EXCEPTIONAL VALUES OF p-ADIC DERIVATIVES A SURVEY WITH SOME IMPROVEMENTS

ALAIN ESCASSUT
In memory of Abdelbaki Boutabaa

Abstract

Let \mathbb{K} be a complete ultrametric algebraically closed field of characteristic 0 and let f be a meromorphic function in \mathbb{K} admitting primitives. We show that f has no value taken finitely many times provided an additional hypothesis is satisfied: either f has finitely many poles of order ≥ 3, or f has two perfectly branched values, or the logarithm of the number of poles in the disk of center 0 and diameter r is bounded by $O(\log (r))(r>1)$. We make the conjecture: all additional hypotheses are superfluous.

1. Introduction and main results

Let f be a complex transcendental meromorphic function that admits primitives. Thanks to the Nevanlinna theory, it is known that for f there exists at most one value b taken finitely many times [8]. Consider now a transcendental meromorphic function f in an algebraically closed complete ultrametric field \mathbb{K} of characteristic 0 [1], [9]. It is well known that a transcendental meromorphic function f can admit at most one value b taken finitely many times [7]. But suppose now that f admits primitives. In this survey, we recall two hypotheses proving that f admits no value b taken finitely many times. In both hypotheses, we assume that f admits primitives. This suggests that if a transcendental meromorphic function f in the field \mathbb{K} admits primitives, then f has no value taken finitely many times.

Many important results are due to Jean-Paul Bézivin [2], [3], [4].
Notation and definitions: We denote by $\mathcal{A}(\mathbb{K})$ the \mathbb{K}-algebra of analytic functions in \mathbb{K} and by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in \mathbb{K} (i.e. the field of functions of the form $\frac{f}{g}$, with $f, g \in \mathcal{A}(\mathbb{K})$).

Given two meromorphic functions $f, g \in \mathscr{M}(\mathbb{K})$ we will denote by $W(f, g)$ the Wronskian of f and $g: f^{\prime} g-f g^{\prime}$.

Given $f \in \mathcal{M}(\mathbb{K})$ and $b \in \mathbb{K}, b$ is called an exceptional value for f if $f-b$ has no zero in \mathbb{K} and a quasi-exceptional value for f if $f-b$ has finitely many zeros in \mathbb{K}.

Here, Log is the Neperian logarithm and we denote by e the number such that $\log (e)=1$ and Exp is the Archimedean exponential function.

The following theorem is well known [7]:
Theorem 0: Let $f \in \mathcal{M}(\mathbb{K})$. Then f has at most one quasi-exceptional value in \mathbb{K}. Moreover, if $f \in \mathcal{A}(\mathbb{K})$, then f has no quasi-exceptional value.

The following theorem 1 is esential to prove the main results that follow.
Theorem 1 [2]: Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $W(f, g)$ is a non-identically zero polynomial. Then both f, g are polynomials.
Remark: In Archimedean analysis, Theorem 1 does not hold. For example, take $f(x)=\operatorname{Exp}(x), g(x)=\operatorname{Exp}(-x)$. Then $W(f, g)=2$. We can also consider $f(x)=$ $x \operatorname{Exp}(x), g(x)=\operatorname{Exp}(-x)$. Then $W(f, g)=2 x+1$.
Theorem 2: Let $f \in \mathcal{M}(\mathbb{K}) \backslash \mathbb{K}(x)$ have finitely many poles of order ≥ 3 and admit primitives. Then f has no quasi-exceptional value.
Corollary: Let $F \in \mathcal{M}(\mathbb{K}) \backslash \mathbb{K}(x)$ have finitely many multiple poles. Then F^{\prime} has no quasi-exceptional value.
Definition: Let $f \in \mathscr{M}(\mathbb{K})$ and $b \in \mathbb{K}$. Then b is called a perfectly branched value of f if all zeros of $f-b$ are multiple except maybe finitely many. Moreover, b is called a totally branched value of $f[6]$ if all zeros of $f-b$ are multiple, without exception.
Theorem 3: Let $f \in \mathcal{M}(\mathbb{K})$ admit primitives. If f has two perfectly branched values then, f has no quasi-exceptional value. Moreover, if f has one totally branched value, then f has no exceptional value.
Notation: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. For each $\left.r \in\right] 0, R[$, we denote by $s(r, f)$ the number of zeros of f in $d(0, r)$, each counted with its multiplicity and we set $t(r, f)=s\left(r, \frac{1}{f}\right)$.

Let $f \in \mathcal{A}(\mathbb{K})$. We can factor f in the form $\bar{f} \tilde{f}$ where the zeros of \bar{f} are the distinct zeros of f each with order 1 . Moreover, if $f(0) \neq 0$ we can take $\bar{f}(0)=1$ and if $f(0)=0$, we can take \bar{f} so that $(\bar{f})^{\prime}(0)=1$.
Theorem 4: Let $f \in \mathcal{M}(\mathbb{K}) \backslash \mathbb{K}(x)$ admit primitives and also satisfy $\log (t(r, f)) \leq$ $O(\log (r))$. Then f has no quasi-exceptional value.
Example 1: Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{K} such that $\left|a_{n}\right| \leq\left|a_{n+1}\right|$ and $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=$ $+\infty$ and let $f(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{\left(x-a_{n}\right)^{s_{n}}}$ with $\left|b_{n}\right| \leq 1, s_{n} \geq 2 \forall n$ and $s_{n}=2 \forall n \geq t$. Then the function $f(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{\left(x-a_{n}\right)^{s_{n}}}$ admits primitives and has no quasi-exceptional value by Theorem 2.

Example 2: Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{K} such that $\left|a_{n}\right|<\left|a_{n+1}\right|$ and $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=$ $+\infty$ and suppose that $\log (n)=O\left(\log \left|a_{n}\right|\right)$. Then the function $f(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{\left(x-a_{n}\right)^{s_{n}}}$ with $\left|b_{n}\right| \leq 1, s_{n} \geq 2 \forall n$, admits primitives and has no quasi-exceptional value by Theorem 4.

Example 3: Let $h \in \mathcal{A}(\mathbb{K}) \backslash \mathbb{K}[x]$ be a function having only zeros of order 1 and let $P(x) \in \mathbb{K}[x]$. Let $f(x)=\frac{P(x)}{(h(x))^{2}}$. Then f has no primitive.

Indeed, suppose that f has a primitive $F=\frac{U}{V}$ where U and V lie in $\mathcal{A}(\mathbb{K})$ and have no common zeros. Since the zeros of h are of order 1 , it is seen that all zeros of V are of order 1 and are all the zeros of h. Consequently, $\widetilde{V}=1, \bar{V}=V$ and $F^{\prime}=\frac{U^{\prime} V-U V^{\prime}}{V^{2}}$ admits no simplification. Therefore $U^{\prime} V-U V^{\prime}=P$. But then, by Theorem $1, U$ and V are polynomials and $V^{2}=h^{2}$, a contradiction to the hypothesis $h \in \mathcal{A}(\mathbb{K}) \backslash \mathbb{K}[x]$.
Remark: In Example 3, the function f certainly has residues different from 0 because if all residues were null, the function then would have primitives [7].

Now, by Theorems 2, 3 and 4 the following conjecture appears likely:
Conjecture: A transcendental meromorphic function in \mathbb{K} admitting primitives has no quasi-exceptional value.

2. THE PROOFS

Notation: Let $f \in \mathcal{M}(\mathbb{K})$, let $a \in \mathbb{K}$ and let $r>0$. Then $|f(x)|$ has a limit when $|x-a|$ tends to r (while remaining different from r) which is denoted by $\varphi_{a, r}(f)$. Particularly, if $a=0$ we put $\lim _{\substack{|x| \rightarrow r \\|x| \neq r}}|f(x)|=|f|(r)$.

The following proposition 1 is well known in ultrametric analysis [7].
Proposition 1: Let $f \in \mathscr{M}(\mathbb{K})$. For each $n \in \mathbb{N}$ and for all $r \in] 0, R[$, we have

$$
\left|f^{(n)}\right|(r) \leq|n!| \frac{|f|(r)}{r^{n}}
$$

Proposition 2: Let $h, l \in \mathcal{A}(\mathbb{K})$ be such that $h^{\prime} l-h l^{\prime}=c \in \mathbb{K}$, with h non-affine. Then $c=0$ and $\frac{h}{l}$ is a constant.

Suppose $c \neq 0$. If $h(a)=0$, then $l(a) \neq 0$. Next, h and l satisfy

$$
\begin{equation*}
\frac{h^{\prime \prime}}{h}=\frac{l^{\prime \prime}}{l} \tag{1}
\end{equation*}
$$

Remark first that since h is not affine, $h^{\prime \prime}$ is not identically zero. Next, every zero of h or l of order ≥ 2 is a trivial zero of $h^{\prime} l-h l^{\prime}$, which contradicts $c \neq 0$. So we can assume that all zeros of h and l are of order 1 .

Now suppose that a zero a of h is not a zero of $h^{\prime \prime}$. Since a is a zero of h of order $1, \frac{h^{\prime \prime}}{h}$ has a pole of order 1 at a and so does $\frac{l^{\prime \prime}}{l}$, hence $l(a)=0$, a contradiction. Consequently, each zero of h is a zero of order 1 of h and is a zero of $h^{\prime \prime}$ and hence, $\frac{h^{\prime \prime}}{h}$ is an element ϕ of $\mathcal{M}(\mathbb{K})$ that has no pole in \mathbb{K}. Therefore ϕ lies in $\mathcal{A}(\mathbb{K})$.

The same holds for l and so, $l^{\prime \prime}$ is of the form ψl with $\psi \in \mathcal{A}(\mathbb{K})$. But since $\frac{h^{\prime \prime}}{h}=\frac{l^{\prime \prime}}{l}$, we have $\phi=\psi$.

Now, suppose h, l belong to $\mathcal{A}(\mathbb{K})$. Since $h^{\prime \prime}$ is of the form ϕh with $\phi \in \mathcal{A}(\mathbb{K})$, we have $\left|h^{\prime \prime}\right|(r)=|\phi|(r)|h|(r)$. But by Proposition 1, we know that $\left|h^{\prime \prime}\right|(r) \leq \frac{1}{r^{2}}|h|(r)$, a contradiction when r tends to $+\infty$. Consequently, $c=0$. But then $h^{\prime} l-h l^{\prime}=0$ implies that the derivative of $\frac{h}{l}$ is identically zero, hence $\frac{h}{l}$ is constant, which ends the proof.

Corollary 2.a : Let $h, l \in \mathcal{A}(\mathbb{K})$ with coefficients in \mathbb{Q}, also be entire functions in \mathbb{C}, with h non-affine. If $h^{\prime} l-h l^{\prime}$ is a constant c, then $c=0$.
Proposition 3: Let $\psi \in \mathcal{M}(\mathbb{K})$ and let (\mathcal{E}) be the differential equations $y^{(n)}-\psi y=$ 0 . Let E be the sub-vector space of $\mathfrak{M}(\mathbb{K})$ of the solutions of (\mathbb{E}).

If $n=1$, then the dimension of E is at most 1 .
If Ψ belongs to $\mathcal{A}(\mathbb{K})$, then $E=\{0\}$.
Proof. In each case, we assume that (\mathcal{E}) admits a non-identically zero solution h. Then $h^{(n)}$ may not be identically zero.
Suppose first that $n=1$. Suppose that $g \in E$. Let $u=\frac{h}{g}$. Since $h^{\prime}=\psi h$ we have $u^{\prime} g+u g^{\prime}=\psi u g$ therefore $u \frac{g^{\prime}}{g}=u \psi=u^{\prime}+u \frac{g^{\prime}}{g}$ and hence $u^{\prime}=0$ i.e. u is a constant. Consequently, E is at most of dimension 1 .

Suppose now that ψ lies in $\mathcal{A}(\mathbb{K})$. Then $|\psi|(r)=\frac{\left|h^{(n)}\right|(r)}{|h|(r)}$ is an increasing function in r in $] 0,+\infty\left[\right.$, a contradiction to the inequality $\frac{\left|h^{(n)}\right|(r)}{|h|(r)} \leq \frac{1}{r^{n}}$ coming from Proposition 1.

Proof of Theorem 1 [2]

First, by Proposition 2 we check that the claim is satisfied when $W(f, g)$ is a polynomial of degree 0 . Now, suppose the claim holds when $W(f, g)$ is a polyno-
mial of certain degree n. We will show it for $n+1$. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $W(f, g)$ is a non-identically zero polynomial P of degree $n+1$

Thus, by the hypothesis, we have $f^{\prime} g-f g^{\prime}=P$, hence $f^{\prime \prime} g-f g^{\prime \prime}=P^{\prime}$. We can extract g^{\prime} and get $g^{\prime}=\frac{\left(f^{\prime} g-P\right)}{f}$. Now consider the function $Q=f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}$ and replace g^{\prime} by what we just found: we can get $Q=f^{\prime}\left(\frac{\left(f^{\prime \prime} g-f g^{\prime \prime}\right)}{f}\right)-\frac{P f^{\prime \prime}}{f}$.

Now, we can replace $f^{\prime \prime} g-f g^{\prime \prime}$ by P^{\prime} and obtain $Q=\frac{\left(f^{\prime} P^{\prime}-P f^{\prime \prime}\right)}{f}$. Thus, in that expression of Q, we can write $|Q|(R) \leq \frac{|f|(R)|P|(R)}{R^{2}|f|(R)}$, hence $|Q|(R) \leq \frac{|P|(R)}{R^{2}} \forall R>$ 0 . But by definition, Q belongs to $\mathcal{A}(\mathbb{K})$. Consequently, Q is a polynomial of degree $t \leq n-1$.

Now, suppose Q is not identically zero. Since $Q=W\left(f^{\prime}, g^{\prime}\right)$ and since $\operatorname{deg}(Q)<$ n, by the induction hypothesis f^{\prime} and g^{\prime} are polynomials and so are f, g. Finally, suppose $Q=0$. Then $P^{\prime} f^{\prime}-P f^{\prime \prime}=0$ and therefore f^{\prime}, P are two solutions of the differential equation of order 1 for meromorphic functions in $\mathbb{K}:(\mathcal{E}) y^{\prime}=\psi y$ with $\psi=\frac{P^{\prime}}{P}$, whereas y belongs to $\mathcal{A}(\mathbb{K})$. By Proposition 3, the space of solutions of (\mathcal{E}) is of dimension 0 or 1 . Consequently, there exists $\lambda \in \mathbb{K}$ such that $f^{\prime}=\lambda P$, hence f is a polynomial. The same holds for g. This ends the proof of Theorem 1.
Proposition 4: Let $U, V \in \mathcal{A}(\mathbb{K})$ have no common zero and let $f=\frac{U}{V}$. If f^{\prime} has finitely many zeros, there exists a polynomial $P \in \mathbb{K}[x]$ such that $U^{\prime} V-U V^{\prime}=P \widetilde{V}$.
Proof. If V is a constant, the statement is obvious. So, we assume that V is not a constant. Now \widetilde{V} divides V^{\prime} and hence V^{\prime} factorizes in the way $V^{\prime}=\widetilde{V} Y$ with $Y \in \mathcal{A}(\mathbb{K})$. Then no zero of Y can be a zero of V. Consequently, we have

$$
f^{\prime}(x)=\frac{U^{\prime} V-U V^{\prime}}{V^{2}}=\frac{U^{\prime} \bar{V}-U Y}{\bar{V}^{2} \widetilde{V}} .
$$

The two functions $U^{\prime} \bar{V}-U Y$ and $\bar{V}^{2} \widetilde{V}$ have no common zero since neither have U and V. So, the zeros of f^{\prime} are those of $U^{\prime} \bar{V}-U Y$ which therefore has finitely many zeros and consequently is a polynomial P, hence $U^{\prime} V-U V^{\prime}=P \widetilde{V}$.

Proof of Theorem 2:

Proof. Suppose that f admits a quasi-exceptional value. Without loss of generality, we can assume that this value is 0 . Let F be a primitive of f and let $F=\frac{U}{V}$, with $U, V \in \mathcal{A}(\mathbb{K})$, having no common zero. By Proposition 4, there exists a polynomial P such that $U^{\prime} V-U V^{\prime}=P \widetilde{V}$. But since f has finitely many poles of order $\geq 3, F$ has finitely many poles of order ≥ 2 hence \widetilde{V} has finitely many zeros, hence it is a polynomial. But then $P \widetilde{V}$ is a polynomial and then, by Theorem 1, both U, V are polynomials, therefore $F \in \mathbb{K}(x)$ a contradiction.

Notation: Given $r>0$, we denote by $d(0, r)$ the disk $\{x \in \mathbb{K}||x| \leq r\}$. Given $f \in \mathcal{M}(\mathbb{K})$, we denote by $Z(r, f)$ the counting function of the zeros of f in the disk $d(0, r)$, counting multiplicity, and by $\bar{Z}(r, f)$ the counting function of the zeros of f in the disk $d(0, r)$, ignoring multiplicity. Next we put $N(r, f)=Z\left(r, \frac{1}{f}\right), T(r, f)=$ $\max (Z(r, f), N(r, f))$ and $\bar{N}(r, f)=\bar{Z}\left(r, \frac{1}{f}\right)$.

Let us now recall a simplified version of the Second Main Theorem [5], [7]:
Second Main Theorem: Let $f \in \mathscr{M}(\mathbb{K})$ and let $\alpha_{1}, \ldots, \alpha_{q} \in \mathbb{K}$, with $q \geq 2$. Then $(q-1) T(r, f) \leq \sum_{j=1}^{q} \bar{Z}\left(r, f-\alpha_{j}\right)+\bar{N}(r, f)-\log r+O(1) \forall r \in I$.

Proof of Theorem 3 Suppose that f has two perfectly branched values a and b and a quasi-exceptional value c. Since f admits primitives, $N(r, f)$ satisfies $\bar{N}(r, f) \leq$ $\frac{N(r, f)}{2}+o(T(r, f))$ hence by the second Main Theorem, we have

$$
2 T(r, f) \leq \frac{(Z(r, f-a)+Z(r, f-b)+N(r, f))}{2}+o(T(r, f))
$$

hence $2 T(r, f) \leq \frac{3 T(r, f)}{2}+o(T(r, f))$, a contradiction.
Suppose now that f has one totally branched values a and an exceptional value c. Since f admits primitives, by the second Main Theorem, now we have

$$
T(r, f) \leq \frac{Z(r, f-a)+N(r, f)}{2}-\log (r)+O(1)
$$

hence $T(r, f) \leq \frac{2 T(r, f)}{2}-\log (r)+O(1)$, a contradiction.
Notation: For each $n \in \mathbb{N}^{*}$, we set $\lambda_{n}=\max \left\{\frac{1}{|k|}, 1 \leq k \leq n\right\}$. Given positive integers n, q, we denote by C_{n}^{q} the binomial coefficient $\frac{n!}{q!(n-q)!}$.
Remark: For every $n \in \mathbb{N}^{*}$, we have $\lambda_{n} \leq n$ because $k|k| \geq 1 \forall k \in \mathbb{N}$. The equality holds for all n of the form p^{h}.
Proposition 5: Let $U, V \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$. Then for all $\left.r \in\right] 0, R[$ and $n \geq 1$ we have

$$
\left|U^{(n)} V-U V^{(n)}\right|(r) \leq|n!| \lambda_{n} \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{r^{n-1}} .
$$

More generally, given $j, l \in \mathbb{N}$, we have

$$
\left|U^{(j)} V^{(l)}-U^{(l)} V^{(j)}\right|(r) \leq|(j!)(l!)| \lambda_{j+l} \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{r^{j+l-1}} .
$$

Proof. Set $g=\frac{U}{V}$ and $f=g^{\prime}$. Applying Proposition 1 to f for $k-1$, we obtain

$$
\left|g^{(k)}\right|(r)=\left|f^{(k-1)}\right|(r) \leq|(k-1)!| \frac{|f|(r)}{r^{k-1}}=|(k-1)!| \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{\left|V^{2}\right|(r) r^{k-1}} .
$$

As in the proof of Proposition 1, we set $U=V\left(\frac{U}{V}\right)$. By Leibniz formula again, now we can obtain

$$
U^{(n)}=\sum_{q=1}^{n} C_{n}^{q} V^{(n-q)}\left(\frac{U}{V}\right)^{(q)}+V^{(n)}\left(\frac{U}{V}\right)
$$

hence

$$
\begin{equation*}
U^{(n)}-V^{(n)}\left(\frac{U}{V}\right)=\sum_{q=1}^{n} C_{n}^{q} V^{(n-q)}\left(\frac{U}{V}\right)^{(q)} . \tag{1}
\end{equation*}
$$

Now we have

$$
\left|\left(\frac{U}{V}\right)^{(q)}\right|(r)=\left|g^{(q)}\right|(r) \leq|(q-1)!| \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{\left|V^{2}\right|(r) r^{q-1}}
$$

and

$$
\left|V^{(n-q)}\right|(r) \leq|(n-q)!| \frac{|V|(r)}{r^{n-q}} .
$$

Consequently, the general term in (1) is upper bounded as

$$
\begin{gathered}
\left|C_{n}^{q} V^{(n-q)}\left(\frac{U}{V}\right)^{(q)}\right|(r) \leq \frac{|(n!)((n-q)!)((q-1)!)|}{|(q!)((n-q)!)|} \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{|V|(r) r^{n-1}} \leq \\
\lambda_{n} \frac{|n!|\left|U^{\prime} V-U V^{\prime}\right|(r)}{|V|(r) r^{n-1}} .
\end{gathered}
$$

Therefore by (1) we obtain

$$
\left|U^{(n)}-V^{(n)}\left(\frac{U}{V}\right)\right|(r) \leq|n!| \lambda_{n} \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{|V|(r) r^{n-1}}
$$

and finally

$$
\left|U^{(n)} V-V^{(n)} U\right|(r) \leq|n!| \lambda_{n} \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{r^{n-1}} .
$$

We can now generalize the first statement. Set $P_{j}=U^{(j)} V-U V^{(j)}$. By induction, we can show the following equality that already holds for $l \leq j$:

$$
U^{(j)} V^{(l)}-U^{(l)} V^{(j)}=\sum_{h=0}^{l} C_{l}^{h}(-1)^{h} P_{j+h}^{(l-h)} .
$$

Then, the second statement follows by applying the first.

Proposition 6: Let $U, V \in \mathcal{A}(\mathbb{K})$ and let $r, R \in] 0,+\infty[$ satisfy $r<R$. For all $x, y \in \mathbb{K}$ with $|x| \leq R$ and $|y| \leq r$, we have the inequality:

$$
|U(x+y) V(x)-U(x) V(x+y)| \leq \frac{R\left|U^{\prime} V-U V^{\prime}\right|(R)}{e(\log R-\log r)}
$$

Proof. By Taylor's formula at the point x, we have

$$
U(x+y) V(x)-U(x) V(x+y)=\sum_{n \geq 0} \frac{U^{(n)}(x) V(x)-U(x) V^{(n)}(x)}{n!} y^{n} .
$$

Now, by Proposition 5, we have

$$
\begin{gathered}
\left|\frac{U^{(n)}(x) V(x)-U(x) V^{(n)}(x)}{n!} y^{n}\right| \leq \lambda_{n} \frac{\left|U^{\prime} V-U V^{\prime}\right|(R)}{R^{n-1}} r^{n} \\
=\lambda_{n} R\left|U^{\prime} V-U V^{\prime}\right|(R)\left(\frac{r}{R}\right)^{n} .
\end{gathered}
$$

As remarked above, we have $\lambda_{n} \leq n$. Hence one has

$$
\lim _{n \rightarrow+\infty} \lambda_{n}\left(\frac{r}{R}\right)^{n}=0
$$

Consequently, on one hand $\lim _{n \rightarrow+\infty}\left|\frac{U^{(n)}(x) V(x)-U(x) V^{(n}(x)}{n!} y^{n}\right|=0$, on the other hand, we can define $B=\max _{n \geq 1}\left\{\lambda_{n}\left(\frac{r}{R}\right)^{n}\right\} R\left|U^{\prime} V-U V^{\prime}\right|(R)$ and we have $\mid U(x+$ $y) V(x)-U(x) V(x+y) \mid \leq B$. Now, we can check that the function h defined in $] 0,+\infty\left[\right.$ as $h(t)=t\left(\frac{r}{R}\right)^{t}$ reaches its maximum at the point $u=\frac{1}{e(\log R-\log r)}$.
Consequently, $B \leq \frac{1}{e(\log R-\log r)}$ and therefore

$$
|U(x+y) V(x)-U(x) V(x+y)| \leq \frac{R\left|U^{\prime} V-U V^{\prime}\right|(R)}{e(\log R-\log r)}
$$

Notation: Let $D=d(a, s)$ and let $H(D)$ be the \mathbb{K}-algebra of analytic elements on $d(a, s)$, i.e. the \mathbb{K}-Banach space of converging power series converging in $d(a, s)$ [9]. Given $b \in d(a, s)$ and $r \in] 0, s]$, then $|f(x)|$ has a limit whenever $|x-b|$ tends to r, with $|x-b| \neq r$ and we denote by $\varphi_{b, r}(f)$ the number $\lim _{\substack{|x-b| o r,|x-b| \nmid r}}|f(x)|[6]$, [7].

Given $f \in \mathcal{M}(\mathbb{K})$ and $r>0$, we denote by $s(r, f)$ the number of zeros of f in the disk $d(0, r)$, each counted with its multiplicity and we put $t(r, f)=s\left(r, \frac{1}{f}\right)$.

Finally we denote by $\beta(r, f)$ the number of multiple poles of f, each counted with its multiplicity.

Schwarz Lemma [6] Let $D=d(a, s)$ and let f be a power series converging in the disk $d(a, s)$ and having at least (resp. at most) q zeros in $d(a, r)$ with $q>0$ and $0<r<s$. Then we have $\frac{\varphi_{a, s}(f)}{\varphi_{a, r}(f)} \geq\left(\frac{s}{r}\right)^{q},\left(\operatorname{resp} \cdot \frac{\varphi_{a, s}(f)}{\varphi_{a, r}(f)} \leq\left(\frac{s}{r}\right)^{q}\right)$.

Schwarz Corollary: Let $f \in \mathcal{A}(\mathbb{K})$. The following two statements are equivalent:
f is a polynomial of degree q,
there exists $q \in \mathbb{N}$ such that $\frac{|f|(r)}{r^{q}}$ has a finite limit when r tends to $+\infty$.
Proposition 7: Let $f \in \mathcal{M}(\mathbb{K})$ be such that for some $c, q \in] 0,+\infty[, t(r, f)$ satisfies $t(r, f) \leq c r^{q}$ in $\left[1,+\infty\left[\right.\right.$. If f^{\prime} has finitely many zeros, then $f \in \mathbb{K}(x)$.

Proof. Suppose f^{\prime} has finitely many zeros and set $f=\frac{U}{V}$. If V is a constant, the statement is immediate. So, we suppose V is not a constant and hence it admits at least one zero a. By Proposition 4, there exists a polynomial $P \in \mathbb{K}[x]$ such that $U^{\prime} V-U V^{\prime}=P \widetilde{V}$. Next, we take $r, R \in[1,+\infty[$ such that $|a|<r<R$ and $x \in d(0, R), y \in d(0, r)$. By Proposition 5 we have

$$
|U(x+y) V(x)-U(x) V(x+y)| \leq \frac{R\left|U^{\prime} V-U V^{\prime}\right|(R)}{e(\log R-\log r)}
$$

Notice that $U(a) \neq 0$ because U and V have no common zero. Now set $l=$ $\max (1,|a|)$ and take $r \geq l$. Putting $c_{1}=\frac{1}{e|U(a)|}$, we have

$$
|V(a+y)| \leq c_{1} \frac{R|P|(R)|\widetilde{V}|(R)}{\log R-\log r}
$$

Then taking the supremum of $|V(a+y)|$ inside the disk $d(0, r)$, we can derive

$$
\begin{equation*}
|V|(r) \leq c_{1} \frac{R|P|(R)|\widetilde{V}|(R)}{\log R-\log r} \tag{1}
\end{equation*}
$$

Let us apply Schwarz Lemma, by taking $R=r+\frac{1}{r^{q}}$, after noticing that the number of zeros of $\widetilde{V}(R)$ is bounded by $s(r, V)$. So, we have

$$
\begin{equation*}
|\widetilde{V}|(R) \leq\left(1+\frac{1}{r^{q+1}}\right)^{\beta\left(\left(r+\frac{1}{r^{q}}\right), V\right)}|\widetilde{V}|(r) \tag{2}
\end{equation*}
$$

Now, due to the hypothesis: $s(r, V)=t(r, f) \leq c r^{q}$ in $[1,+\infty$ [, we have

$$
\begin{gather*}
\left(1+\frac{1}{r^{q+1}}\right)^{\beta\left(\left(r+\frac{1}{r^{q}}\right), V\right)} \leq\left(1+\frac{1}{r^{q+1}}\right)^{\left[c\left(r+\frac{1}{r^{q}}\right)^{m}\right]}= \tag{3}\\
\operatorname{Exp}\left[c\left(r+\frac{1}{r^{q}}\right)^{q} \log \left(1+\frac{1}{r^{q+1}}\right)\right]
\end{gather*}
$$

The function $h(r)=c\left(r+\frac{1}{r^{m}}\right)^{m} \log \left(1+\frac{1}{r^{m+1}}\right)$ is continuous on $] 0,+\infty[$ and equivalent to $\frac{c}{r}$ when r tends to $+\infty$. Consequently, it is bounded on $[l,+\infty[$. Therefore, by (2) and (3) there exists a constant $M>0$ such that, for all $r \in[l,+\infty[$ by (3) we obtain

$$
\begin{equation*}
|\widetilde{V}|\left(r+\frac{1}{r^{q}}\right) \leq M|\widetilde{V}|(r) . \tag{4}
\end{equation*}
$$

On the other hand,

$$
\log \left(r+\frac{1}{r^{q}}\right)-\log r=\log \left(1+\frac{1}{r^{q+1}}\right)
$$

clearly satisfies an inequality of the form

$$
\log \left(1+\frac{1}{r^{q+1}}\right) \geq \frac{c_{2}}{r^{q+1}}
$$

in $\left[l,+\infty\left[\right.\right.$ with $c_{2}>0$. Moreover, we can obviously find positive constants c_{3}, c_{4} such that

$$
\left(r+\frac{1}{r^{q}}\right)|P|\left(r+\frac{1}{r^{q}}\right) \leq c_{3} r^{c_{4}} .
$$

Consequently, by (1) and (4) we can find positive constants c_{5}, c_{6} such that $|V|(r) \leq$ $c_{5} r^{c_{6}}|\widetilde{V}|(r) \forall r \in[l,+\infty[$. Thus, writing again $V=\bar{V} \widetilde{V}$, we have $|\bar{V}|(r)|\widetilde{V}|(r) \leq$ $c_{5} r^{c_{6}}|\widetilde{V}|(r)$ and hence

$$
|\bar{V}|(r) \leq c_{5} r^{c_{6}} \forall r \in[l,+\infty[.
$$

Consequently, by Schwarz Corollary \bar{V} is a polynomial of degree $\leq c_{6}$ and hence it has finitely many zeros and so does V. But then, by Theorem $2, f$ must be a rational function.

Corollary 7.a: Let f be a meromorphic function on \mathbb{K} such that, for some $c, q \in$ $] 0,+\infty\left[, t(r, f)\right.$ satisfies $t(r, f) \leq c r^{q}$ in $\left[1,+\infty\left[\right.\right.$. If for some $b \in \mathbb{K} f^{\prime}-b$ has finitely many zeros, then f is a rational function.

Proof. Suppose $f^{\prime}-b$ has finitely many zeros. Then $f-b x$ satisfies the same hypothesis as f, hence it is a rational function and so is f.

Theorem 4 is now a simple corollary of Corollary 7.a:

Proof of Theorem 4

Proof. Indeed, since f admits primitives, all poles are multiple, and given a primitive F of f, we have $t(r, F) \leq t(r, f)$. Consequently, by the hypothesis we have $\log (t(r, F)) \leq O(\log (r))$ and hence, thanks to Corollary 7.a, F^{\prime} has no quasiexceptional value.

Acknowledgements: The author is very grateful to the referee for good remarks on the redaction.

REFERENCES

[1] Amice, Y. Les nombres p-adiques, P.U.F. (1975).
[2] Bézivin, J.-P. Wronskien et équations differentielles p-adiques, Acta Arith., 158, no. 1, 61-78 (2013).
[3] Bézivin, J.-P., Boussaf, K. and Escassut, A. Zeros of the derivative of a p-adic meromorphic function, Bull. Sci. Math., 136, no. 8, 839-847 (2012).
[4] Bézivin, J.-P., Boussaf, K. and Escassut, A. Some old and new results on zeros of the derivative of a p-adic mermorphic function, Contem. Math., 596, 23-30 (2013).
[5] Boutabaa, A. Théorie de Nevanlinna p-adique, Manuscripta Math. 67, p. 251-269 (1990).
[6] Escassut, A. and Ojeda, J. Branched values and quasi-exceptional values for p-adic meromorphic functions. Houston Journal of Mathematics 39, N.3, pp. 781-795 (2013).
Complex and p-adic branched functions and growth of entire functions. Bull. Belg. Math. Soc. Simon Stevin 22, 781-796 (2015).
[7] Escassut, A. p-adic Analytic Functions. World Scientific Publishing Co. Pte. Ltd. Singapore,(2021).
[8] Hayman, W. Meromorphic Functions. Oxford University Press, (1975).
[9] Krasner, M. Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres, Clermont-Ferrand, p.94-141 (1964). Centre National de la Recherche Scientifique (1966), (Colloques internationaux de C.N.R.S. Paris, 143).
(Received: March 03, 2023)
(Revised: June 18, 2023)

Alain Escassut
Laboratoire de Mathématiques Blaise Pascal, UMR 6620
Université Clermont Auvergne
63000 Clermont-Ferrand
France
e-mail: alain.escassut@uca.fr

