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CLASS NUMBER ONE PROBLEM FOR A NON-RICHAUD-DEGERT

TYPE FAMILY OF REAL QUADRATIC FIELDS

NIMISH KUMAR MAHAPATRA

ABSTRACT. We study the class number one problem for a one parameter family

of real quadratic fields Q(
√

d), where d = 100m2 +28m+2 and m is a positive

integer. We show that there is no such field with class number one.

1. INTRODUCTION

The class number of a number field K, is an important object of study in alge-

braic number theory. The ring OK , of algebraic integers in K, is a unique factoriza-

tion domain if and only if the class number of K is one. It is known that there are

only nine imaginary quadratic fields with class number one (see [2, 11]). On the

other hand, it was conjectured by Gauss that there are infinitely many real quadratic

fields with class number one (see [7]). This conjecture is still open. However, there

are several partial attempts (see [3–6,10]). For example, class number one criterion

is known for real quadratic fields in some families [6, 10].

In [3], Biro proved that, for any positive integer m such that m2 + 4 is square-

free, the real quadratic field Q(
√

m2 +4) has class number one precisely when

m ∈ {1,3,5,7,13,17}. Along similar lines, in [4] Biro again proved a conjecture

of Chowla; stating that, if m is a positive integer such that 4m2 + 1 is square free

then the real quadratic field Q(
√

4m2 +1) has class number one if and only if

m ∈ {1,2,3,5,7,13}.

Definition 1.1. [9] A real quadratic field is of the form Q(
√

d), where d is a

square-free integer of the form n2 + r with r|4n and −n < r ≤ n or r = ±4n/3 is

called a real quadratic number field of Richaud-Degert type.

In [6] the authors discussed a class number one criterion for real quadratic fields

of Richaud-Degert type (R–D type). Their approach involves computation of spe-

cial values of Dedekind zeta function attached to the number fields. We note that

this method works only for those number fields whose fundamental unit is explic-

itly known together with some other restrictions on generalized Dedekind sums.
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In [8] the authors studied the class number one problem for a two parameters

family of real quadratic fields of the form Q(
√

m2 +4r) for certain integers m and

r. In this article we use similar techniques as in [8] and deal with a new single

parameter family of real quadratic fields which is not in the form of Richaud-Degert

type. Certainly the methods in [6] can not be applied to such number fields and

therefore we use a method introduced in [1] and later modified in [8] to show

some Diophantine equations have no solutions in integers. Throughout this paper

K denotes the number field Q(
√

d) and by hK we mean the class number of K. We

prove the following theorem in this article.

Theorem 1.1. Let m be any positive integer and suppose d = 100m2 +28m+2 is

square-free. Then the Diophantine equation x2 −dy2 =±2 has no solution among

integers and hence hK > 1.

2. PROOF OF THEOREM 1.1

We consider the one parameter family of real quadratic fields Q(
√

d), where

d = 100m2 + 28m + 2 is square-free and m is a positive integer. The following

lemma ensures that the number fields in this family are not of R–D type.

Lemma 2.1. Let K = Q(
√

d) be a family of real quadratic fields where d =
100m2 +28m+2 is square-free and m ∈ Z+. Then K is not of R–D type.

Proof. Given that, d = 100m2+28m+2 this implies that d = (10m+1)2+8m+1.

Since (10m+1)2 < d < (10m+2)2 and −(10m+1) < 8m+1 ≤ 10m+1, for all

positive integer m this shows that d = (10m+1)2 +8m+1 is the absolute reduced

form of d. But 4(10m+ 1) = 40m+ 4, which is not divisible by 8m+ 1 for any

m ∈ Z+. Therefore, the given family is not a R–D type family of real quadratic

fields. �

Now, we are ready to prove our main result.

Proof. Suppose that the Diophantine equation

x2 −dy2 =±2 (2.1)

has a solution among integers, then without loss of generality, we can assume that

(u,v) is a solution with the minimum possible u ≥ 0 and v > 0. Then

u2 −dv2 =±2. (2.2)

Consider the algebraic integer σ := u− v
√

d. Then clearly by (2.2), N(σ) = ±2.

Similarly define another algebraic integer as τ := (50m+7)+5
√

d. Then N(τ) =
−1. Now consider the product

στ =
(

u(50m+7)−5vd
)

+
(

5u− v(50m+7)
)
√

d. (2.3)
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We take norm on both sides to get
(

u(50m+7)−5vd
)2 −d

(

5u− v(50m+7)
)2

=±2. (2.4)

Clearly both
(

u(50m+7)−5vd
)

and
(

5u− v(50m+7)
)

are integers. Thus, using

the minimality condition of v, we get from (2.4)
∣

∣5u− v(50m+7)
∣

∣≥ v. (2.5)

First we consider the case when 5u− v(50m+7)≥ v. In this case we have

5u ≥ v(50m+8)

=⇒ 25u2 ≥ v2(50m+8)2.

Replacing the value of u2 from (2.2) one obtains

25(±2+dv2)≥ v2(50m+8)2

=⇒ ±50 ≥ v2
(

(50m+8)2 −25(100m2 +28m+2)
)

=⇒ ±50 ≥ v2(100m+14)

which is not possible.

Now we consider the remaining case when v(50m+7)−5u ≥ v. Here we have

5u ≤ v(50m+6)

=⇒ 25u2 ≤ v2(50m+6)2.

Again replacing the value of u2 from (2.2) we get

25(±2+dv2)≤ v2(50m+6)2

=⇒ ±50 ≤ v2
(

(50m+6)2 −25(100m2 +28m+2)
)

=⇒ ±50 ≤−v2(100m+14)

which is again not possible.

We have d = 100m2 +28m+2 =⇒ d ≡ 2 (mod 4) and the discriminant dK of

the real quadratic field K =Q(
√

d) is 4d. From the basic algebraic number theory

we know that the ring of integers OK = Z[
√

d] and the rational prime 2 ramifies in

OK . Suppose 2OK = p2 for some prime ideal p with N(p) = 2. If hK = 1, then p is

a principal ideal and hence we can write p = (α+β
√

d) for some α,β ∈ Z. This

implies that α2−dβ2 =±2, which is a contrary to the above shown arguments. �

Remark 2.1. We can deduce a divisibility criteria for the class numbers of the

above discussed family of real quadratic fields. In the proof of Theorem 1.1 we

have shown that the rational prime 2 ramifies in OK and the prime ideal p above

2 is non-principal. This implies that the ideal class in the ideal class group of K

containing p is of order 2. This proves that 2 | hK .
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