{l} N+D^{s}(Y, N) \tag{2.4}\\
\bar{\nabla}_{Y} W & =-A_{W} Y+D^{l}(Y, W)+\nabla_{Y}^{s} W \tag{2.5}
\end{align*}
$$

where $Y, Z \in \Gamma(T K), N \in \Gamma(l \operatorname{tr}(T K))$ and $W \in \Gamma\left(S\left(T K^{\perp}\right)\right)$. Further by employing Eqs. (2.3) and (2.5), we derive

$$
\begin{equation*}
g\left(A_{W} Y, Z\right)=\bar{g}\left(h^{s}(Y, Z), W\right)+\bar{g}\left(Z, D^{l}(Y, W)\right) \tag{2.6}
\end{equation*}
$$

Let us denote the projection morphism of $T K$ on the screen distribution $S(T K)$ by η. It follows that

$$
\begin{equation*}
\nabla_{Y} \eta Z=\nabla_{Y}^{*} \eta Z+h^{*}(Y, \eta Z), \nabla_{Y} \xi=-A_{\xi}^{*} Y+\nabla_{Y}^{* t} \xi \tag{2.7}
\end{equation*}
$$

where $\left\{h^{*}(Y, \eta Z), \nabla_{Y}^{* t \xi}\right\} \in \Gamma(\operatorname{Rad}(T K))$ and $\left\{\nabla_{Y}^{*} \eta Z, A_{\xi}^{*} Y\right\} \in \Gamma(S(T K))$. Further, employing Eqs. (2.4), (2.5) and (2.7), we attain

$$
\begin{equation*}
\bar{g}\left(h^{l}(Y, \eta Z), \xi\right)=g\left(A_{\xi}^{*} Y, \eta Z\right) \tag{2.8}
\end{equation*}
$$

As $\bar{\nabla}$ is a metric connection on \bar{K}, for any $Y, Z, W \in \Gamma(T K)$, one has

$$
\begin{equation*}
\left(\nabla_{Y} g\right)(Z, W)=\bar{g}\left(h^{l}(Y, Z), W\right)+\bar{g}\left(h^{l}(Y, W), Z\right) \tag{2.9}
\end{equation*}
$$

which implies that ∇ is not always a metric connection on K.

2.2. Semi-Riemannian product manifolds

Suppose that $\left(K_{1}, g_{1}\right)$ and $\left(K_{2}, g_{2}\right)$ are two m_{1} and m_{2}-dimensional semi- Riemannian manifolds with constant index $q_{1}>0$ and $q_{2}>0$, respectively. Consider $\pi: K_{1} \times K_{2} \rightarrow K_{1}$ and $\sigma: K_{1} \times K_{2} \rightarrow K_{2}$ the projection maps given by $\pi(y, z)=y$ and
$\sigma(y, z)=z$, for any $(y, z) \in K_{1} \times K_{2}$. We denote the product manifold by $(\bar{K}, \bar{g})=$ ($K_{1} \times K_{2}, \bar{g}$), where

$$
\bar{g}(Y, Z)=g_{1}\left(\pi_{*} Y, \pi_{*} Z\right)+g_{2}\left(\sigma_{*} Y, \sigma_{*} Z\right),
$$

for any $Y, Z \in \Gamma(T \bar{K})$, where $*$ stands for the differential mapping. Then we have

$$
\pi_{*}^{2}=\pi_{*}, \sigma_{*}^{2}=\sigma_{*}, \pi_{*} \sigma_{*}=\sigma_{*} \pi_{*}, \pi_{*}+\sigma_{*}=I,
$$

where I is the identity map of $T\left(K_{1} \times K_{2}\right)$. Thus (\bar{K}, \bar{g}) is an $\left(m_{1}+m_{2}\right)$-dimensional semi-Riemannian manifold with constant index $\left(q_{1}+q_{2}\right)$. The semiRiemannian product manifold $\bar{K}=K_{1} \times K_{2}$ is characterized by K_{1} and K_{2}, which are totally geodesic submanifolds of \bar{K}. Now if we put $F=\pi_{*}-\sigma_{*}$ we see that $F^{2}=I$ and

$$
\begin{equation*}
\bar{g}(F Y, Z)=\bar{g}(Y, F Z), \tag{2.10}
\end{equation*}
$$

for any $Y, Z \in \Gamma(T \bar{K})$, where F is called an almost product structure on $K_{1} \times K_{2}$. If we denote the Levi-Civita connection on \bar{K} by $\bar{\nabla}$, then it can be seen that

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} F\right) Z=0 \tag{2.11}
\end{equation*}
$$

for any $Y, Z \in \Gamma(T \bar{K})$, that is, F is parallel with respect to $\bar{\nabla}$.

3. SLANT LIGHTLIKE SUbMANIFOLDS

Firstly, we prove two essential lemmas following [14], for later use.
Lemma 3.1. Consider an r-lightlike submanifold K of semi-Riemannian product manifold \bar{K} with index $2 q$ and $F \operatorname{Rad}(T K)$ a distribution on K with $\operatorname{Rad}(T K) \cap$ $F \operatorname{Rad}(T K)=\{0\}$. Then, $\operatorname{Fltr}(T K)$ is a subbundle of $S(T K)$ such that $F \operatorname{Rad}(T K) \cap$ $\operatorname{Fltr}(T K)=\{0\}$.

Proof. By the hypothesis, we have $F \operatorname{Rad}(T K) \subset S(T K)$. On the contrary, assume that $\operatorname{ltr}(T K)$ is invariant. Choose $\xi \in \Gamma(\operatorname{Rad}(T K))$ and $N \in \Gamma(\operatorname{ltr}(T K))$, thus we have $1=\bar{g}(\xi, N)=\bar{g}(F \xi, F N)=0$ as $F \xi \in \Gamma(S(T K))$ and $F N \in \Gamma(l \operatorname{tr}(T K))$, which leads to a contradiction. It implies that $\operatorname{ltr}(T K)$ is not invariant w.r.t. F. Now $\bar{g}(F \xi, F N)=0$, as $S\left(T K^{\perp}\right)$ is orthogonal to $S(T K)$. But $\bar{g}(\xi, N)=\bar{g}(F \xi, F N) \neq 0$, for $\xi \in \Gamma(\operatorname{Rad}(T K))$, which is again a contradiction. Therefore, it implies that $F N$ does not belong to $S\left(T K^{\perp}\right)$. Thus, we conclude that $\operatorname{Fltr}(T K)$ is a distribution on K. Therefore, $F N$ does not belong to $F \operatorname{Rad}(T K)$. Moreover, if $F N \in \Gamma(\operatorname{Rad}(T K))$, then we have $F^{2} N=N \in \Gamma(F \operatorname{Rad}(T K))$, which is not possible. On the other hand, $F N$ does not belong to $F \operatorname{Rad}(T K)$. Hence, $\operatorname{Fltr}(T K) \subset S(T K)$ and $F l t r(T K) \cap$ $\operatorname{FRad}(T K)=\{0\}$.

Lemma 3.2. For an r-lightlike submanifold K of a semi-Riemannian product manifold \bar{K}, with the assumption of Lemma 3.1 (provided, $r=q$), any complementary distribution to $F \operatorname{Rad}(T K) \oplus F \operatorname{ltr}(T K)$ in $S(T K)$ must be Riemannian.

Proof. Assume that $\operatorname{dim}(\bar{K})=m+n$ and $\operatorname{dim}(K)=m$. From lemma 3.1, we have $F l t r(T K) \oplus F \operatorname{Rad}(T K) \subset S(T K)$. Now, assume D is the complementary distribution to $F \operatorname{ltr}(T K) \oplus F \operatorname{Rad}(T K)$ in $S(T K)$. Take a local quasi-orthonormal field of frames on \bar{K} along K written as $\left\{\xi_{i}, N_{i}, F \xi_{i}, F N_{i}, X_{j}, W_{k}\right\}$, for $i \in\{1, \ldots, r\}$, $j \in\{3 r+1, \ldots, m\}, k \in\{r+1, \ldots, n\}$, where $\left\{\xi_{i}\right\}$ and $\left\{N_{i}\right\}$, respectively, are lightlike bases of $\operatorname{Rad}(T K)$ and $\operatorname{ltr}(T K)$, whereas $\left\{F \xi_{i}, F N_{i}, X_{j}\right\}$ and $\left\{W_{k}\right\}$ are orthonormal basis of $S(T K)$ and $S\left(T K^{\perp}\right)$, respectively. Then, we can construct orthonormal basis $\left\{U_{1}, \ldots, U_{2 r}, V_{1}, \ldots, V_{2 r}\right\}$ as follows.

$$
\begin{array}{rlrl}
U_{1} & =\frac{1}{\sqrt{2}}\left(\xi_{1}+N_{1}\right), & U_{2} & =\frac{1}{\sqrt{2}}\left(\xi_{1}-N_{1}\right), \\
U_{3} & =\frac{1}{\sqrt{2}}\left(\xi_{2}+N_{2}\right), & U_{4} & =\frac{1}{\sqrt{2}}\left(\xi_{2}-N_{2}\right), \\
U_{2 r-1} & =\frac{1}{\sqrt{2}}\left(\xi_{r}+N_{r}\right), & U_{2 r} & =\frac{1}{\sqrt{2}}\left(\xi_{r}-N_{r}\right), \\
V_{1} & =\frac{1}{\sqrt{2}}\left(F \xi_{1}+F N_{1}\right), \\
V_{3} & =\frac{1}{\sqrt{2}}\left(F \xi_{2}+F N_{2}\right), & V_{2} & =\frac{1}{\sqrt{2}}\left(F \xi_{1}-F N_{1}\right), \\
V_{2 r-1} & =\frac{1}{\sqrt{2}}\left(F \xi_{r}+F N_{r}\right), & V_{4} & =\frac{1}{\sqrt{2}}\left(F \xi_{2}-F N_{2}\right), \\
& \cdots \ldots \ldots \ldots \ldots \ldots \\
V_{2 r} & =\frac{1}{\sqrt{2}}\left(F \xi_{r}-F N_{r}\right),
\end{array}
$$

for the basis $\left\{\xi_{1}, \ldots, \xi_{r}, N_{1}, \ldots, N_{r}, F \xi_{1}, \ldots, F \xi_{r}, F N_{1}, \ldots, F N_{r}\right\}$ of $\operatorname{Rad}(T K) \oplus \operatorname{ltr}(T K) \oplus$ $F \operatorname{Rad}(T K) \oplus F l \operatorname{tr}(T K)$. Clearly, $\operatorname{Span}\left\{\xi_{i}, N_{i}, F \xi_{i}, F N_{i}\right\}$ is a non-degenerate space, thus we conclude that $\operatorname{Rad}(T K) \oplus \operatorname{ltr}(T K) \oplus F \operatorname{Rad}(T K) \oplus F l t r(T K)$ is a nondegenerate space with index $2 r$ on \bar{K}. As index $(T \bar{K})=\operatorname{index}(\operatorname{Rad}(T K) \oplus \operatorname{ltr}(T K))+$ index $(F \operatorname{Rad}(T K) \oplus F \operatorname{ltr}(T K))+\operatorname{index}\left(D \perp S\left(T K^{\perp}\right)\right)$. Therefore, we obtain $2 q=$ $2 r+$ index $\left(D \perp S\left(T K^{\perp}\right)\right.$), which implies that $D \perp S\left(T K^{\perp}\right)$ is Riemannian (provided, $r=q)$, that is, index $\left(D \perp S\left(T K^{\perp}\right)\right)=0$. Hence, the result follows.

We note that $\operatorname{Rad}(T K)$ is degenerate in $T K$, therefore vectors of $\operatorname{Rad}(T K)$ can not be used to study the angle between them. In this regard, Lemma 3.2 plays a crucial role in defining the angle between vectors. Thus, we define a slant lightlike submanifold of semi-Riemannian product manifolds following Sahin [14] as follows.

Definition 3.1. A q-lightlike submanifold K of a semi-Riemannian product manifold \bar{K} with index $2 q$, is called a slant lightlike submanifold of \bar{K}, if
(A) $\operatorname{Rad}(T K)$ is a distribution on K such that $F \operatorname{Rad}(T K) \cap \operatorname{Rad}(T K)=\{0\}$.
(B) For each non-zero vector field Z tangent to D at $z \in U \subset K$, the angle $\theta(Z)$ between $F Z$ and the vector space D_{z} is constant (known as slant angle), that is, it is independent of the choice of $z \in U \subset K$ and $Z \in D_{z}$, where D is complementary distribution to $F \operatorname{Rad}(T K) \oplus F l t r(T K)$ in the screen distribution $S(T K)$.

Then, in view of Definition 3.1, TK of K is given as

$$
\begin{equation*}
T K=\operatorname{Rad}(T K) \perp(F \operatorname{Rad}(T K) \oplus F l \operatorname{tr}(T K)) \perp D \tag{3.1}
\end{equation*}
$$

Note: In the forthcoming part, we shall denote a slant lightlike submanifold by s.l.s. and a semi-Riemannian product manifold by \bar{K}, unless otherwise indicated. For $Y \in \Gamma(T K)$, we have

$$
\begin{equation*}
F Y=\phi Y+S Y \tag{3.2}
\end{equation*}
$$

where $\phi Y \in \Gamma(T K)$ and $S Y \in \Gamma(\operatorname{tr}(T K))$. Similarly, for any $V \in \Gamma(\operatorname{tr}(T K))$,

$$
\begin{equation*}
F V=t V+n V \tag{3.3}
\end{equation*}
$$

where $t V \in \Gamma(T K)$ and $n V \in \Gamma(\operatorname{tr}(T K))$.
Consider P_{1}, P_{2}, P_{3} and P_{4} the projections of $T K$ on $\operatorname{Rad}(T K), F(\operatorname{Rad}(T K))$, $F(\operatorname{ltr}(T K))$ and D, respectively. Then, for any $Y \in \Gamma(T K)$, we have

$$
\begin{equation*}
Y=P_{1} Y+P_{2} Y+P_{3} Y+P_{4} Y \tag{3.4}
\end{equation*}
$$

then applying F to Eq. (3.4), we obtain

$$
\begin{equation*}
F Y=F P_{1} Y+F P_{2} Y+F P_{3} Y+F P_{4} Y \tag{3.5}
\end{equation*}
$$

which after using Eq. (3.2) yields that

$$
\begin{equation*}
F Y=F P_{1} Y+F P_{2} Y+\phi P_{4} Y+S P_{3} Y+S P_{4} Y \tag{3.6}
\end{equation*}
$$

Moreover, Eq. (3.6) can be rewritten as

$$
\begin{equation*}
F Y=\phi Y+S P_{3} Y+S P_{4} Y \tag{3.7}
\end{equation*}
$$

where $\phi Y=F P_{1} Y+F P_{2} Y+\phi P_{4} Y$.
Further differentiating Eq. (3.6) along with Eqs. (2.3)-(2.5), (3.2) and (3.3) and then considering the components on $\operatorname{Rad}(T K), F \operatorname{Rad}(T K), F l t r(T K)$, $D, \operatorname{ltr}(T K)$ and $S\left(T K^{\perp}\right)$, respectively, we derive

$$
\begin{array}{r}
P_{1}\left(\nabla_{Y_{1}} F P_{1} Y_{2}\right)+P_{1}\left(\nabla_{Y_{1}} F P_{2} Y_{2}\right)+P_{1}\left(\nabla_{Y_{1}} \phi P_{4} Y_{2}\right)= \\
P_{1}\left(A_{S P_{3} Y_{2}} Y_{1}\right)+P_{1}\left(A_{S P_{4} Y_{2}} Y_{1}\right)+F P_{2} \nabla_{Y_{1}} Y_{2} . \\
P_{2}\left(\nabla_{Y_{1}} F P_{1} Y_{2}\right)+P_{2}\left(\nabla_{Y_{1}} F P_{2} Y_{2}\right)+P_{2}\left(\nabla_{Y_{1}} \phi P_{4} Y_{2}\right)= \\
P_{2}\left(A_{S P_{3} Y_{2}} Y_{1}\right)+P_{2}\left(A_{S P_{4} Y_{2}} Y_{1}\right)+F P_{1} \nabla_{Y_{1}} Y_{2} . \\
P_{3}\left(\nabla_{Y_{1}} F P_{1} Y_{2}\right)+P_{3}\left(\nabla_{Y_{1}} F P_{2} Y_{2}\right)+P_{3}\left(\nabla_{Y_{1}} \phi P_{4} Y_{2}\right)= \\
P_{3}\left(A_{S P_{3} Y_{2}} Y_{1}\right)+P_{3}\left(A_{S P_{4} Y_{2}} Y_{1}\right)+F h^{l}\left(Y_{1}, Y_{2}\right) . \tag{3.10}
\end{array}
$$

$$
\begin{gather*}
P_{4}\left(\nabla_{Y_{1}} F P_{1} Y_{2}\right)+P_{4}\left(\nabla_{Y_{1}} F P_{2} Y_{2}\right)+P_{4}\left(\nabla_{Y_{1}} \phi P_{4} Y_{2}\right)= \\
P_{4}\left(A_{S P_{3} Y_{2}} Y_{1}\right)+P_{4}\left(A_{S P_{4} Y_{2}} Y_{1}\right)+\phi P_{4} \nabla_{Y_{1}} Y_{2}+t h^{s}\left(Y_{1}, Y_{2}\right) . \tag{3.11}\\
h^{l}\left(Y_{1}, F P_{1} Y_{2}\right)+h^{l}\left(Y_{1}, F P_{2} Y_{2}\right)+h^{l}\left(Y_{1}, \phi P_{4} Y_{2}\right)= \\
S P_{3} \nabla_{Y_{1}} Y_{2}-\nabla_{Y_{1}}^{l} S P_{3} Y_{2}-D^{l}\left(Y_{1}, S P_{4} Y_{2}\right) . \tag{3.12}\\
h^{s}\left(Y_{1}, F P_{1} Y_{2}\right)+h^{s}\left(Y_{1}, F P_{2} Y_{2}\right)+h^{s}\left(Y_{1}, \phi P_{4} Y_{2}\right)= \\
S P_{4} \nabla_{Y_{1}} Y_{2}-\nabla_{Y_{1}}^{s} S P_{4} Y_{2}-D^{s}\left(Y_{1}, S P_{3} Y_{2}\right)+n h^{s}\left(Y_{1}, Y_{2}\right) . \tag{3.13}
\end{gather*}
$$

Lemma 3.3. For a s.l.s. K of \bar{K}, one has $S P_{4} Y \in \Gamma\left(S\left(T K^{\perp}\right)\right)$, for $Y \in \Gamma(T K)$.
Proof. For $Y \in \Gamma(T K)$, we have $S P_{4} Y \in \Gamma\left(S\left(T K^{\perp}\right)\right)$ if and only if $\bar{g}\left(S P_{4} Y, \xi\right)$ $=0$, for $\xi \in \Gamma(\operatorname{Rad}(T K))$. Therefore, $\bar{g}\left(S P_{4} Y, \xi\right)=\bar{g}\left(F P_{4} Y-\phi P_{4} Y, \xi\right)=\bar{g}\left(F P_{4} Y, \xi\right)=$ $g\left(P_{4} Y, F \xi\right)=0$ implies $S P_{4} Y$ has no components in $\operatorname{ltr}(T K)$. Hence the result follows.

Note: From Lemma 3.3, we have $S D \subset S\left(T K^{\perp}\right)$, which implies that there exist $\mu \subset S\left(T K^{\perp}\right)$ such that $S\left(T K^{\perp}\right)=S D \perp \mu$.

Theorem 3.1. (Existence Theorem) A q-lightlike submanifold K of \bar{K} is s.l.s., if and only if
(i) $F l \operatorname{tr}(T K)$ is a distribution on K.
(ii) $\phi^{2} P_{4} Z=\cos ^{2} \theta\left(P_{4} Z\right) \quad$ for $Z \in \Gamma(T K)$.

Proof. Assume that K be a s.l.s. of \bar{K}. Then from Lemma 3.1, we have $F l t r(T K)$ is also a distribution on K such that $F l t r(T K) \subset S(T K)$, which proves (i). On the other hand, the angle between D_{z} and $F P_{4} Z$ is constant, thus we acquire

$$
\begin{equation*}
\cos \theta\left(P_{4} Z\right)=\frac{\bar{g}\left(F P_{4} Z, \phi P_{4} Z\right)}{\left|F P_{4} Z\right|\left|\phi P_{4} Z\right|}=\frac{\bar{g}\left(P_{4} Z, F \phi P_{4} Z\right)}{\left|P_{4} Z\right|\left|\phi P_{4} Z\right|}=\frac{\bar{g}\left(P_{4} Z, \phi^{2} P_{4} Z\right)}{\left|P_{4} Z\right|\left|\phi P_{4} Z\right|} \tag{3.14}
\end{equation*}
$$

Moreover, we also have

$$
\begin{equation*}
\cos \theta\left(P_{4} Z\right)=\frac{\left|\phi P_{4} Z\right|}{\left|F P_{4} Z\right|} \tag{3.15}
\end{equation*}
$$

Thus from Eqs. (3.14) and (3.15), we derive

$$
\begin{equation*}
\cos ^{2} \theta\left(P_{4} Z\right)=\frac{\bar{g}\left(P_{4} Z, \phi^{2} P_{4} Z\right)}{\left|P_{4} Z\right|^{2}} \tag{3.16}
\end{equation*}
$$

As $\theta\left(P_{4} Z\right)$ is constant, thus we have

$$
\begin{equation*}
\phi^{2} P_{4} Z=\cos ^{2} \theta\left(P_{4} Z\right) \tag{3.17}
\end{equation*}
$$

which proves (ii).
Conversely, suppose that K is a q-lightlike submanifold of \bar{K} satisfying (i) and (ii). Then by (i), it follows that $F \operatorname{Rad}(T K)$ is a distribution on K. Further, Lemma 3.2
gives that the complementary distribution of $F \operatorname{Rad}(T K) \oplus F l t r(T K)$ in $S(T K)$ is Riemannian. Therefore

$$
\begin{equation*}
g\left(\phi P_{4} Z, \phi P_{4} Z\right)=g\left(\phi^{2} P_{4} Z, P_{4} Z\right)=\cos ^{2} \theta\left(P_{4} Z\right) g\left(P_{4} Z, P_{4} Z\right) \tag{3.18}
\end{equation*}
$$

for any $P_{4} Z \in D_{z}$, which implies that

$$
\begin{equation*}
\cos ^{2} \theta\left(P_{4} Z\right)=\frac{g\left(\phi P_{4} Z, \phi P_{4} Z\right)}{g\left(P_{4} Z, P_{4} Z\right)} \tag{3.19}
\end{equation*}
$$

Hence, the proof is complete.
Theorem 3.2. (Existence Theorem) A q-lightlike submanifold K of \bar{K} is s.l.s., if and only if
(i) $F \operatorname{ltr}(T K)$ is a distribution on K.
(ii) $t S P_{4} Z=\sin ^{2} \theta\left(P_{4} Z\right)$, for every vector Z on K.

Proof. Suppose that K is a s.l.s. of \bar{K}. Then employing Lemma 3.1, $\operatorname{Fltr}(T K)$ is also a distribution on K such that $F l t r(T K) \subset S(T K)$, which proves (i). Further, applying F to Eq. (3.6) and using Eqs. (3.2) and (3.6), we acquire $Z=P_{1} Z+$ $P_{2} Z+\phi^{2} P_{4} Z+S \phi P_{4} Z+F S P_{3} Z+t S P_{4} Z+n S P_{4} Z$. Then comparing the tangential components on both sides, we derive

$$
\begin{equation*}
Z=P_{1} Z+P_{2} Z+\phi^{2} P_{4} Z+P_{3} Z+t S P_{4} Z \tag{3.20}
\end{equation*}
$$

Further, employing Eq. (3.4), we get

$$
\begin{equation*}
P_{4} Z=\phi^{2} P_{4} Z+t S P_{4} Z \tag{3.21}
\end{equation*}
$$

Since K is s.l.s., then using Theorem 3.1, we have $\phi^{2} P_{4} Z=\cos ^{2} \theta P_{4} Z$, which further gives $t S P_{4} Z=\sin ^{2} \theta\left(P_{4} Z\right)$, which proves (ii).
Conversely, let K be a q-lightlike submanifold of \bar{K} such that (i) and (ii) hold. By (ii), we have $t S P_{4} Z=\sin ^{2} \theta\left(P_{4} Z\right)$ and further using Eq. (3.21), we obtain $\phi^{2} P_{4} Z=\left(1-\sin ^{2} \theta\left(P_{4} Z\right)\right)=\cos ^{2}\left(P_{4} Z\right)$. Hence, the result follows by taking similar steps as in the proof of Theorem 3.1.

Corollary 3.1. For a s.l.s. K of \bar{K}, one has

$$
\begin{equation*}
g\left(\phi P_{4} Y_{1}, \phi P_{4} Y_{2}\right)=\cos ^{2} \theta g\left(P_{4} Y_{1}, P_{4} Y_{2}\right) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}\left(S P_{4} Y_{1}, S P_{4} Y_{2}\right)=\sin ^{2} \theta g\left(P_{4} Y_{1}, P_{4} Y_{2}\right) \tag{3.23}
\end{equation*}
$$

for $Y_{1}, Y_{2} \in \Gamma(T K)$.
Example 3.1. Consider K a submanifold of the semi-Euclidean space $\left(R_{2}^{10}, \bar{g}\right)$ given by the equations

$$
\begin{gathered}
x^{1}=u^{1}, x^{2}=u^{2}, x^{3}=u^{1}, x^{4}=u^{5}, x^{5}=u^{4} \sin \theta \\
x^{6}=u^{3} k \sin \theta, x^{7}=u^{4} \cos \theta, x^{8}=u^{3} k \cos \theta, x^{9}=k u^{4}, x^{10}=u^{3}
\end{gathered}
$$

where the signature of g is $(-,-,+,+,+,+,+,+,+,+)$ with respect to the basis $\left(\partial x_{1}, \partial x_{2}, \partial x_{3}, \partial x_{4}, \partial x_{5}, \partial x_{6}, \partial x_{7}, \partial x_{8}, \partial x_{9}, \partial x_{10}\right)$. Then $T K$ is spanned by $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$, where

$$
\begin{gathered}
Z_{1}=\partial x_{1}+\partial x_{3}, \quad Z_{2}=\partial x_{2}, \quad Z_{3}=k \sin \theta \partial x_{6}+k \cos \theta \partial x_{8}+\partial x_{10} \\
Z_{4}=\sin \theta \partial x_{5}+\cos \theta \partial x_{7}+k \partial x_{9}, Z_{5}=\partial x_{4} .
\end{gathered}
$$

Clearly, K is a 1-lightlike submanifold as $\left\{Z_{1}\right\} \in \Gamma(\operatorname{Rad}(T K))$. Moreover, $F Z_{1}=$ $Z_{2}+Z_{5}$, which implies that $F \operatorname{Rad}(T K)=\operatorname{Span}\left\{Z_{2}, Z_{5}\right\}$. Choose $D=\operatorname{Span}\left\{Z_{3}, Z_{4}\right\}$, which is Riemannian. Then, K is a s.l.s. with slant angle $\cos ^{-1}\left(\frac{2 k}{1+k^{2}}\right)$ with screen transversal bundle $S\left(T K^{\perp}\right)$ spanned by

$$
W=-k \sin \theta \partial x_{5}+\sin \theta \partial x_{6}-k \cos \theta \partial x_{7}+\cos \theta \partial x_{8}+\partial x_{9}-k \partial x_{10},
$$

which is also Riemannian. Furthermore, $\operatorname{ltr}(T K)$ is spanned by

$$
N_{1}=\frac{1}{2}\left\{-\partial x_{1}+\partial x_{3}\right\} .
$$

Therefore, we obtain $F N_{1}=\frac{1}{2}\left\{-\partial x_{2}+\partial x_{4}\right\}=\frac{1}{2}\left\{-Z_{2}+Z_{5}\right\} \in \Gamma(F l \operatorname{tr}(T K) \subseteq S(T K))$. Hence K is a proper s.l.s. of R_{2}^{10}.
Theorem 3.3. Suppose that K is a proper s.l.s. of \bar{K}. Then the induced connection ∇ is a metric connection, if and only if,

$$
\nabla_{Y} F \xi \in \Gamma(F \operatorname{Rad}(T K)) \text { and } \operatorname{th}(Y, F \xi)=0,
$$

for $Y \in \Gamma(T K)$ and $\xi \in \Gamma(\operatorname{Rad}(T K))$.
Proof. For $Y \in \Gamma(T K)$ and $\xi \in \Gamma(\operatorname{Rad}(T K))$, employing Eq. (2.11), one has $\bar{\nabla}_{Y} \xi=$ $\bar{\nabla}_{Y} F^{2} \xi=F \bar{\nabla}_{Y} F \xi$. Further, using Eqs. (2.3) and (3.3), we acquire

$$
\begin{equation*}
\nabla_{Y} \xi+h(Y, \xi)=F \nabla_{Y} F \xi+\operatorname{th}(Y, F \xi)+n h(Y, F \xi) . \tag{3.24}
\end{equation*}
$$

Then, equating the tangential components on both sides, we derive

$$
\begin{equation*}
\nabla_{Y} \xi=F \nabla_{Y} F \xi+\operatorname{th}(Y, F \xi) . \tag{3.25}
\end{equation*}
$$

Hence, from Eq. (3.25), $\nabla_{Y} \xi \in \Gamma(\operatorname{Rad}(T K))$ if and only if $\nabla_{Y} F \xi \in \Gamma(F \operatorname{Rad}(T K))$ and $\operatorname{th}(Y, F \xi)=0$, which gives the result.

Next, we will examine some conditions for integrability of distributions associated with a s.l.s. of \bar{K}. Firstly, we present a basic lemma.

Lemma 3.4. Consider a s.l.s. K of \bar{K}, then

$$
\begin{equation*}
\left(\nabla_{Y_{1}} \phi\right) Y_{2}=A_{S P_{1} Y_{2}} Y_{1}+A_{S P_{4} Y_{2}} Y_{1}+\operatorname{th}\left(Y_{1}, Y_{2}\right) \tag{3.26}
\end{equation*}
$$

and

$$
\begin{align*}
& S \nabla_{Y_{1}} Y_{2}-h\left(Y_{1}, \phi Y_{2}\right)+C h\left(Y_{1}, Y_{2}\right)=D^{s}\left(Y_{1}, S P_{3} Y_{2}\right) \\
& \quad+D^{l}\left(Y_{1}, S P_{4} Y_{2}\right)+\nabla_{Y_{1}}^{s} S P_{4} Y_{2}+\nabla_{Y_{1}}^{l} S P_{3} Y_{2} \tag{3.27}
\end{align*}
$$

where

$$
\begin{equation*}
\left(\nabla_{Y_{1}} \phi\right) Y_{2}=\nabla_{Y_{1}} \phi Y_{2}-\phi \nabla_{Y_{1}} Y_{2}, \tag{3.28}
\end{equation*}
$$

for any $Y_{1}, Y_{2} \in \Gamma(T K)$.
Proof. Employing Eqs. (2.3)-(2.5), (3.2) and (3.3) and equating the tangential and transversal components, the proof follows.

Theorem 3.4. Assume that K is a s.l.s. of \bar{K}. Then the slant distribution D is integrable if and only if

$$
\nabla_{Z_{1}} \phi Z_{2}-A_{S P_{4} Z_{2}} Z_{1}-\operatorname{th}\left(Z_{1}, Z_{2}\right)-\phi \nabla_{Z_{2}} Z_{1} \in \Gamma(D),
$$

for each $Z_{1}, Z_{2} \in \Gamma(D)$.
Proof. For $Z_{1}, Z_{2} \in \Gamma(D)$, employing Eqs. (3.26) and (3.28), we attain

$$
\phi\left[Z_{1}, Z_{2}\right]=\nabla_{Z_{1}} \phi Z_{2}-A_{S P_{4} Z_{2}} Z_{1}-\operatorname{th}\left(Z_{1}, Z_{2}\right)-\phi \nabla_{Z_{2}} Z_{1}
$$

which proves the assertion.
Theorem 3.5. Assume that K is a s.l.s. of \bar{K}. Then the anti-invariant distribution $F \operatorname{ltr}(T K)$ is integrable if and only if

$$
A_{S P_{3} Y_{2}} Y_{1}+\operatorname{th}\left(Y_{1}, Y_{2}\right)+\phi \nabla_{Y_{2}} Y_{1}=0
$$

for $Y_{1}, Y_{2} \in \Gamma(F l t r(T K))$.
Proof. For $Y_{1}, Y_{2} \in \Gamma(F l t r(T K))$, employing Eqs. (3.26) and (3.28), we get

$$
\phi\left[Y_{1}, Y_{2}\right]=-A_{S P_{3} Y_{2}} Y_{1}-\operatorname{th}\left(Y_{1}, Y_{2}\right)-\phi \nabla_{Y_{2}} Y_{1}
$$

which gives the result.
Theorem 3.6. Consider a s.l.s. K of \bar{K}, then $\operatorname{Rad}(T K)$ is integrable if and only if
(i) $P_{1}\left(\nabla_{\xi_{1}} F P_{1} \xi_{2}\right)=P_{1}\left(\nabla_{\xi_{2}} F P_{1} \xi_{1}\right)$ and $P_{4}\left(\nabla_{\xi_{1}} \phi P_{4} \xi_{2}\right)=P_{4}\left(\nabla_{\xi_{2}} \phi P_{4} \xi_{1}\right)$,
(ii) $h^{l}\left(\xi_{1}, F P_{1} \xi_{2}\right)=h^{l}\left(\xi_{2}, F P_{1} \xi_{1}\right)$ and $h^{s}\left(\xi_{1}, F P_{1} \xi_{2}\right)=h^{s}\left(\xi_{2}, F P_{1} \xi_{1}\right)$,
for $\xi_{1}, \xi_{2} \in \Gamma(\operatorname{Rad}(T K))$.
Proof. Consider Eq. (3.8), for $\xi_{1}, \xi_{2} \in \Gamma(\operatorname{Rad}(T K))$, we derive

$$
\begin{equation*}
P_{1}\left(\nabla_{\xi_{1}} F P_{1} \xi_{2}\right)=F P_{2} \nabla_{\xi_{1}} \xi_{2} \tag{3.29}
\end{equation*}
$$

Interchanging the role of ξ_{1} and ξ_{2}, Eq. (3.29) yields

$$
\begin{equation*}
P_{1}\left(\nabla_{\xi_{2}} F P_{1} \xi_{1}\right)=F P_{2} \nabla_{\xi_{2}} \xi_{1} \tag{3.30}
\end{equation*}
$$

Then from Eqs. (3.29) and (3.30), we derive

$$
\begin{equation*}
P_{1}\left(\nabla_{\xi_{1}} F P_{1} \xi_{2}\right)-P_{1}\left(\nabla_{\xi_{2}} F P_{1} \xi_{1}\right)=F P_{2}\left[\xi_{1}, \xi_{2}\right] \tag{3.31}
\end{equation*}
$$

Now, for $\xi_{1}, \xi_{2} \in \Gamma(\operatorname{Rad}(T K))$, using Eq. (3.11), we have

$$
\begin{equation*}
P_{4}\left(\nabla_{\xi_{1}} \phi P_{4} \xi_{2}\right)=\phi P_{4} \nabla_{\xi_{1}} \xi_{2}+t h^{s}\left(\xi_{1}, \xi_{2}\right) \tag{3.32}
\end{equation*}
$$

By interchanging the role of ξ_{1} and ξ_{2} in Eq. (3.32), we get

$$
\begin{equation*}
P_{4}\left(\nabla_{\xi_{2}} \phi P_{4} \xi_{1}\right)=\phi P_{4} \nabla_{\xi_{2}} \xi_{1}+t h^{s}\left(\xi_{2}, \xi_{1}\right) \tag{3.33}
\end{equation*}
$$

Further, from Eqs. (3.32) and (3.33), we obtain

$$
\begin{equation*}
P_{4}\left(\nabla_{\xi_{1}} \phi P_{4} \xi_{2}\right)-P_{4}\left(\nabla_{\xi_{2}} \phi P_{4} \xi_{1}\right)=\phi P_{4}\left[\xi_{1}, \xi_{2}\right] \tag{3.34}
\end{equation*}
$$

Next, consider Eq. (3.12), for $\xi_{1}, \xi_{2} \in \Gamma(\operatorname{Rad}(T K))$, we acquire

$$
\begin{equation*}
h^{l}\left(\xi_{1}, F P_{1} \xi_{2}\right)=S P_{3} \nabla_{\xi_{1}} \xi_{2} \tag{3.35}
\end{equation*}
$$

By interchanging the role of ξ_{1} and ξ_{2} in Eq. (3.35), we get

$$
\begin{equation*}
h^{l}\left(\xi_{2}, F P_{1} \xi_{1}\right)=S P_{3} \nabla_{\xi_{2}} \xi_{1} \tag{3.36}
\end{equation*}
$$

Then using Eqs. (3.35) and (3.36), we acquire

$$
\begin{equation*}
h^{l}\left(\xi_{1}, F P_{1} \xi_{2}\right)-h^{l}\left(\xi_{2}, F P_{1} \xi_{1}\right)=S P_{3}\left[\xi_{1}, \xi_{2}\right] \tag{3.37}
\end{equation*}
$$

Next, using Eq. (3.13), for $\xi_{1}, \xi_{2} \in \Gamma(\operatorname{Rad}(T K))$, we have

$$
\begin{equation*}
h^{s}\left(\xi_{1}, F P_{1} \xi_{2}\right)=S P_{4} \nabla_{\xi_{1}} \xi_{2}+n h^{s}\left(\xi_{1}, \xi_{2}\right) \tag{3.38}
\end{equation*}
$$

Then interchanging the role of ξ_{1} and ξ_{2} in Eq. (3.38), we get

$$
\begin{equation*}
h^{s}\left(\xi_{2}, F P_{1} \xi_{1}\right)=S P_{4} \nabla_{\xi_{2}} \xi_{1}+n h^{s}\left(\xi_{2}, \xi_{1}\right) \tag{3.39}
\end{equation*}
$$

Further from Eqs. (3.38) and (3.39), we attain

$$
\begin{equation*}
h^{s}\left(\xi_{1}, F P_{1} \xi_{2}\right)-h^{s}\left(\xi_{2}, F P_{1} \xi_{1}\right)=S P_{4}\left[\xi_{1}, \xi_{2}\right] \tag{3.40}
\end{equation*}
$$

Hence the proof follows from Eqs. (3.31), (3.34), (3.37) and (3.40).
Theorem 3.7. For a s.l.s. K of \bar{K}, the distribution $F \operatorname{Rad}(T K)$ is integrable if and only if
(i) $P_{2}\left(\nabla_{\xi_{1}^{*}} F P_{2} \xi_{2}^{*}\right)=P_{2}\left(\nabla_{\xi_{2}^{*}} F P_{2} \xi_{1}^{*}\right)$ and $P_{4}\left(\nabla_{\xi_{1}^{*}} \phi P_{4} \xi_{2}^{*}\right)=P_{4}\left(\nabla_{\xi_{2}^{*}} \phi P_{4} \xi_{1}^{*}\right)$,
(ii) $h^{l}\left(\xi_{1}^{*}, F P_{2} \xi_{2}^{*}\right)=h^{l}\left(\xi_{2}^{*}, F P_{2} \xi_{1}^{*}\right)$ and $h^{s}\left(\xi_{1}^{*}, F P_{2} \xi_{2}^{*}\right)=h^{s}\left(\xi_{2}^{*}, F P_{2} \xi_{1}^{*}\right)$,
for $\xi_{1}^{*}, \xi_{2}^{*} \in \Gamma(F \operatorname{Rad}(T K))$.
Proof. From Eq. (3.9), for $\xi_{1}^{*}, \xi_{2}^{*} \in \Gamma(F \operatorname{Rad}(T K))$, we have

$$
\begin{equation*}
P_{2}\left(\nabla_{\xi_{1}^{*}} F P_{2} \xi_{2}^{*}\right)=F P_{1} \nabla_{\xi_{1}} \xi_{2}^{*} \tag{3.41}
\end{equation*}
$$

After interchanging ξ_{1}^{*} and ξ_{2}^{*}, Eq. (3.41) becomes

$$
\begin{equation*}
P_{2}\left(\nabla_{\xi_{2}^{*}} F P_{2} \xi_{1}^{*}\right)=F P_{1} \nabla_{\xi_{2}} \xi_{1}^{*} \tag{3.42}
\end{equation*}
$$

From Eqs. (3.41) and (3.42), we obtain

$$
\begin{equation*}
P_{2}\left(\nabla_{\xi_{1}^{*}} F P_{2} \xi_{2}^{*}\right)-P_{2}\left(\nabla_{\xi_{2}^{*}} F P_{2} \xi_{1}^{*}\right)=F P_{1}\left[\xi_{1}^{*} \xi_{2}^{*}\right] \tag{3.43}
\end{equation*}
$$

Further using Eq. (3.11), for $\xi_{1}^{*}, \xi_{2}^{*} \in \Gamma(F \operatorname{Rad}(T K))$, we acquire

$$
\begin{equation*}
P_{4}\left(\nabla_{\xi_{1}^{*}} \phi P_{4} \xi_{2}^{*}\right)=\phi P_{4} \nabla_{\xi_{1}^{*}} \xi_{2}^{*}+t h^{s}\left(\xi_{1}^{*}, \xi_{2}^{*}\right) \tag{3.44}
\end{equation*}
$$

By interchanging the role of ξ_{1}^{*} and ξ_{2}^{*} in Eq. (3.44), we get

$$
\begin{equation*}
P_{4}\left(\nabla_{\xi_{2}^{*}} \phi P_{4} \xi_{1}^{*}\right)=\phi P_{4} \nabla_{\xi_{2}^{*}} \xi_{1}^{*}+t h^{s}\left(\xi_{2}^{*}, \xi_{1}^{*}\right) . \tag{3.45}
\end{equation*}
$$

Using Eqs. (3.44) and (3.45), we obtain

$$
\begin{equation*}
P_{4}\left(\nabla_{\xi_{1}^{*}} \phi P_{4} \xi_{2}^{*}\right)-P_{4}\left(\nabla_{\xi_{2}^{*}} \phi P_{4} \xi_{1}^{*}\right)=\phi P_{4}\left[\xi_{1}^{*}, \xi_{2}^{*}\right] . \tag{3.46}
\end{equation*}
$$

Next, for $\xi_{1}^{*}, \xi_{2}^{*} \in \Gamma(F \operatorname{Rad}(T K))$, using Eq. (3.12), we have

$$
\begin{equation*}
h^{l}\left(\xi_{1}^{*}, F P_{2} \xi_{2}^{*}\right)=S P_{3} \nabla_{\xi_{1}} \xi_{2}^{*} . \tag{3.47}
\end{equation*}
$$

Interchanging ξ_{1}^{*} and ξ_{2}^{*}, Eq. (3.47) yields

$$
\begin{equation*}
h^{l}\left(\xi_{2}^{*}, F P_{2} \xi_{1}^{*}\right)=S P_{3} \nabla_{\xi_{2}} \xi_{1}^{*} . \tag{3.48}
\end{equation*}
$$

Following Eqs. (3.47) and (3.48), we obtain

$$
\begin{equation*}
h^{l}\left(\xi_{1}^{*}, F P_{2} \xi_{2}^{*}\right)-h^{l}\left(\xi_{2}^{*}, F P_{2} \xi_{1}^{*}\right)=S P_{3}\left[\xi_{1}^{*}, \xi_{2}^{*}\right] . \tag{3.49}
\end{equation*}
$$

Finally, using Eq. (3.13), for $\xi_{1}^{*}, \xi_{2}^{*} \in \Gamma(F \operatorname{Rad}(T K))$, we attain

$$
\begin{equation*}
h^{s}\left(\xi_{1}^{*}, F P_{2} \xi_{2}^{*}\right)=S P_{4} \nabla_{\xi_{1}^{*}} \xi_{2}^{*}+n h^{s}\left(\xi_{1}^{*}, \xi_{2}^{*}\right) . \tag{3.50}
\end{equation*}
$$

By interchanging ξ_{1}^{*} and ξ_{2}^{*} in Eq. (3.50), we have

$$
\begin{equation*}
h^{s}\left(\xi_{2}^{*}, F P_{2} \xi_{1}^{*}\right)=S P_{4} \nabla_{\xi_{2}^{*}} \xi_{1}^{*}+n h^{s}\left(\xi_{2}^{*}, \xi_{1}^{*}\right) . \tag{3.51}
\end{equation*}
$$

Then from Eqs. (3.50) and (3.51), we obtain

$$
\begin{equation*}
h^{s}\left(\xi_{1}^{*}, F P_{2} \xi_{2}^{*}\right)-h^{s}\left(\xi_{2}^{*}, F P_{2} \xi_{1}^{*}\right)=S P_{4}\left[\xi_{1}^{*}, \xi_{2}^{*}\right] . \tag{3.52}
\end{equation*}
$$

Hence the proof follows from Eqs. (3.43), (3.46), (3.49) and (3.52).

4. Totally umbilical slant lightlike submanifolds

Definition 4.1. [6] A lightlike submanifold (K, g) of a semi-Riemannian manifold (\bar{K}, \bar{g}) is called totally umbilical, if there exist a transversal curvature vector field $H \in \Gamma(\operatorname{tr}(T K))$ on K such that

$$
h\left(Y_{1}, Y_{2}\right)=\bar{g}\left(Y_{1}, Y_{2}\right) H,
$$

for $Y_{1}, Y_{2} \in \Gamma(T K)$. Using Eqs. (2.3) and (2.5), we say that K is totally umbilical, if and only if, there exist smooth vector fields $H^{l} \in \Gamma(\operatorname{ltr}(T K))$ and $H^{s} \in \Gamma\left(S\left(T K^{\perp}\right)\right)$ such that

$$
h^{l}\left(Y_{1}, Y_{2}\right)=g\left(Y_{1}, Y_{2}\right) H^{l}, h^{s}\left(Y_{1}, Y_{2}\right)=g\left(Y_{1}, Y_{2}\right) H^{s}, D^{l}\left(Y_{1}, W\right)=0,
$$

for $Y_{1}, Y_{2} \in \Gamma(T K)$ and $W \in \Gamma\left(S\left(T K^{\perp}\right)\right)$. On the other hand, a lightlike submanifold is totally geodesic if $h\left(Y_{1}, Y_{2}\right)=0$, for $Y_{1}, Y_{2} \in \Gamma(T K)$. Thus, a lightlike submanifold is totally geodesic, if $H^{l}=0$ and $H^{s}=0$.

Theorem 4.1. Consider K a totally umbilical s.l.s. of \bar{K}. Then at least one of the following statements is true:
(a) K is an anti-invariant submanifold.
(b) $D=\{0\}$.
(c) If K is a proper slant lightlike submanifold, then $H^{s} \in \Gamma(\mu)$.

Proof. For a totally umbilical s.l.s. K of \bar{K}, using Definition 4.1 and Eq. (3.22), for $Z=P_{4} Z \in \Gamma(D)$, we have

$$
\begin{equation*}
h\left(\phi P_{4} Z, \phi P_{4} Z\right)=g\left(\phi P_{4} Z, \phi P_{4} Z\right) H \tag{4.1}
\end{equation*}
$$

Then, using Eq. (2.3), we obtain

$$
\begin{equation*}
\cos ^{2} \theta g\left(P_{4} Z, P_{4} Z\right) H=\bar{\nabla}_{\phi P_{4} Z} \phi P_{4} Z-\nabla_{\phi P_{4} Z} \phi P_{4} Z \tag{4.2}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\cos ^{2} \theta g\left(P_{4} Z, P_{4} Z\right) H=F \bar{\nabla}_{\phi P_{4} Z} P_{4} Z-\bar{\nabla}_{\phi P_{4} Z} S P_{4} Z-\nabla_{\phi P_{4} Z} \phi P_{4} Z \tag{4.3}
\end{equation*}
$$

Further using Eqs. (2.3)-(2.5), we derive

$$
\begin{aligned}
\cos ^{2} \theta g\left(P_{4} Z, P_{4} Z\right) H= & F \nabla_{\phi P_{4} Z} P_{4} Z+F h^{l}\left(\phi P_{4} Z, P_{4} Z\right)+F h^{s}\left(\phi P_{4} Z, P_{4} Z\right) \\
& +A_{S P_{4} Z} \phi P_{4} Z-\nabla_{\phi P_{4} Z}^{s} S P_{4} Z-D^{l}\left(\phi P_{4} Z, S P_{4} Z\right) \\
& -\nabla_{\phi P_{4} Z} \phi P_{4} Z .
\end{aligned}
$$

Employing Eqs. (3.2), (3.3) and using Definition 4.1, we obtain

$$
\begin{align*}
\cos ^{2} \theta g\left(P_{4} Z, P_{4} Z\right) H & =\phi \nabla_{\phi P_{4} Z} P_{4} Z+S \nabla_{\phi P_{4} Z} P_{4} Z+g\left(\phi P_{4} Z, P_{4} Z\right) F H^{l} \\
& +g\left(\phi P_{4} Z, P_{4} Z\right) t H^{s}+g\left(\phi P_{4} Z, P_{4} Z\right) n H^{s}+A_{S P_{4} Z} \phi P_{4} Z \\
& -\nabla_{\phi P_{4} Z}^{s} S P_{4} Z-D^{l}\left(\phi P_{4} Z, S P_{4} Z\right)-\nabla_{\phi P_{4} Z} \phi P_{4} Z \tag{4.4}
\end{align*}
$$

Then considering the inner product of Eq. (4.4) w.r.t. $S P_{4} Z$, we get

$$
\begin{align*}
\cos ^{2} \theta g\left(P_{4} Z, P_{4} Z\right) \bar{g}\left(H^{s}, S P_{4} Z\right) & =\bar{g}\left(S \nabla_{\phi P_{4} Z} P_{4} Z, S P_{4} Z\right) \\
& -\bar{g}\left(\nabla_{\phi P_{4} Z}^{s} S P_{4} Z, S P_{4} Z\right) \tag{4.5}
\end{align*}
$$

Taking $Y_{1}=Y_{2} \in \Gamma(D)$ in Eq. (3.23) and then considering the covariant derivative w.r.t. $\phi P_{4} Z$, we derive

$$
\begin{equation*}
\bar{g}\left(\nabla_{\phi P_{4} Z}^{s} S P_{4} Z, S P_{4} Z\right)=\sin ^{2} \theta g\left(\nabla_{\phi P_{4} Z} P_{4} Z, P_{4} Z\right) \tag{4.6}
\end{equation*}
$$

Next using Eqs. (3.23) and (4.6) in Eq. (4.5), we obtain

$$
\begin{equation*}
\cos ^{2} \theta g\left(P_{4} Z, P_{4} Z\right) \bar{g}\left(H^{s}, S P_{4} Z\right)=0 \tag{4.7}
\end{equation*}
$$

Thus Eq. (4.7) yields that either $P_{4} Z=0$ or $\theta=\pi / 2$ or $H^{s} \in \Gamma(\mu)$. Hence, the proof follows.

Theorem 4.2. Every totally umbilical proper s.l.s of \bar{K} is totally geodesic.

Proof. Since \bar{K} is a semi-Riemannian product manifold, therefore for $Z=P_{4} Z \in$ $\Gamma(D)$, from Eq. (2.11), we have $\bar{\nabla}_{Z} F Z=F \bar{\nabla}_{Z} Z$, which gives that

$$
\begin{align*}
& \nabla_{Z} \phi P_{4} Z+h^{l}\left(Z, \phi P_{4} Z\right)+h^{s}\left(Z, \phi P_{4} Z\right)-A_{S P_{4} Z} Z+\nabla_{Z}^{s} S P_{4} Z \\
& +D^{l}\left(Z, S P_{4} Z\right)=\phi \nabla_{Z} Z+S \nabla_{Z} Z+F h^{l}(Z, Z)+t h^{s}(Z, Z)+n h^{s}(Z, Z) . \tag{4.8}
\end{align*}
$$

In view of Definition 4.1 and equating the tangential components on both sides of above equation, we derive

$$
\begin{equation*}
\nabla_{Z} \phi P_{4} Z-A_{S P_{4} Z} Z=\phi \nabla_{Z} Z+F h^{l}(Z, Z)+t h^{s}(Z, Z) \tag{4.9}
\end{equation*}
$$

Next taking the inner product of Eq. (4.9) w.r.t. $F \boldsymbol{\xi} \in \Gamma(\operatorname{Rad}(T K))$, we obtain

$$
\begin{equation*}
g\left(A_{S P_{4} Z} Z, F \xi\right)+\bar{g}\left(h^{l}(Z, Z), \xi\right)=0 . \tag{4.10}
\end{equation*}
$$

Then employing Eq. (2.6), we have

$$
\begin{equation*}
\bar{g}\left(h^{s}(Z, F \xi), S P_{4} Z\right)+\bar{g}\left(F \xi, D^{l}\left(Z, S P_{4} Z\right)\right)+\bar{g}\left(h^{l}(Z, Z), \xi\right)=0 \tag{4.11}
\end{equation*}
$$

In view of Definition 4.1, the above equation reduces to

$$
\begin{equation*}
\bar{g}\left(H^{s}, S P_{4} Z\right) g(Z, F \xi)+\bar{g}\left(H^{l}, \xi\right) g(Z, Z)=0 \tag{4.12}
\end{equation*}
$$

From Theorem 4.1, we have $H^{s} \in \Gamma(\mu)$, therefore from Eq. (4.12), we have

$$
\begin{equation*}
\bar{g}\left(H^{l}, \xi\right) g(Z, Z)=0 . \tag{4.13}
\end{equation*}
$$

As D is non-degenerate, therefore we obtain $\bar{g}\left(H^{l}, \xi\right)=0$, which further gives

$$
\begin{equation*}
H^{l}=0 . \tag{4.14}
\end{equation*}
$$

Moreover, $H^{s} \in \Gamma(\mu)$ for a proper totally umbilical s.l.s. of \bar{K}. Therefore, equating the transversal components on both sides of Eq. (4.8), we have

$$
S \nabla_{Z} Z+n h^{s}(Z, Z)=h^{l}\left(Z, \phi P_{4} Z\right)+h^{s}\left(Z, \phi P_{4} Z\right)+\nabla_{Z}^{s} S P_{4} Z+D^{l}\left(X, S P_{4} Z\right) .
$$

Then using Definition 4.1, we derive

$$
S \nabla_{Z} Z+g(Z, Z) n H^{s}=g\left(Z, \phi P_{4} Z\right) H^{l}+g\left(Z, \phi P_{4} Z\right) H^{s}+\nabla_{Z}^{s} S P_{4} Z .
$$

On taking the inner product of the above equation w.r.t. $F H^{s}$, we obtain

$$
\begin{equation*}
g(Z, Z) \bar{g}\left(H^{s}, H^{s}\right)=\bar{g}\left(\nabla_{Z}^{s} S P_{4} Z, F H^{s}\right) . \tag{4.15}
\end{equation*}
$$

Furthermore, one has $\bar{\nabla}_{Z} F H^{s}=F \overline{\mathrm{~V}}_{Z} H^{s}$ and it implies

$$
\begin{gather*}
-A_{F H^{s}} Z+\nabla_{Z}^{s} F H^{s}+D^{l}\left(Z, F H^{s}\right)=-\phi A_{H^{s}} Z-S A_{H^{s}} Z \\
+t \nabla_{Z}^{s} H^{s}+n \nabla_{Z}^{s} H^{s}+F D^{l}\left(Z, H^{s}\right) . \tag{4.16}
\end{gather*}
$$

Since μ is invariant by taking the inner product of Eq. (4.16) w.r.t. $S P_{4} Z$, we obtain

$$
\begin{equation*}
\bar{g}\left(\nabla_{Z}^{s} F H^{s}, S P_{4} Z\right)=-\bar{g}\left(S A_{H^{s}} Z, S P_{4} Z\right)=-\sin ^{2} \theta g\left(A_{H^{s}} Z, P_{4} Z\right) \tag{4.17}
\end{equation*}
$$

As $\bar{\nabla}$ is a metric connection, thus we have $\left(\bar{\nabla}_{Z} \bar{g}\right)\left(S P_{4} Z, F H^{s}\right)=0$, which implies that $\bar{g}\left(\nabla_{Z}^{s} S P_{4} Z, F H^{s}\right)=-\bar{g}\left(\nabla_{Z}^{s} F H^{s}, S P_{4} Z\right)$, therefore Eq. (4.17) becomes

$$
\begin{equation*}
\bar{g}\left(\nabla_{Z}^{s} S P_{4} Z, F H^{s}\right)=\sin ^{2} \theta g\left(A_{H^{s}} Z, P_{4} Z\right) \tag{4.18}
\end{equation*}
$$

Then using Eq. (4.18) in Eq. (4.15), we have

$$
\begin{equation*}
g(Z, Z) \bar{g}\left(H^{s}, H^{s}\right)=\sin ^{2} \theta g\left(A_{H^{s}} Z, P_{4} Z\right) \tag{4.19}
\end{equation*}
$$

Now, employing Eqs. (2.6), the above equation yields

$$
\begin{equation*}
g(Z, Z) \bar{g}\left(H^{s}, H^{s}\right)=\sin ^{2} \theta g(Z, Z) \bar{g}\left(H^{s}, H^{s}\right) \tag{4.20}
\end{equation*}
$$

which implies that

$$
\left(1-\sin ^{2} \theta\right) g(Z, Z) \bar{g}\left(H^{s}, H^{s}\right)=0
$$

As K is a proper s.l.s., therefore $\sin ^{2} \theta \neq 1$ and from the non-degeneracy of D, we derive

$$
\begin{equation*}
H^{s}=0 \tag{4.21}
\end{equation*}
$$

Hence, the result follows from Eqs. (4.14) and (4.21).
Theorem 4.3. For a proper totally umbilical s.l.s. K of \bar{K}, ∇ is always a metric connection.

Proof. The proof follows directly from Eqs. (2.9) and (4.14).

References

[1] C. L. Bejan and K. L. Duggal, Global lightlike manifolds and harmonicity, Kodai Math. J., 28 (2005), 131-145.
[2] A. Carriazo, Bi-slant immersion, Proc. of ICRAMS, Kharagpur, India (2000), 88-97.
[3] B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135-147.
[4] B. Y. Chen, Geometry of Slant submanifolds, Katholieke University, Leuven, 1990.
[5] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications: Mathematics and its Applications, 364, Kluwer Academic Publishers, 1996.
[6] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J., 26 (1) (2003), 49-68.
[7] G. Gupta, R. Sachdeva, R. Kumar and R. K. Nagaich, Pointwise slant lightlike submanifolds of indefinite Kaehler manifolds, Mediterr. J. Math., 15 (3) (2018), Article ID 105.
[8] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, 1973.
[9] S. Kumar, R. Kumar and R. K. Nagaich, GCR-lightlike submanifolds of a semi-Riemannian product manifold, Bull. Korean Math. Soc., 51 (3) (2014), 883-899.
[10] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie, 39 (1996), 183-198.
[11] A. Lotta, Three dimensional slant submanifolds of K-Contact manifolds, Balkan J. Geom. Appl., 3 (1998), 37-51.
[12] N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifolds, An. Stiin. Univ. Al. I. Cuza. Iasi. Math., 9 (1994), 55-61.
[13] B. Sahin, Warped product submanifolds of a Kaehler manifold with a slant factor, Ann. Pol. Math., 95 (2009), 207-226.
[14] B. Sahin, Slant lightlike submanifolds of indefinite Hermitian manifolds, Balkan J. Geom. Appl., 13 (2008), 107-119.
[15] B. Sahin, Slant lightlike submanifolds of indefinite Sasakian manifolds, Filomat, 26 (2) (2012), 277-287.
[16] B. Sahin, Screen slant lightlike submanifolds, Int. Electron. J. Geom., 2 (2009), 41-54.
[17] S. S. Shukla and A. Yadav, Semi-slant lightlike submanifolds of indefinite Kaehler manifolds, Revista De La, 56 (2) (2015), 21-37.
[18] S. S. Shukla and A. Yadav, Screen pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds, Novi Sad J. Math., 46 (1) (2016), 147-158.
(Received: June 13, 2021)
(Revised: March 19, 2022)

Tejinder Kumar and Pankaj Kumar
Department of Mathematics
Maharaja Agrasen University
Baddi-174103, Himachal Pradesh, India
e-mail: tejinder230@gmail.com
e-mail: pankaj.11dtu@gmail.com
and
Sangeet Kumar
Department of Mathematics
Sri Guru Teg Bahadur Khalsa College Sri Anandpur Sahib-140118, Punjab, India e-mail: sp7maths@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53C15, 53C40, 53C50.
 Key words and phrases. Slant lightlike submanifold, totally umbilical lightlike submanifold, semi-Riemannian product manifold.
 ${ }^{1}$ Corresponding author.

