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FAST GROWTH OF THE LOGARITHMIC DERIVATIVE WITH

APPLICATIONS TO COMPLEX DIFFERENTIAL EQUATIONS

MOHAMED ABDELHAK KARA AND BENHARRAT BELAÏDI

ABSTRACT. In this paper, we give some estimates on the growth of the logarith-

mic derivative of meromorphic functions by considering the concept of ϕ-order.

We discuss their relationship with the growth of solutions of certain complex

differential equations.

1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, we assume familiarities of the reader with the fundamen-

tal results and standard notations of Nevanlinna value distribution theory such as

M(r, f ),T (r, f ),n(r,a, f ),N(r, f ),N(r, f ) (see [10, 18]). Also, the term “meromor-

phic function” will mean “meromorphic function in the whole complex plane C ”.

We recall the following definitions.

Definition 1.1. [18] The order of a meromorphic function f is defined by

ρ( f ) := limsup
r→+∞

logT (r, f )

logr
.

If f is an entire function, then the order of f is given by

ρ̃( f ) := limsup
r→+∞

log log M(r, f )

logr
= ρ( f ).

In addition, we define the logarithmic measure of a set E ⊂ (1,+∞) by mesl(E)=∫
E

dt
t

and the linear measure of a set F ⊂ (0,+∞) by mes(F) =
∫

F dt. The follow-

ing result due to Gundersen [8] plays an important role in the theory of complex

differential equations.

Theorem 1.1. [8] Let f be a transcendental meromorphic function of finite order

ρ := ρ( f ). Let ε > 0 be a constant, and k, j be integers such that k > j ≥ 0. Then,

the following hold:
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(i) There exists a set E ⊂ (1,+∞) that has finite logarithmic measure, such that

for all z satisfying |z| /∈ E ∪ [0,1], we have
∣∣∣∣∣

f (k)(z)

f ( j)(z)

∣∣∣∣∣≤ |z|(k− j)(ρ−1+ε).

(ii) There exists a set F ⊂ (0,+∞) that has finite linear measure, such that for all

z satisfying |z| /∈ F, we have
∣∣∣∣∣

f (k)(z)

f ( j)(z)

∣∣∣∣∣≤ |z|(k− j)(ρ+ε).

In [12], Latreuch and Belaı̈di obtained certain sharpness estimates for the growth

of the logarithmic derivative of meromorphic functions.

Theorem 1.2. [12] Let f be a meromorphic function and k be an integer. Then

max

{
ρ

(
f (k)

f

)
,k ≥ 2

}
= ρ

(
f ′

f

)
.

Very recently, some authors [3, 4, 9, 14, 20] have used a more general concept

to measure the growth of complex functions called the ϕ-order (cf. [19]). They

employed this new concept in the investigation of fast growing solutions of higher

order complex linear differential equations.

Definition 1.2. [9] Let ϕ be an increasing unbounded function on (0,+∞). The

ϕ-orders of a meromorphic function f are defined by

ρ0
ϕ( f ) := limsup

r→+∞

ϕ
(
eT (r, f )

)

log r
, ρ1

ϕ( f ) := limsup
r→+∞

ϕ(T (r, f ))

logr
.

If f is an entire function, then the ϕ-orders are defined by

ρ̃0
ϕ( f ) := limsup

r→+∞

ϕ(M(r, f ))

logr
, ρ̃1

ϕ( f ) := limsup
r→+∞

ϕ(log M(r, f ))

logr
.

Example 1.1. For all r ∈ (0,+∞) large enough, we define log0 r = r and logp r =

log(logp−1 r), where p ∈ N. If we choose ϕ(r) = logp r (p ≥ 2) , then ρ1
ϕ( f ) =

ρ1
logp

( f ) := ρp( f ) which is well known as the iterated p-order of f [5, 15]. In

particular, ρ0
log2

( f ) = ρ1( f ) = ρ( f ) is the usual order of f and ρ1
log2

( f ) = ρ2( f ) is

the hyper-order of f [6, 7].

We use the symbol Φ to denote the class of positive unbounded increasing func-

tions on (0,+∞), such that ϕ(ex) grows slowly, i.e.,

∀c > 0, lim
x→+∞

ϕ(ecx)

ϕ(ex)
= 1.
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For instance, ϕ(r) = logr /∈ Φ and ϕ(r) = logp r, (p ≥ 2) belongs to the class Φ.
In [1], Bandura et al. proved that for any entire transcendental function f of infinite

order ρ( f ) = +∞, there exists ϕ ∈ Φ satisfying ρ0
ϕ( f )<+∞.

Proposition 1.1. [9, 20] If ϕ ∈ Φ, then

∀m > 0, ∀k ≥ 0 :
ϕ−1(log xm)

xk
−→+∞, x −→+∞. (1.1)

∀δ > 0 :
log ϕ−1((1+δ)x)

logϕ−1(x)
−→+∞, x −→+∞. (1.2)

∀δ > 0, ϕ(δx)≤ ϕ(xδ)≤ (1+o(1))ϕ(x), x −→+∞. (1.3)

ϕ(ex) = O(x), x −→+∞. (1.4)

Proposition 1.2. [9] Let ϕ ∈ Φ and f be an entire function. Then

ρ
j
ϕ( f ) = ρ̃

j
ϕ( f ), j = 0,1.

Definition 1.3. [14] Let ϕ be an increasing unbounded function on (0,+∞). The

ϕ-convergence exponents of the sequence of zeros of a meromorphic function f are

defined by

λ0
ϕ( f ) := limsup

r→+∞

ϕ
(

e
N(r, 1

f )
)

log r
, λ1

ϕ( f ) := limsup
r→+∞

ϕ
(

N
(

r, 1
f

))

logr
.

Similarly, the ϕ-convergence exponents of the sequence of distinct zeros of f are

defined by

λ
0

ϕ( f ) := limsup
r→+∞

ϕ
(

e
N(r, 1

f )
)

log r
, λ

1

ϕ( f ) := limsup
r→+∞

ϕ
(

N
(

r, 1
f

))

logr
.

In [14], the authors investigated the fast growth and the oscillation of solutions

of the non-homogeneous differential equation

f (k)+Ak−1(z) f (k−1)+ · · ·+A0(z) f = F(z) (1.5)

and obtained the following theorem.

Theorem 1.3. [14] Let A0,A1, . . . ,Ak−1,F 6≡ 0 be meromorphic functions and let

f be a meromorphic solution of equation (1.5). If

max
{

ρ1
ϕ(F),ρ1

ϕ(A j) : j = 0,1, . . . ,k−1
}
< ρ1

ϕ( f ),

then we have

λ
1

ϕ( f ) = λ1
ϕ( f ) = ρ1

ϕ( f ).

By using the same arguments of the proof of Theorem 1.3 ( [14], Lemma 8), we

obtain the following result.
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Theorem 1.4. Under the assumptions of Theorem 1.3, if

max
{

ρ0
ϕ(F),ρ0

ϕ(A j) : j = 0,1, . . . ,k−1
}
< ρ0

ϕ( f ),

then we have

λ
0

ϕ( f ) = λ0
ϕ( f ) = ρ0

ϕ( f ).

In this paper, we make use of the concepts of ϕ-order and ϕ-convergence ex-

ponents to establish some estimates on the fast growth and the oscillation of log-

arithmic derivative of meromorphic functions. As applications, we describe the

connection between these estimates and the solutions of some complex differential

equations.

Theorem 1.5. Let ϕ ∈ Φ and f be a meromorphic function. For any integer k ≥ 2,
we have

ρ
j
ϕ

(
f ′

f

)
= max

{
ρ

j
ϕ

(
f (k)

f

)
,ρ

j
ϕ

(
f (k+1)

f

)}

= max
{

ρ
j
ϕ

(
f (k)

f

)}
,( j = 0,1).

Theorem 1.6. Let ϕ ∈ Φ and f be a meromorphic function. If there exists an

integer k ≥ 1 such that ρ0
ϕ

(
f (k)

f

)
= ρ0

ϕ( f )> ρ1
ϕ( f ), then we have

max

{
λ

0

ϕ( f ),λ
0

ϕ

(
1

f

)}
= max

{
λ0

ϕ( f ),λ0
ϕ

(
1

f

)}
= ρ0

ϕ( f ). (1.6)

Moreover, if f is an entire function, then λ
0

ϕ( f ) = λ0
ϕ( f ) = ρ0

ϕ( f ).

Theorem 1.7. Let A0,A1, . . . ,Ak−1,F 6≡ 0 be entire functions and let ϕ ∈ Φ. If f is

a solution of equation (1.5) satisfying

max
{

ρ0
ϕ(F),ρ0

ϕ(A j) : j = 0,1, . . . ,k−1
}
< ρ0

ϕ( f ),

then

ρ0
ϕ

(
f ′

f

)
= ρ0

ϕ( f ) = λ
0

ϕ( f ) = λ0
ϕ( f ).

Moreover, if
f (i)

f
is not constant for any integer i ≥ 2, then

ρ0
ϕ

(
f (i)

f

)
= ρ0

ϕ( f ) = λ
0

ϕ( f ) = λ0
ϕ( f ). (1.7)

Theorem 1.8. Let n ≥ 2 be an integer and let A j ( j = 1, . . . ,n) be meromorphic

functions. If f is a non-zero meromorphic solution of the differential equation

(k ≥ 1 is an integer)

f (k) = A1 f +A2 f 2 + · · ·+An−1 f n−1 +An f n (1.8)
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satisfying

max
{

ρ0
ϕ(A j) : j = 1, . . . ,n

}
< ρ0

ϕ ( f )<+∞, (1.9)

then for k ≥ 1, we have

ρ0
ϕ

(
f (k)

f

)
=ρ0

ϕ( f )=max

{
λ

0

ϕ( f ),λ
0

ϕ

(
1

f

)}
=max

{
λ0

ϕ( f ),λ0
ϕ

(
1

f

)}
. (1.10)

Remark 1.1. For ϕ(r) = log logr, it is clear that Theorem 1.5 extends and gen-

eralizes Theorem 1.2 from the usual order to the concept of ϕ-order. However,

Theorem 1.7 improves Theorem 1.4.

2. BASIC LEMMAS

Lemma 2.1. [2, 18] Let g : (0,+∞) → R and h : (0,+∞) → R be monotone

non-decreasing functions such that g(r) ≤ h(r) outside of an exceptional set F1 ⊂
(0,+∞) of finite linear measure. Then, for any α > 1, there exists r0 > 0 such that

g(r) ≤ h(αr) for all r > r0.

Lemma 2.2. [16] Let f and a0, . . . ,an be meromorphic functions, where n ≥ 1 is

an integer. If an(z) 6≡ 0 and F = a0 +a1 f + · · ·+an f n, then

T (r,F) = nT (r, f )+O

(
n

∑
k=0

T (r,ak)

)
.

Lemma 2.3. [9,13] Let ϕ ∈ Φ and f1, f2 be two meromorphic functions. Then, for

j = 0,1 the following statements hold:

(i) ρ
j
ϕ

(
1
f1

)
= ρ

j
ϕ( f1), f1 6≡ 0,

(ii) ρ
j
ϕ( f ′1) = ρ

j
ϕ( f1),

(iii) max
{

ρ
j
ϕ( f1 + f2),ρ

j
ϕ( f1 f2)

}
≤ max{ρ

j
ϕ( f1),ρ

j
ϕ( f2)},

(iv) if ρ
j
ϕ( f1)< ρ

j
ϕ( f2), then ρ

j
ϕ( f1 + f2) = ρ

j
ϕ( f1 f2) = ρ

j
ϕ( f2).

Lemma 2.4. [14] Let f be a meromorphic function. If ρ0
ϕ( f )<+∞, then ρ1

ϕ( f ) =
0.

Lemma 2.5. [9] Let ϕ ∈ Φ and f be a meromorphic function of order ρ := ρ1
ϕ( f ).

Then, for any given ε > 0 and for any integer k ≥ 1, we have that

m

(
r,

f (k)

f

)
= O

(
log ϕ−1

(
logrρ+ε

))

holds possibly outside of an exceptional set F2 ⊂ (0,+∞) of finite linear measure.
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Lemma 2.6. [17] Let f (z) =
+∞

∑
n=0

an zn be an entire function. Let µ(r) and ν f (r)

denote respectively the maximum term and the central index of f , i.e., µ(r) =
max{|an|r

n;n = 0,1, . . .} and ν f (r) = max{n : µ(r) = |an|r
n} . Then, we have

logµ(r) = log |a0|+
∫ r

0

ν f (t)

t
dt (|a0| 6= 0), (2.1)

M(r, f )< µ(r)

{
ν f (R)+

R

R− r

}
(R > r). (2.2)

Lemma 2.7. [11,18] Let f be a transcendental entire function and let z be a point

with |z|= r at which | f (z)|= M(r, f ). Then

f (k)(z)

f (z)
=

(
ν f (r)

z

)k

(1+o(1)) (k ∈N) (2.3)

holds for all |z|= r outside a set E1 ⊂ (1,+∞) of r of finite logarithmic measure.

Lemma 2.8. Let ϕ ∈ Φ and f be an entire function such that ρ0
ϕ( f ) = +∞ and

ρ1
ϕ( f )<+∞. Then, we have

ρ1
ϕ( f ) = limsup

r→+∞

ϕ(ν f (r))

logr
,

where ν f (r) is the central index of f .

Proof. Denote ρ := limsup
r→+∞

ϕ(ν f (r))
log r

. Then, for any given ε > 0 and sufficiently large

r, we have

ν f (r)≤ ϕ−1(logrρ+ε). (2.4)

By setting R = 2r in (2.2), we get

M(r, f )< µ(r)(ν f (2r)+2) = |aν f (r)|r
ν f (r) (ν f (2r)+2) . (2.5)

Since {|an|}n≥0 is a bounded sequence, then by using (1.1), (2.4) and (2.5), we

obtain

logM(r, f )< ν f (r) log r+ logν f (2r)+ c1

≤ ϕ−1
(
log rρ+ε

)
log r+ log

(
ϕ−1

{
log(2r)ρ+ε

})
+ c1

≤ ϕ−1
(
log rρ+2ε

)
+ϕ−1

(
log(2r)ρ+ε

)

≤ ϕ−1
(
log rρ+3ε

)
, (2.6)

where c1 > 0 is a real constant. From (2.6), by the monotonicity of ϕ, we get

ϕ(logM(r, f ))

log r
≤ ρ+3ε.
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By the arbitrariness of ε > 0 and Proposition 1.2, we obtain

ρ1
ϕ( f )≤ ρ := limsup

r→+∞

ϕ(ν f (r))

log r
. (2.7)

Now, we prove the reverse inequality. Without loss of generality, we may assume

|a0| 6= 0. It follows from (2.1) that

log µ(2r) = log |a0|+

∫ 2r

0

ν f (t)

t
dt ≥ log |a0|+ν f (r)

∫ 2r

r

dt

t

= log |a0|+ν f (r) log 2.

By Cauchy’s inequality we have µ(2r) ≤ M(2r, f ) and then

ν f (r)≤
logM(2r, f )

log 2
−

log |a0|

log2
≤ c2 logM(2r, f ), (2.8)

where c2 > 2 is a real constant. It follows from (2.8) and Proposition 1.1, especially

(1.3), that

ϕ(ν f (r))

log r
≤

(1+o(1))ϕ(log M(2r, f ))

log2r
·

log2r

log r
.

Hence

limsup
r→+∞

ϕ(ν f (r))

logr
≤ limsup

r→+∞

ϕ(logM(2r, f ))

log 2r
= ρ1

ϕ( f ). (2.9)

We deduce from (2.7) and (2.9) that

ρ1
ϕ( f ) = limsup

r→+∞

ϕ(ν f (r))

logr
. �

Lemma 2.9. Let ϕ ∈ Φ and f be an entire function such that ρ0
ϕ( f ) = +∞ and

ρ := ρ1
ϕ( f )<+∞. Then, there exists a set E2 ⊂ (1,+∞) having infinite logarithmic

measure such that for all r ∈ E2, we have

lim
r→+∞

r∈E2

ϕ(ν f (r))

logr
= ρ (2.10)

and

lim
r→+∞

r∈E2

ϕ
(
eν f (r)

)

logr
=+∞. (2.11)

Proof. Lemma 2.8 implies that there exists a sequence {rn,rn −→+∞} satisfying
(

1+
1

n

)
rn < rn and lim

rn→+∞

ϕ(ν f (rn))

logrn

= ρ.
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Then, there exists an integer n1 ≥ 1 such that for any n≥ n1 and for any r ∈ [rn,(1+
1
n
)rn], we have

ϕ(ν f (rn))

log(1+ 1
n
)rn

≤
ϕ(ν f (r))

log r
≤

ϕ
(
ν f ((1+

1
n
)rn)
)

log rn

,

so
ϕ(ν f (rn))

logrn

·
logrn

log(1+ 1
n
)rn

≤
ϕ(ν f (r))

logr

≤
ϕ
(
ν f ((1+

1
n
)rn)
)

log(1+ 1
n
)rn

·
log(1+ 1

n
)rn

log rn

. (2.12)

We set E2 =
+∞
∪

n=n1

[
rn,(1+

1
n
)rn

]
. By (2.12), we get

lim
r→+∞

r∈E2

ϕ(ν f (r))

log r
= lim

n→+∞

ϕ(ν f (rn))

logrn

= ρ,

where the logarithmic measure of E2 satisfies

mesl(E2) =

∫
E2

dr

r
=

+∞

∑
n=n1

(1+ 1
n )rn∫

rn

dt

t
=

+∞

∑
n=n1

log(1+
1

n
) = +∞.

Moreover, for any given ε > 0 and sufficiently large r ∈ E2, we have

ϕ−1
(
logrρ−ε

)
≤ ν f (r)≤ ϕ−1

(
logrρ+ε

)
. (2.13)

Hence, it follows from (1.1), (1.4) and the left-hand side of (2.13) that

lim
r→+∞

r∈E2

ϕ
(
eν f (r)

)

log r
= lim

r→+∞
r∈E2

O(ν f (r))

logr
≥ lim

r→+∞
r∈E2

O
(
ϕ−1 (logrρ−ε)

)

log r

= lim
r→+∞

r∈E2

(
O
(
ϕ−1 (logrρ−ε)

)

r
·

r

log r

)
=+∞

and therefore, (2.11) is fulfilled. �

By similar discussion as in the first part of the proof of Lemma 2.9, we can

easily prove the following lemma.

Lemma 2.10. Let ϕ ∈ Φ and f be a meromorphic function with ρ0
ϕ( f ) < +∞.

Then, there exists a set E3 ⊂ (1,+∞) with infinite logarithmic measure such that

for all r ∈ E3, we have

ρ0
ϕ( f ) = lim

r→+∞
r∈E3

ϕ
(
eT (r, f )

)

logr
. (2.14)
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Lemma 2.11. Let ϕ ∈ Φ and f be an entire function such that ρ0
ϕ( f ) =+∞. Then,

for all sufficiently large r ∈ E4 ⊂ (1,+∞) and for any γ > 0 large enough, we have

M(r, f )>
[
ϕ−1 (log(d1 rγ))

]d2
, (2.15)

where E4 is of infinite logarithmic measure and d1,d2 are two positive constants.

Proof. In view of (2.8) and (2.11), for any sufficiently large number γ > 0, we have

c2 log M(r, f )≥ ν f

( r

2

)
≥ logϕ−1

(
log
( r

2

)γ)
(r ∈ E4, r −→+∞),

where c2 > 2 and E4 ⊂ (1,+∞) is of infinite logarithmic measure. Thus, (2.15)

follows immediately. �

Lemma 2.12. Let ϕ ∈ Φ and let A0,A1, . . . ,Ak−1,F 6≡ 0 be entire functions such

that

α := max
{

ρ0
ϕ(F),ρ0

ϕ(A j) : j = 0,1, . . . ,k−1
}
<+∞.

Then, every solution f of (1.5) satisfies ρ1
ϕ( f )≤ α.

Proof. In view of Lemma 2.4, if ρ0
ϕ( f ) < +∞ then ρ1

ϕ( f ) = 0 ≤ α. Suppose that

ρ0
ϕ( f ) = +∞. By Lemma 2.7, there exists a set E1 ⊂ (1,+∞) with mesl(E1)<+∞

such that for all z satisfying |z|= r /∈ E1 and | f (z)| = M(r, f ), we have

f ( j)(z)

f (z)
=

(
ν f (r)

z

) j

(1+o(1)) ( j = 1, . . . ,k). (2.16)

Since α := max
{

ρ0
ϕ(F),ρ0

ϕ(A j) : j = 0,1, . . . ,k−1
}
< +∞, then by Proposition

1.2, for any given ε > 0 and sufficiently large r, we have

|F(z)| ≤ ϕ−1
(
logrα+ε

)
and |A j(z)| ≤ ϕ−1

(
logrα+ε

)
( j = 0, . . . ,k−1). (2.17)

We can write equation (1.5) as

f (k)

f
=

F

f
−Ak−1

f (k−1)

f
−·· ·−A1

f ′

f
−A0. (2.18)

Substituting (2.15)–(2.17) into (2.18) yield

[ν f (r)]
k |1+o(1)| ≤ rk ϕ−1 (logrα+ε)

[ϕ−1 (log(d1 rγ))]d2

+kr [ν f (r)]
k−1 |1+o(1)|ϕ−1

(
logrα+ε

)

for all r ∈E4\E1, where E4 ⊂ (1,+∞) is of infinite logarithmic measure. Choosing

γ > 2α+1, by Proposition 1.1 and the monotonicity of ϕ, it follows that

limsup
r→+∞
r∈E4\E1

ϕ(ν f (r))

log r
≤ α+2ε.

Hence, by Lemma 2.9 we conclude that ρ1
ϕ( f )≤ α. �
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3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.5

For any integer k ≥ 2, we have

f (k)

f
=

(
f (k−1)

f

)′

+

(
f ′

f

)(
f (k−1)

f

)
.

By Lemma 2.3, we obtain for k ≥ 2 and j = 0,1

ρ
j
ϕ

(
f (k)

f

)
≤ max

{
ρ

j
ϕ

(
f ′

f

)
,ρ

j
ϕ

(
f (k−1)

f

)}
. (3.1)

Similarly, we can get

ρ
j
ϕ

(
f (k)

f

)
≤ max

{
ρ

j
ϕ

(
f ′

f

)
,ρ

j
ϕ

(
f (k−2)

f

)}

...

≤ max

{
ρ

j
ϕ

(
f ′

f

)
,ρ

j
ϕ

(
f ′

f

)}
= ρ

j
ϕ

(
f ′

f

)
. (3.2)

Now, we treat separately the following three cases.

Case 1 For j = 0,1, suppose that ρ
j
ϕ

(
f (k)

f

)
< ρ

j
ϕ

(
f (k+1)

f

)
. For any integer k ≥ 1,

we have

f (k+1)

f
−

(
f (k)

f

)′

=

(
f ′

f

)(
f (k)

f

)
. (3.3)

It follows from (3.2), (3.3) and Lemma 2.3 that

ρ
j
ϕ

(
f (k)

f

)
< ρ

j
ϕ

(
f (k+1)

f

)
≤ ρ

j
ϕ

(
f ′

f

)
and ρ

j
ϕ

(
f (k+1)

f

)
= ρ

j
ϕ

(
f ′

f

)
.

Case 2 For j = 0,1, suppose that ρ
j
ϕ

(
f (k)

f

)
= ρ

j
ϕ

(
f (k+1)

f

)
. By (3.2) we have

ρ
j
ϕ

(
f (k)

f

)
≤ ρ

j
ϕ

(
f ′

f

)
. Assume that ρ

j
ϕ

(
f (k)

f

)
< ρ

j
ϕ

(
f ′

f

)
. Then, by (3.3)

and Lemma 2.3 we obtain the contradiction ρ
j
ϕ

(
f (k)

f

)
= ρ

j
ϕ

(
f ′

f

)
. Hence,

ρ
j
ϕ

(
f (k)

f

)
= ρ

j
ϕ

(
f ′

f

)
.

Case 3 For j = 0,1, suppose that ρ
j
ϕ

(
f (k)

f

)
> ρ

j
ϕ

(
f (k+1)

f

)
. Again, by (3.3) and

Lemma 2.3, we obtain

ρ
j
ϕ

(
f (k)

f

)
= ρ

j
ϕ

(
f ′

f

f (k)

f

)
. (3.4)
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By (3.2) we have ρ
j
ϕ

(
f (k)

f

)
≤ ρ

j
ϕ

(
f ′

f

)
. Assume that ρ

j
ϕ

(
f (k)

f

)
< ρ

j
ϕ

(
f ′

f

)
.

Then, by (3.4) and Lemma 2.3, we get ρ
j
ϕ

(
f (k)

f

)
= ρ

j
ϕ

(
f ′

f

)
which is a

contradiction. Hence, ρ
j
ϕ

(
f (k)

f

)
= ρ

j
ϕ

(
f ′

f

)
.

Finally, for j = 0,1 we deduce that

ρ
j
ϕ

(
f ′

f

)
= max

{
ρ

j
ϕ

(
f (k)

f

)
,ρ

j
ϕ

(
f (k+1)

f

)}
.

Moreover, by the last assertion, there exists some integer n≥ 1 satisfying ρ
j
ϕ

(
f (n)

f

)
=

ρ
j
ϕ

(
f ′

f

)
for j = 0,1, and therefore,

max

{
ρ

j
ϕ

(
f (k)

f

)
, k ≥ 2

}
= ρ

j
ϕ

(
f ′

f

)
,

which completes the proof of Theorem 1.5. �

Proof of Theorem 1.6

Since there exists an integer k ≥ 1 satisfying ρ0
ϕ( f )= ρ0

ϕ

(
f (k)

f

)
, then by (3.2) we

have ρ0
ϕ( f )≤ ρ0

ϕ

(
f ′

f

)
. By Lemma 2.3 we obtain ρ0

ϕ

(
f ′

f

)
≤ ρ0

ϕ( f ) and therefore

ρ0
ϕ

(
f ′

f

)
= ρ0

ϕ( f ). (3.5)

On the other hand, it follows from Definition 1.3 and Lemma 2.5 that for any given

ε > 0 and r /∈ F2, we have

T

(
r,

f ′

f

)
= m

(
r,

f ′

f

)
+N

(
r,

f ′

f

)

= m

(
r,

f ′

f

)
+N

(
r,

1

f

)
+N(r, f )

≤ O
(
logϕ−1

(
logrρ+ε

))
+2logϕ−1

(
logrλ+ε

)

≤ O
(

logϕ−1
(

logrmax{ρ,λ}+3ε
))

, (3.6)

where F2 ⊂ (0,+∞) is of finite linear measure, ρ := ρ1
ϕ( f ) and

λ := max
{

λ
0

ϕ( f ),λ
0

ϕ(
1
f
)
}
. By the monotonicity of ϕ, Lemma 2.1, (1.3) and (3.6),

we get that for any µ > 1

ϕ

(
e

T
(

r, f ′

f

))
≤ (max{ρ,λ}+4ε) logµr, r −→+∞.
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Hence, by the arbitrariness of ε > 0, we obtain

ρ0
ϕ

(
f ′

f

)
= ρ0

ϕ( f )≤ max

{
ρ1

ϕ( f ),λ
0

ϕ( f ),λ
0

ϕ

(
1

f

)}

≤ max

{
ρ1

ϕ( f ),λ0
ϕ( f ),λ0

ϕ

(
1

f

)}
≤ ρ0

ϕ( f ). (3.7)

We finally deduce from (3.5) and (3.7) that

ρ0
ϕ( f ) = max

{
λ

0

ϕ( f ),λ
0

ϕ

(
1

f

)}
= max

{
λ0

ϕ( f ),λ0
ϕ

(
1

f

)}
.

If f is an entire function, it is obvious that λ
0

ϕ

(
1
f

)
= λ0

ϕ

(
1
f

)
= 0 and therefore

ρ0
ϕ( f ) = λ

0

ϕ( f ) = λ0
ϕ ( f ) . �

Proof of Theorem 1.7

Equation (1.5) can be rewritten as

1

f
=

1

F

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

)
. (3.8)

It follows from Lemma 2.3 and (3.8) that

ρ0
ϕ( f )≤ max

{
ρ0

ϕ(F),ρ0
ϕ(A j),ρ

0
ϕ

(
f (i)

f

)
: j = 0,1, . . . ,k−1; i = 1, . . . ,k

}
.

(3.9)

Since max
{

ρ0
ϕ(F),ρ0

ϕ(A j) : j = 0,1, . . . ,k−1
}
< ρ0

ϕ( f ), then by (3.9), Theorem

1.5 and Lemma 2.3 we get

ρ0
ϕ( f )≤ max

{
ρ0

ϕ

(
f (i)

f

)
: i = 1, . . . ,k

}
= ρ0

ϕ

(
f ′

f

)
≤ ρ0

ϕ( f ). (3.10)

Thus,

ρ0
ϕ

(
f ′

f

)
= ρ0

ϕ( f ). (3.11)

We deduce from (3.11), Lemma 2.12 and Theorem 1.6 that

ρ0
ϕ

(
f ′

f

)
= ρ0

ϕ( f ) = λ
0

ϕ( f ) = λ0
ϕ( f ). (3.12)

On the other hand, we suppose that
f (i)

f
(i ≥ 2) is not constant. Then, n(r,0, f ) ≤

n(r,0, f

f (i)
) and therefore

N

(
r,

1

f

)
≤ N

(
r,

f (i)

f

)
≤ T

(
r,

f (i)

f

)
.
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By the monotonicity of ϕ, we get for i ≥ 2

λ
0

ϕ( f )≤ ρ0
ϕ

(
f (i)

f

)
. (3.13)

It follows from (3.12), (3.13) and Lemma 2.3 that for i ≥ 2

ρ0
ϕ( f ) = λ

0

ϕ( f ) = λ0
ϕ( f )≤ ρ0

ϕ

(
f (i)

f

)
≤ ρ0

ϕ( f ).

Hence, (1.7) holds and Theorem 1.7 is proved. �

Proof of Theorem 1.8

Suppose that f is a non-zero meromorphic solution of equation (1.8). By the

condition (1.9), we see that ρ0
ϕ( f )> 0. It follows from (1.8) and Lemma 2.2 that

T

(
r,

f (k)

f

)
= T

(
r,A1 +A2 f + · · ·+An−1 f n−2 +An f n−1

)

= (n−1)T (r, f )+O

(
n

∑
j=1

T (r,A j)

)
. (3.14)

Set α = max
{

ρ0
ϕ(A j) : j = 1, . . . ,n

}
. Then, for any given ε > 0 and sufficiently

large r, we have

T (r,A j)≤ log ϕ−1 ((α+ ε) logr) , j = 1, . . . ,n. (3.15)

By ρ = ρ0
ϕ ( f ) and Lemma 2.10, we obtain for sufficiently large r ∈ E3 that

T (r, f )≥ logϕ−1 ((ρ− ε) logr) , (3.16)

where E3 ⊂ (1,+∞) is of infinite logarithmic measure. For any ε (0 < 2ε < ρ−α),
it follows from (3.15), (3.16) and (1.2) that

T (r,A j)

T (r, f )
≤

logϕ−1 ((α+ ε) logr)

logϕ−1 ((ρ− ε) logr)
−→ 0, (r −→+∞,r ∈ E3, j = 1, . . . ,n).

(3.17)

For sufficiently large r ∈ E3, we obtain from (3.14) and (3.17) that

T

(
r,

f (k)

f

)
= (n−1)T (r, f )+o(T (r, f )) ,

so

T (r, f ) =
1

n−1+o(1)
T

(
r,

f (k)

f

)
= O

(
T

(
r,

f (k)

f

))
. (3.18)
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Hence, by the monotonicity of ϕ, (1.3) and (3.18), we get

ρ0
ϕ ( f )≤ ρ0

ϕ

(
f (k)

f

)
. (3.19)

On the other hand, Lemma 2.3 yields

ρ0
ϕ

(
f (k)

f

)
≤ max

{
ρ0

ϕ

(
f (k)
)
,ρ0

ϕ

(
1

f

)}
= ρ0

ϕ( f ). (3.20)

Hence, by (3.19) and (3.20), we deduce that ρ0
ϕ

(
f (k)

f

)
= ρ0

ϕ( f ) for k ≥ 1. Since

0 < ρ0
ϕ( f ) < +∞, by Lemma 2.4, we have ρ1

ϕ( f ) = 0 < ρ0
ϕ( f ). Furthermore, one

can see that (1.10) follows immediately from Theorem 1.6. �

Acknowledgement. The authors want to thank the editor and the anonymous

referees for their constructive comments and suggestions, which greatly improved

this article. This paper was supported by the Directorate-General for Scientific

Research and Technological Development(DGRSDT).

REFERENCES

[1] A. Bandura, O. Skaskiv and P. Filevych, Properties of entire solutions of some linear PDE’s,

J. Appl. Math. Comput. Mech., 16 (2) (2017), 17–28.

[2] S. Bank, A general theorem concerning the growth of solutions of first-order algebraic differ-

ential equations, Compositio Math., 25 (1972), 61–70.

[3] B. Belaı̈di, Growth of ρϕ-order solutions of linear differential equations with entire coefficients,

PanAmer. Math. J., 27 (4) (2017), 26–42.

[4] B. Belaı̈di, Fast growing solutions to linear differential equations with entire coefficients having

the same ϕ-order, J. Math. Appl., 42 (2019), 63–77.

[5] L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential

equation, Proc. Amer. Math. Soc., 101 (2) (1987), 317–322.

[6] C. H. Li and Y. X. Gu, On the complex oscillation of differential equations f ′′+eaz f ′+Q(z) f =
F(z), Acta Math. Sci., 25A (2) (2005), 192–200. (in Chinese)

[7] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of

second order linear differential equations, Kodai Math. J., 22 (2) (1999), 273–285.

[8] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus

similar estimates, J. London Math. Soc., 37 (2) (1988), 88–104.

[9] I. Chyzhykov and N. Semochko, Fast growing entire solutions of linear differential equations,

Math. Bull. Shevchenko Sci. Soc., 13 (2016), 1–16.

[10] W. K. Hayman, Meromorphic Functions, Oxford: Oxford Mathematical Monographs, Claren-

don Press, 1964.

[11] W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method,

Canad. Math. Bull., 17 (3) (1974), 317–358.

[12] Z. Latreuch and B. Belaı̈di, Growth of logarithmic derivative of meromorphic functions, Math.

Scand., 113 (2) (2013), 248–261.



LOGARITHMIC DERIVATIVE AND COMPLEX DIFFERENTIAL EQUATIONS 77

[13] M. A. Kara and B. Belaı̈di, Some estimates of the ϕ-order and the ϕ-type of entire and mero-

morphic functions, Int. J. Open Problems Complex Analysis, 10 (3) (2019), 42–58.

[14] M. A. Kara and B. Belaı̈di, Growth of ϕ-order solutions of linear differential equations with

meromorphic coefficients on the complex plane, Ural Math. J., 6 (1) (2020), 95–113.

[15] L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast

Asian Bull. Math., 22 (4) (1998), 385–405.

[16] A. Z. Mokhon’ko and V. D. Mokhon’ko, Estimates for the Nevanlinna characteristics of some

classes of meromorphic functions and their applications to differential equations, Sib. Math J.,

15 (1974), 921–934.
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