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EXCEPTIONAL VALUES OF p-ADIC DERIVATIVES

A SURVEY WITH SOME IMPROVEMENTS
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In memory of Abdelbaki Boutabaa

ABSTRACT. Let K be a complete ultrametric algebraically closed field of char-

acteristic 0 and let f be a meromorphic function in K admitting primitives. We

show that f has no value taken finitely many times provided an additional hy-

pothesis is satisfied: either f has finitely many poles of order ≥ 3, or f has two

perfectly branched values, or the logarithm of the number of poles in the disk of

center 0 and diameter r is bounded by O(Log(r)) (r > 1). We make the conjec-

ture: all additional hypotheses are superfluous.

1. INTRODUCTION AND MAIN RESULTS

Let f be a complex transcendental meromorphic function that admits primitives.

Thanks to the Nevanlinna theory, it is known that for f there exists at most one

value b taken finitely many times [8]. Consider now a transcendental meromorphic

function f in an algebraically closed complete ultrametric field K of characteristic

0 [1], [9]. It is well known that a transcendental meromorphic function f can

admit at most one value b taken finitely many times [7]. But suppose now that f

admits primitives. In this survey, we recall two hypotheses proving that f admits

no value b taken finitely many times. In both hypotheses, we assume that f admits

primitives. This suggests that if a transcendental meromorphic function f in the

field K admits primitives, then f has no value taken finitely many times.

Many important results are due to Jean-Paul Bézivin [2], [3], [4].

Notation and definitions: We denote by A(K) the K-algebra of analytic functions

in K and by M (K) the field of meromorphic functions in K (i.e. the field of

functions of the form
f

g
, with f , g ∈ A(K)).

Given two meromorphic functions f , g ∈ M (K) we will denote by W ( f ,g) the

Wronskian of f and g: f ′g− f g′.

Given f ∈ M (K) and b ∈ K, b is called an exceptional value for f if f −b has

no zero in K and a quasi-exceptional value for f if f − b has finitely many zeros

in K.
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Here, Log is the Neperian logarithm and we denote by e the number such that

Log(e) = 1 and Exp is the Archimedean exponential function.

The following theorem is well known [7]:

Theorem 0: Let f ∈ M (K). Then f has at most one quasi-exceptional value in

K. Moreover, if f ∈ A(K), then f has no quasi-exceptional value.

The following theorem 1 is esential to prove the main results that follow.

Theorem 1 [2]: Let f , g ∈ A(K) be such that W ( f ,g) is a non-identically zero

polynomial. Then both f , g are polynomials.

Remark: In Archimedean analysis, Theorem 1 does not hold. For example, take

f (x) = Exp(x), g(x) = Exp(−x). Then W ( f ,g) = 2. We can also consider f (x) =
xExp(x), g(x) = Exp(−x). Then W ( f ,g) = 2x+1.

Theorem 2: Let f ∈ M (K)\K(x) have finitely many poles of order ≥ 3 and admit

primitives. Then f has no quasi-exceptional value.

Corollary: Let F ∈ M (K)\K(x) have finitely many multiple poles. Then F ′ has

no quasi-exceptional value.

Definition: Let f ∈ M (K) and b ∈K. Then b is called a perfectly branched value

of f if all zeros of f − b are multiple except maybe finitely many. Moreover, b is

called a totally branched value of f [6] if all zeros of f − b are multiple, without

exception.

Theorem 3: Let f ∈ M (K) admit primitives. If f has two perfectly branched val-

ues then, f has no quasi-exceptional value. Moreover, if f has one totally branched

value, then f has no exceptional value.

Notation: Let f ∈ M (d(0,R−)). For each r ∈]0,R[, we denote by s(r, f ) the

number of zeros of f in d(0,r), each counted with its multiplicity and we set

t(r, f ) = s(r, 1
f
).

Let f ∈ A(K). We can factor f in the form f f̃ where the zeros of f are the

distinct zeros of f each with order 1. Moreover, if f (0) 6= 0 we can take f (0) = 1

and if f (0) = 0, we can take f so that ( f )′(0) = 1.

Theorem 4: Let f ∈M (K)\K(x) admit primitives and also satisfy Log(t(r, f ))≤
O(Log(r)). Then f has no quasi-exceptional value.

Example 1: Let (an)n∈N be a sequence in K such that |an| ≤ |an+1| and lim
n→+∞

|an|=

+∞ and let f (x) =
∞

∑
n=0

bn

(x−an)sn
with |bn| ≤ 1, sn ≥ 2 ∀n and sn = 2 ∀n ≥ t. Then

the function f (x) =
∞

∑
n=0

bn

(x−an)sn
admits primitives and has no quasi-exceptional

value by Theorem 2.
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Example 2: Let (an)n∈N be a sequence in K such that |an|< |an+1| and lim
n→+∞

|an|=

+∞ and suppose that Log(n)=O(Log|an|). Then the function f (x)=
∞

∑
n=0

bn

(x−an)sn

with |bn| ≤ 1, sn ≥ 2 ∀n, admits primitives and has no quasi-exceptional value by

Theorem 4.

Example 3: Let h ∈ A(K) \K[x] be a function having only zeros of order 1 and

let P(x) ∈K[x]. Let f (x) =
P(x)

(h(x))2
. Then f has no primitive.

Indeed, suppose that f has a primitive F =
U

V
where U and V lie in A(K) and

have no common zeros. Since the zeros of h are of order 1, it is seen that all zeros

of V are of order 1 and are all the zeros of h. Consequently, Ṽ = 1, V = V and

F ′ =
U ′V −UV ′

V 2
admits no simplification. Therefore U ′V −UV ′ = P. But then, by

Theorem 1, U and V are polynomials and V 2 = h2, a contradiction to the hypothesis

h ∈ A(K)\K[x].

Remark: In Example 3, the function f certainly has residues different from 0

because if all residues were null, the function then would have primitives [7].

Now, by Theorems 2 , 3 and 4 the following conjecture appears likely:

Conjecture: A transcendental meromorphic function in K admitting primitives

has no quasi-exceptional value.

2. THE PROOFS

Notation: Let f ∈ M (K), let a ∈ K and let r > 0. Then | f (x)| has a limit when

|x− a| tends to r (while remaining different from r) which is denoted by ϕa,r( f ).
Particularly, if a = 0 we put lim

|x|→r

|x|6=r

| f (x)| = | f |(r).

The following proposition 1 is well known in ultrametric analysis [7].

Proposition 1: Let f ∈ M (K). For each n ∈ N and for all r ∈]0,R[, we have

| f (n)|(r)≤ |n!|
| f |(r)

rn
.

Proposition 2: Let h, l ∈ A(K) be such that h′l −hl′ = c ∈K, with h non-affine.

Then c = 0 and
h

l
is a constant.

Suppose c 6= 0. If h(a) = 0, then l(a) 6= 0. Next, h and l satisfy

h′′

h
=

l′′

l
(1)
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Remark first that since h is not affine, h′′ is not identically zero. Next, every zero

of h or l of order ≥ 2 is a trivial zero of h′l − hl′, which contradicts c 6= 0. So we

can assume that all zeros of h and l are of order 1.

Now suppose that a zero a of h is not a zero of h′′. Since a is a zero of h of order

1,
h′′

h
has a pole of order 1 at a and so does

l′′

l
, hence l(a) = 0, a contradiction.

Consequently, each zero of h is a zero of order 1 of h and is a zero of h′′ and hence,
h′′

h
is an element φ of M (K) that has no pole in K. Therefore φ lies in A(K).

The same holds for l and so, l′′ is of the form ψl with ψ ∈ A(K). But since
h′′

h
=

l′′

l
, we have φ = ψ.

Now, suppose h, l belong to A(K). Since h′′ is of the form φh with φ∈A(K), we

have |h′′|(r) = |φ|(r)|h|(r). But by Proposition 1, we know that |h′′|(r)≤
1

r2
|h|(r),

a contradiction when r tends to +∞. Consequently, c = 0. But then h′l − hl′ = 0

implies that the derivative of
h

l
is identically zero, hence

h

l
is constant, which ends

the proof.

Corollary 2.a : Let h, l ∈ A(K) with coefficients in Q, also be entire functions in

C, with h non-affine. If h′l−hl′ is a constant c, then c = 0.

Proposition 3: Let ψ∈M (K) and let (E) be the differential equations y(n)−ψy=
0. Let E be the sub-vector space of M (K) of the solutions of (E).

If n = 1, then the dimension of E is at most 1.

If ψ belongs to A(K), then E = {0}.

Proof. In each case, we assume that (E) admits a non-identically zero solution h.

Then h(n) may not be identically zero.

Suppose first that n = 1. Suppose that g ∈ E . Let u =
h

g
. Since h′ = ψh we

have u′g+ ug′ = ψug therefore u
g′

g
= uψ = u′+u

g′

g
and hence u′ = 0 i.e. u is a

constant. Consequently, E is at most of dimension 1.

Suppose now that ψ lies in A(K). Then |ψ|(r) =
|h(n)|(r)

|h|(r)
is an increasing

function in r in ]0,+∞[, a contradiction to the inequality
|h(n)|(r)

|h|(r)
≤

1

rn
coming

from Proposition 1. �

Proof of Theorem 1 [2]

First, by Proposition 2 we check that the claim is satisfied when W ( f ,g) is a

polynomial of degree 0. Now, suppose the claim holds when W ( f ,g) is a polyno-
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mial of certain degree n. We will show it for n+ 1. Let f ,g ∈ A(K) be such that

W ( f ,g) is a non-identically zero polynomial P of degree n+1

Thus, by the hypothesis, we have f ′g− f g′ = P, hence f ”g− f g” = P′. We can

extract g′ and get g′ = ( f ′g−P)
f

. Now consider the function Q = f ”g′ − f ′g” and

replace g′ by what we just found: we can get Q = f ′( ( f ”g− f g”)
f

)− P f ”
f

.

Now, we can replace f ”g− f g” by P′ and obtain Q = ( f ′P′−P f ”)
f

. Thus, in that

expression of Q, we can write |Q|(R)≤
| f |(R)|P|(R)

R2| f |(R)
, hence |Q|(R)≤ |P|(R)

R2 ∀R >

0. But by definition, Q belongs to A(K). Consequently, Q is a polynomial of

degree t ≤ n−1.

Now, suppose Q is not identically zero. Since Q =W ( f ′,g′) and since deg(Q)<
n, by the induction hypothesis f ′ and g′ are polynomials and so are f ,g. Finally,

suppose Q = 0. Then P′ f ′−P f ” = 0 and therefore f ′,P are two solutions of the

differential equation of order 1 for meromorphic functions in K : (E) y′ = ψy with

ψ = P′

P
, whereas y belongs to A(K). By Proposition 3, the space of solutions of

(E) is of dimension 0 or 1. Consequently, there exists λ ∈ K such that f ′ = λP,

hence f is a polynomial. The same holds for g. This ends the proof of Theorem 1.

Proposition 4: Let U,V ∈ A(K) have no common zero and let f =
U

V
. If f ′ has

finitely many zeros, there exists a polynomial P ∈K[x] such that U ′V −UV ′ = PṼ .

Proof. If V is a constant, the statement is obvious. So, we assume that V is not

a constant. Now Ṽ divides V ′ and hence V ′ factorizes in the way V ′ = ṼY with

Y ∈ A(K). Then no zero of Y can be a zero of V . Consequently, we have

f ′(x) =
U ′V −UV ′

V 2
=

U ′V −UY

V
2
Ṽ

.

The two functions U ′V −UY and V
2
Ṽ have no common zero since neither have

U and V . So, the zeros of f ′ are those of U ′V −UY which therefore has finitely

many zeros and consequently is a polynomial P, hence U ′V −UV ′ = PṼ . �

Proof of Theorem 2:

Proof. Suppose that f admits a quasi-exceptional value. Without loss of generality,

we can assume that this value is 0. Let F be a primitive of f and let F =
U

V
, with

U, V ∈A(K), having no common zero. By Proposition 4, there exists a polynomial

P such that U ′V −UV ′ = PṼ . But since f has finitely many poles of order ≥ 3, F

has finitely many poles of order ≥ 2 hence Ṽ has finitely many zeros, hence it is a

polynomial. But then PṼ is a polynomial and then, by Theorem 1, both U, V are

polynomials, therefore F ∈K(x) a contradiction. �
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Notation: Given r > 0, we denote by d(0,r) the disk {x ∈ K | |x| ≤ r}. Given

f ∈ M (K), we denote by Z(r, f ) the counting function of the zeros of f in the disk

d(0,r), counting multiplicity, and by Z(r, f ) the counting function of the zeros of f

in the disk d(0,r), ignoring multiplicity. Next we put N(r, f ) = Z(r,
1

f
), T (r, f ) =

max(Z(r, f ),N(r, f )) and N(r, f ) = Z(r,
1

f
).

Let us now recall a simplified version of the Second Main Theorem [5], [7]:

Second Main Theorem: Let f ∈ M (K) and let α1, ...,αq ∈K, with q ≥ 2. Then

(q−1)T (r, f )≤
q

∑
j=1

Z(r, f −α j)+N(r, f )− log r+O(1) ∀r ∈ I.

Proof of Theorem 3 Suppose that f has two perfectly branched values a and b and

a quasi-exceptional value c. Since f admits primitives, N(r, f ) satisfies N(r, f ) ≤
N(r, f )

2
+o(T (r, f )) hence by the second Main Theorem, we have

2T (r, f ) ≤
(Z(r, f −a)+Z(r, f −b)+N(r, f ))

2
+o(T (r, f ))

hence 2T (r, f )≤
3T (r, f )

2
+o(T (r, f )), a contradiction.

Suppose now that f has one totally branched values a and an exceptional value

c. Since f admits primitives, by the second Main Theorem, now we have

T (r, f ) ≤
Z(r, f −a)+N(r, f )

2
− log(r)+O(1)

hence T (r, f ) ≤
2T (r, f )

2
− log(r)+O(1), a contradiction.

Notation: For each n ∈ N∗, we set λn = max{ 1
|k| , 1 ≤ k ≤ n}. Given positive

integers n, q, we denote by C
q
n the binomial coefficient

n!

q!(n−q)!
.

Remark: For every n ∈N∗, we have λn ≤ n because k|k| ≥ 1 ∀k ∈N. The equality

holds for all n of the form ph.

Proposition 5: Let U, V ∈ A(d(0,R−)). Then for all r ∈]0,R[ and n ≥ 1 we have

|U (n)V −UV (n)|(r) ≤ |n!|λn

|U ′V −UV ′|(r)

rn−1
.

More generally, given j, l ∈ N, we have

|U ( j)V (l)−U (l)V ( j)|(r) ≤ |( j!)(l!)|λ j+l

|U ′V −UV ′|(r)

r j+l−1
.



EXCEPTIONAL VALUES OF p-ADIC DERIVATIVES. A SURVEY WITH SOME IMPROVEMENTS123

Proof. Set g =
U

V
and f = g′. Applying Proposition 1 to f for k−1, we obtain

|g(k)|(r) = | f (k−1)|(r) ≤ |(k−1)!|
| f |(r)

rk−1
= |(k−1)!|

|U ′V −UV ′|(r)

|V 2|(r)rk−1
.

As in the proof of Proposition 1, we set U = V
(U

V

)
. By Leibniz formula again,

now we can obtain

U (n) =
n

∑
q=1

Cq
nV (n−q)

(U

V

)(q)
+V (n)

(U

V

)

hence

U (n)−V (n)
(U

V

)
=

n

∑
q=1

Cq
nV (n−q)

(U

V

)(q)
. (1)

Now we have
∣∣∣
(U

V

)(q)∣∣∣(r) = |g(q)|(r) ≤ |(q−1)!|
|U ′V −UV ′|(r)

|V 2|(r)rq−1

and

|V (n−q)|(r) ≤ |(n−q)!|
|V |(r)

rn−q
.

Consequently, the general term in (1) is upper bounded as

∣∣∣Cq
nV (n−q)

(U

V

)(q)∣∣∣(r) ≤
|(n!)((n−q)!)((q−1)!)|

|(q!)((n−q)!)|

|U ′V −UV ′|(r)

|V |(r)rn−1
≤

λn

|n!||U ′V −UV ′|(r)

|V |(r)rn−1
.

Therefore by (1) we obtain

∣∣∣U (n)−V (n)
(U

V

)∣∣∣(r)≤ |n!|λn

|U ′V −UV ′|(r)

|V |(r)rn−1

and finally ∣∣∣U (n)V −V (n)U

∣∣∣(r)≤ |n!|λn

|U ′V −UV ′|(r)

rn−1
.

We can now generalize the first statement. Set Pj = U ( j)V −UV ( j). By induc-

tion, we can show the following equality that already holds for l ≤ j:

U ( j)V (l)−U (l)V ( j) =
l

∑
h=0

Ch
l (−1)hP

(l−h)
j+h .

Then, the second statement follows by applying the first. �
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Proposition 6: Let U,V ∈ A(K) and let r, R ∈]0,+∞[ satisfy r < R. For all

x,y ∈K with |x| ≤ R and |y| ≤ r, we have the inequality:

|U(x+ y)V (x)−U(x)V (x+ y)| ≤
R|U ′V −UV ′|(R)

e(LogR−Logr)
.

Proof. By Taylor’s formula at the point x, we have

U(x+ y)V (x)−U(x)V (x+ y) = ∑
n≥0

U (n)(x)V (x)−U(x)V (n)(x)

n!
yn
.

Now, by Proposition 5, we have

∣∣∣
U (n)(x)V (x)−U(x)V (n)(x)

n!
yn
∣∣∣≤ λn

|U ′V −UV ′|(R)

Rn−1
rn

= λnR|U ′V −UV ′|(R)(
r

R
)n
.

As remarked above, we have λn ≤ n. Hence one has

lim
n→+∞

λn

( r

R

)n

= 0.

Consequently, on one hand lim
n→+∞

∣∣∣
U (n)(x)V (x)−U(x)V (n(x)

n!
yn
∣∣∣= 0, on the other

hand, we can define B = maxn≥1{λn

(
r
R

)n

}R|U ′V −UV ′|(R) and we have |U(x+

y)V (x)−U(x)V (x+ y)| ≤ B. Now, we can check that the function h defined in

]0,+∞[ as h(t) = t
(

r
R

)t

reaches its maximum at the point u =
1

e(LogR−Logr)
.

Consequently, B ≤
1

e(LogR−Logr)
and therefore

|U(x+ y)V (x)−U(x)V (x+ y)| ≤
R|U ′V −UV ′|(R)

e(LogR−Logr)
. �

Notation: Let D = d(a,s) and let H(D) be the K-algebra of analytic elements on

d(a,s), i.e. the K-Banach space of converging power series converging in d(a,s)
[9]. Given b ∈ d(a,s) and r ∈]0,s], then | f (x)| has a limit whenever |x− b| tends

to r, with |x−b| 6= r and we denote by ϕb,r( f ) the number lim
|x−b|tor,

|x−b|6=r

| f (x)| [6], [7].

Given f ∈ M (K) and r > 0, we denote by s(r, f ) the number of zeros of f in

the disk d(0,r), each counted with its multiplicity and we put t(r, f ) = s(r,
1

f
).

Finally we denote by β(r, f ) the number of multiple poles of f , each counted

with its multiplicity.
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Schwarz Lemma [6] Let D = d(a,s) and let f be a power series converging in

the disk d(a,s) and having at least (resp. at most) q zeros in d(a,r) with q > 0 and

0 < r < s. Then we have
ϕa,s( f )

ϕa,r( f )
≥

( s

r

)q

, (resp.
ϕa,s( f )

ϕa,r( f )
≤

( s

r

)q

).

Schwarz Corollary: Let f ∈ A(K). The following two statements are equivalent:

f is a polynomial of degree q,

there exists q ∈ N such that
| f |(r)

rq
has a finite limit when r tends to +∞.

Proposition 7: Let f ∈ M (K) be such that for some c,q ∈]0,+∞[, t(r, f ) satisfies

t(r, f ) ≤ crq in [1,+∞[. If f ′ has finitely many zeros, then f ∈K(x) .

Proof. Suppose f ′ has finitely many zeros and set f =
U

V
. If V is a constant, the

statement is immediate. So, we suppose V is not a constant and hence it admits

at least one zero a. By Proposition 4, there exists a polynomial P ∈ K[x] such

that U ′V −UV ′ = PṼ . Next, we take r,R ∈ [1,+∞[ such that |a| < r < R and

x ∈ d(0,R), y ∈ d(0,r). By Proposition 5 we have

|U(x+ y)V (x)−U(x)V (x+ y)| ≤
R|U ′V −UV ′|(R)

e(LogR−Logr)
.

Notice that U(a) 6= 0 because U and V have no common zero. Now set l =

max(1, |a|) and take r ≥ l. Putting c1 =
1

e|U(a)|
, we have

|V (a+ y)| ≤ c1
R|P|(R)|Ṽ |(R)

LogR−Logr
.

Then taking the supremum of |V (a+ y)| inside the disk d(0,r), we can derive

|V |(r)≤ c1

R|P|(R)|Ṽ |(R)

LogR−Logr
. (1)

Let us apply Schwarz Lemma, by taking R = r+
1

rq
, after noticing that the number

of zeros of Ṽ (R) is bounded by s(r,V ). So, we have

|Ṽ |(R)≤
(

1+
1

rq+1

)β((r+ 1
rq ),V )

|Ṽ |(r). (2)

Now, due to the hypothesis: s(r,V ) = t(r, f ) ≤ crq in [1,+∞[, we have

(
1+

1

rq+1

)β((r+ 1
rq ),V )

≤
(

1+
1

rq+1

)[c(r+ 1
rq )m]

= (3)

Exp
[
c(r+

1

rq
)qLog(1+

1

rq+1
)
]
.
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The function h(r) = c(r+ 1
rm )mLog(1+ 1

rm+1 ) is continuous on ]0,+∞[ and equiva-

lent to
c

r
when r tends to +∞. Consequently, it is bounded on [l,+∞[. Therefore,

by (2) and (3) there exists a constant M > 0 such that, for all r ∈ [l,+∞[ by (3) we

obtain

|Ṽ |(r+
1

rq
)≤ M|Ṽ |(r). (4)

On the other hand,

Log
(

r+
1

rq

)
−Logr = Log

(
1+

1

rq+1

)

clearly satisfies an inequality of the form

Log
(

1+
1

rq+1

)
≥

c2

rq+1

in [l,+∞[ with c2 > 0. Moreover, we can obviously find positive constants c3, c4

such that

(r+
1

rq
)|P|

(
r+

1

rq

)
≤ c3rc4 .

Consequently, by (1) and (4) we can find positive constants c5, c6 such that |V |(r)≤

c5rc6 |Ṽ |(r) ∀r ∈ [l,+∞[. Thus, writing again V = VṼ , we have |V |(r)|Ṽ |(r) ≤

c5rc6 |Ṽ |(r) and hence

|V |(r)≤ c5rc6 ∀r ∈ [l,+∞[.

Consequently, by Schwarz Corollary V is a polynomial of degree ≤ c6 and hence

it has finitely many zeros and so does V . But then, by Theorem 2, f must be a

rational function. �

Corollary 7.a: Let f be a meromorphic function on K such that, for some c,q ∈
]0,+∞[, t(r, f ) satisfies t(r, f ) ≤ crq in [1,+∞[. If for some b ∈K f ′−b has finitely

many zeros, then f is a rational function.

Proof. Suppose f ′ − b has finitely many zeros. Then f − bx satisfies the same

hypothesis as f , hence it is a rational function and so is f . �

Theorem 4 is now a simple corollary of Corollary 7.a:

Proof of Theorem 4

Proof. Indeed, since f admits primitives, all poles are multiple, and given a prim-

itive F of f , we have t(r,F) ≤ t(r, f ). Consequently, by the hypothesis we have

Log(t(r,F)) ≤ O(Log(r)) and hence, thanks to Corollary 7.a, F ′ has no quasi-

exceptional value. �
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