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BERNSTEIN TYPE Lp INEQUALITIES FOR COMPOSITION OF

POLYNOMIALS

SHABIR AHMAD MALIK

ABSTRACT. Let P(z) = a0 +
n

∑
v=µ

avzv ∈ Pn, µ and P(z) 6= 0 for |z| < k, where

k ≥ 1, then for 0 ≤ p ≤ ∞, Gardner and Weems (J. Math. Anal. Appl. 219

(1998), 472-478) proved that

‖P′‖p ≤
n

‖kµ + z‖p
‖P‖p.

In this note, we consider a more general class of polynomials P ◦Q ∈ Pmn, µ

defined by (P◦Q)(z) = P(Q(z)), where Q ∈Pm and provide an extension of the

above inequality and related results.

1. INTRODUCTION

Let Pn be the linear space of all polynomials P(z) =
n

∑
v=0

avzv over C of degree

at most n and P′(z) be the derivative of P(z). For P ∈ Pn, we define

‖P‖0 = exp





1

2π

2π∫

0

log |P(eiθ)|dθ



 ,

‖P‖p =





1

2π

2π∫

0

|P(eiθ)|pdθ





1
p

for 0 < p < ∞

and

‖P‖∞ = max
|z|=1

|P(z)|

Notice that ‖P‖0 = limp→0+ ‖P‖p and ‖P‖∞ = limp→∞ ‖P‖p. For 1 ≤ p ≤ ∞, ‖.‖p

is a norm and hence Pn is a normed linear space under ‖.‖p

The Bernstein inequality asserts that

‖P′‖ ≤ n‖P‖ (1.1)
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holds for every polynomial P ∈Pn. Well, it is clear that inequality (1.1) relates the

supremum norm of a polynomial with its derivative and this inequality reduces to

equality if and only if P(z) = αzn for some complex constant α. Various analogues

of this inequality are known in which the underlying unit circles, the maximum

norms, and the family of functions are replaced by more general circles, norms

and families of functions such as hyperholomorphic functions respectively. The

inequality

|P′(z)| ≥ n min
|z|=1

|P(z)| (1.2)

holds for every polynomial P ∈ Pn which has all zeros in |z| ≤ 1. This inequal-

ity is ascribed to Aziz and Dawood [2]. Bernstein-type inequalities are known

on various regions of the complex plane and n-dimensional Euclidean space such

as Quaternions (see [6]), for various norms such as weighted Lp norms (to be dis-

cussed further), and for many classes of functions such as polynomials with various

constraints. Note that, Bernstein-type inequalities have their own intrinsic interest.

Inequality (1.2) is sharp and equality holds when P(z) = αzn, where |α|= 1 which

has all its zeros at the origin, one would expect a relationship between the bound

n and the distance of the zeros of the polynomial from the origin. This fact was

observed as a refinement of Bernstein’s inequality, conjectured by Erdös and later

proved by Lax [10], can be provided under assumptions on the location of the zeros

of a polynomial and states the following:

Theorem 1.1. If P ∈ Pn and P(z) 6= 0 for |z|< 1, then

‖P′‖ ≤
n

2
‖P‖.

This inequality is sharp and equality holds if P has all of its zeros on |z|= 1.

For polynomials of a complex variable, we also have the following more general

result, due to Malik [11], which is one of the best-known polynomial inequality

after the Bernstein inequality and will be useful in proving some of our results.

Theorem 1.2. If P ∈ Pn and P(z) 6= 0 for |z|< k, where k ≥ 1, then

‖P′‖ ≤
n

1+ k
‖P‖.

Obviously, Theorem 1.1 follows from Theorem 1.2 when k = 1. Chan and Malik

[3] introduced the class of polynomials of the form P(z) = a0 +
n

∑
v=µ

avzv, where

1 ≤ µ ≤ n. Let us denote the linear space of all such polynomials as Pn, µ. Notice

that Pn, 1 = Pn. In relation to Pn, µ, Chan and Malik [3] presented the following

result.

Theorem 1.3. If P(z) = a0+
n

∑
v=µ

avzv ∈Pn, µ and P(z) 6= 0 for |z|< k, where k ≥ 1,

then
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‖P′‖ ≤
n

1+ kµ
‖P‖.

2. INTEGRAL NORM INEQUALITIES FOR Pn

Zygmund’s [13] well known result relating the integral norm of a polynomial

and its derivative states that if P ∈ Pn, then for 1 ≤ p ≤ ∞

‖P′‖p ≤ n‖P‖p.

DeBruijn [4] presented the extension of Theorem 1.1 to Lp norms by establishing

the following:

Theorem 2.1. If P ∈ Pn and P(z) 6= 0 for |z|< 1, then 1 ≤ p ≤ ∞

‖P′‖p ≤
n

‖1+ z‖p

‖P‖p.

Of course, Theorem 1.1 is the limiting case of Theorem 2.1 as p → ∞. Rahman

and Schmeisser [12] asserted that Theorem 2.1 in fact holds for 0 ≤ p ≤ ∞.

Gardner and Weems [7, Corollary 2.2] showed that Theorem 1.3 can be ex-

tended to Lp inequalities where 0 ≤ p ≤ ∞ and were able to prove the following

result which contains an Lp extension of Theorem 1.2 as a special case. Of special

interest, is the fact that this result also holds for Lp norms for all 1 ≤ p ≤ ∞. In

particular, they proved:

Theorem 2.2. If P(z) = a0+
n

∑
v=µ

avzv ∈Pn, µ and P(z) 6= 0 for |z|< k, where k ≥ 1,

then for 0 ≤ p ≤ ∞

‖P′‖p ≤
n

‖kµ + z‖p

‖P‖p.

In the present paper, we consider a more general class of polynomials P ◦Q ∈
Pmn, µ defined by (P ◦Q)(z) = P(Q(z)), where Q ∈ Pm and produce the result

mainly in the next section which in particular yields Theorem 2.2 and many other

striking results as special cases. Note that

‖P◦Q‖p =





1

2π

2π∫

0

|P(Q(eiθ))|pdθ





1
p

for 0 < p < ∞

and

‖P◦Q‖∞ = max
|z|=1

|P(Q(z))|.
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3. STATEMENT OF RESULTS

Our main result is the following:

Theorem 3.1. Let P◦Q ∈ Pmn, µ. If S(z) = P(Q(z)) 6= 0 for |z| < k, where k ≥ 1

and Q(z) 6= 0 in |z|> 1 with min
|z|=1

|Q(z)|= A, then for 0 ≤ p ≤ ∞





1

2π

2π∫

0

|P′(Q(eiθ))|pdθ





1
p

≤
n

A‖kµ + z‖p

‖P◦Q‖p.

Remark 3.1. If we have Q(z) = z, then Q(z) = 0 in |z|< 1 with min
|z|=1

|Q(z)|=A = 1.

Therefore from Theorem 3.1, we have Theorem 2.2 as a special case.

Since Theorem 3.1 also holds for Lp norms for all 1 ≤ p ≤ ∞. In particular, we

have the following generalization of a result of Gardner and Weems [7, Corollary

2.3].

Corollary 3.1. Let P ◦Q ∈ Pmn, µ. If P(Q(z)) 6= 0 for |z| < k, where k ≥ 1 and

Q(z) 6= 0 in |z|> 1 with min
|z|=1

|Q(z)|= A, then for 1 ≤ p ≤ ∞





1

2π

2π∫

0

|P′(Q(eiθ))|pdθ





1
p

≤
n

A‖kµ + z‖p

‖P◦Q‖p.

Remark 3.2. With p = ∞, we have

(

1
2π

2π∫
0

|P′(Q(eiθ))|pdθ

)

1
p

→ max
|z|=1

|P′(Q(z))|

and if Q(z) = z then min
|z|=1

|Q(z)| = A = 1, Corollary 3.1 reduces to Theorem 1.3.

With p = ∞, Q(z) = z and µ = 1, it reduces to Theorem 1.2. With p = ∞, Q(z) = z,

µ = 1 and k = 1, it reduces to Theorem 1.1. Finally if we fix Q(z) = z, µ = 1 and

k = 1, Corollary 3.1 reduces to Theorem 2.1.

Remark 3.3. Interestingly, the result due to Dewan et al. [5, Theorem 1] also fol-

lows from Corollary 3.1 when p = ∞ and µ = 1.

4. LEMMAS

Definition 4.1. For γ = (γ0, ...,γn) ∈ C
n+1 and P(z) =

n

∑
v=0

avzv, define

ΛγP(z) =
n

∑
v=0

γvavzv.

The operator Λγ is admissible if it preserves one of the following properties:

(a) P(z) has all its zeros in {z ∈ C : |z| ≤ 1},

(b) P(z) has all its zeros in {z ∈ C : |z| ≥ 1}.
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Lemma 4.1. Let φ(x) = ψ(log x) where ψ is a convex non-decreasing function on

R. Then for all P ∈ Pn and each admissible operator Λγ

2π∫

0

φ
(

|ΛγP(e
iθ)|

)

|dθ ≤

2π∫

0

φ
(

c(γ,n)|P(eiθ)|
)

dθ,

where c(γ,n) = max(|γ0|, |γn|).

The proof of Lemma 4.1 was given by Arestov [1].

Lemma 4.2. Let P ◦Q ∈ Pmn, µ. If S(z) = P(Q(z)) 6= 0 in |z| < k, where k ≥ 1,

then for |z|= 1

kµ|S′(z)| ≤ |R′(z)|,

where R(z) = zmnS(1
z
) = zmnP(Q(1

z
)).

Proof. Since S(z) 6= 0 in |z|< k, from Laguerre’s Theorem [9] we have

αS′(z) 6= zS′(z)−mnS(z) (4.1)

for |α| < k, |z| < k. Now choose the argα in (4.1) appropriately, then we get for

any fixed z

|α||S′(z)| 6= |zS′(z)−nS(z)|.

This gives for |α|< k and |z|< k

|α||S′(z)|< |zS′(z)−mnS(z)| (4.2)

because otherwise the inequality is violated for sufficiently small values of |α|.
Letting |α| → k in (4.2), we have

k|S′(kz)| ≤ |kzS′(kz)−mnS(kz)| (4.3)

for |z| ≤ 1. Since a1 = a2 = ...= aµ−1 = 0, from (4.3) we get

kµ

∣

∣

∣

∣

∣

mn

∑
v=µ

vav(kz)v−1

∣

∣

∣

∣

∣

≤ |kzS′(kz)−mnS(kz)| (4.4)

for |z| ≤ 1. In fact (4.4) also holds for |z| = 1, replace z by z/k in (4.4), then we

obtain for |z|= 1

kµ

∣

∣

∣

∣

∣

mn

∑
v=µ

vav(z)
v−1

∣

∣

∣

∣

∣

≤ |zS′(z)−mnS(z)|.

It can be easily verified for |z|= 1 that

|R′(z)|= |zS′(z)−mnS(z)|.

Consequently kµ|S′(z)| ≤ |R′(z)| for |z|= 1. �
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5. PROOFS OF THE THEOREMS

Proof of Theorem 3.1. Since S(z) 6= 0 in |z|< k, from Laguerre’s Theorem [9], we

have

mnS(z)− (z−α)S′(z) 6= 0

for |z|< k, |α|< k. Therefore, setting α =−ze−iζ, ζ ∈ R, the operator Λγ

ΛγS(z) = (eiζ +1)zS′(z)−mneiζS(z)

is admissible and thus by Lemma 4.1 with ψ(x) = epx,

2π∫

0

∣

∣

∣
(eiζ +1)S′(eiθ)− imneiζS(eiθ)

∣

∣

∣

p

dθ ≤ mpnp

2π∫

0

∣

∣S(eiθ)
∣

∣

p
dθ

for p > 0. Then it is clear that

2π∫

0

∣

∣

∣
S′(eiθ)+ eiζ

{

S′(eiθ)− imnS(eiθ)
}∣

∣

∣

p

dθ ≤ mpnp

2π∫

0

∣

∣S(eiθ)
∣

∣

p
dθ.

This gives

2π∫

0

2π∫

0

∣

∣

∣
S′(eiθ)+ eiζ

{

S′(eiθ)− imnS(eiθ)
}∣

∣

∣

p

dθdζ ≤ 2πmpnp

2π∫

0

∣

∣S(eiθ)
∣

∣

p
dθ. (5.1)

Now

2π∫

0

2π∫

0

∣

∣

∣S
′(eiθ)+ eiζ

{

S′(eiθ)− imnS(eiθ)
}∣

∣

∣

p

dθdζ

=

2π∫

0

∣

∣S′(eiθ)
∣

∣

p
2π∫

0

∣

∣

∣

∣

1+ eiζ

{

S′(eiθ)− imnS(eiθ)

S′(eiθ)

}∣

∣

∣

∣

p

dζdθ

=

2π∫

0

∣

∣S′(eiθ)
∣

∣

p
2π∫

0

∣

∣

∣

∣

eiζ +

∣

∣

∣

∣

S′(eiθ)− imnS(eiθ)

S′(eiθ)

∣

∣

∣

∣

∣

∣

∣

∣

p

dζdθ

=

2π∫

0

∣

∣S′(eiθ)
∣

∣

p
2π∫

0

∣

∣

∣

∣

eiζ +

∣

∣

∣

∣

R′(eiθ)

S′(eiθ)

∣

∣

∣

∣

∣

∣

∣

∣

p

dζdθ,

where the function R is as defined in Lemma 4.2. With the help of Lemma 4.2, we

have
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2π∫

0

2π∫

0

∣

∣

∣
S′(eiθ)+ eiζ

{

S′(eiθ)− imnS(eiθ)
}∣

∣

∣

p

dθdζ ≥

2π∫

0

∣

∣S′(eiθ)
∣

∣

p
2π∫

0

∣

∣

∣
eiζ + kµ

∣

∣

∣

p

dζdθ.

(5.2)

Thus combining (5.1) and (5.2), we see that




2π∫

0

∣

∣S′(eiθ)
∣

∣

p
dθ









2π∫

0

∣

∣

∣
eiζ + kµ

∣

∣

∣

p

dζ



≤ 2πmpnp

2π∫

0

∣

∣S(eiθ)
∣

∣

p
dθ.

Equivalently




2π∫

0

∣

∣P′(Q(eiθ))Q′(eiθ)
∣

∣

p
dθ









2π∫

0

∣

∣

∣
eiζ + kµ

∣

∣

∣

p

dζ



≤ 2πmpnp

2π∫

0

∣

∣P(Q(eiθ))
∣

∣

p
dθ.

Since all the zeros of Q(z) lie in |z| ≤ 1 and Q is of degree at most m, after using

inequality (1.2) on the polynomial Q(z) with min
|z|=1

|Q(z))| = A, we have





2π∫

0

∣

∣P′(Q(eiθ))
∣

∣

p
dθ









2π∫

0

∣

∣

∣e
iζ + kµ

∣

∣

∣

p

dζ



≤
2πnp

Ap

2π∫

0

∣

∣P(Q(eiθ))
∣

∣

p
dθ.

Consequently,





1

2π

2π∫

0

|P′(Q(eiθ))|pdθ





1
p

≤
n

A‖kµ + z‖p

‖P◦Q‖p.

This proves Theorem 3.1 for 0 < p < ∞. The result holds for p = 0 and p = ∞ by

letting p → 0+ and p → ∞. �
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