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BRAUER-CLIFFORD GROUP OF POISSON (S,H)-HOPF ALGEBRAS

THOMAS GUÉDÉNON

ABSTRACT. In this paper, we extend the notion of the Brauer-Clifford group to

the case of an Azumaya-Poisson (S,H)-Hopf algebra, when H is a commutative

Hopf algebra and S is an H-comodule Poisson algebra. This is the situation that

arises in applications with connections to algebraic geometry. We give three use-

ful examples : an affine algebraic group acting rationally on a Poisson algebra,

a Hopf algebra coacting on the localization of a Poisson algebra and a direct

product of Hopf algebras coacting on a direct product of Poisson algebras.

1. INTRODUCTION

Let H be a cocommutative Hopf algebra over a field k, and let S be an H-

module Poisson algebra over k. In [14], we studied the Brauer-Clifford group of

(S,H)-Azumaya-Poisson algebras. In the present article, we will deal with the dual

situation. More precisely, we will study the Brauer-Clifford group of (S,H)-Hopf

Azumaya-Poisson algebras when H is a commutative Hopf algebra and S is an

H-comodule Poisson algebra. Our study is also motivated by [12], where with A.

Herman, we have studied the Brauer-Clifford group of (S,H)-Hopf Azumaya alge-

bras when H is a commutative Hopf algebra and S is a commutative H-comodule

algebra. In [11], K.R. Goodearl obtained interesting results when an algebraic

torus G acts on a Poisson algebra. The coordinate ring k[G] of G is a commutative

Hopf algebra, and a rational G-action is equivalent to a k[G]-coaction. This result

of Goodearl also suggests that we can study commutative Hopf algebra coactions

on Poisson algebras. Poisson algebras appear naturally in Hamiltonian mechanics,

and play an important role in the study of Poisson geometry and quantum groups.

Let H be a commutative Hopf algebra over a field k, and let S be an H-comodule

Poisson algebra over k. An (S,H)-Hopf Azumaya-Poisson algebra is an algebra

in the category of Poisson (S,H)-Hopf modules which is also an Azumaya alge-

bra over S - a precise definition is given in §2. After developing the background

necessary for an understanding of (S,H)-Hopf Azumaya-Poisson algebras in §2

and §3, we define the Brauer-Clifford group BP co(S,H) for a commutative Hopf
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algebra H and an H-comodule Poisson algebra S. In many applications, H could

be the coordinate ring of an algebraic group acting rationally on a Poisson algebra

via Poisson algebras automorphisms. When H is finite-dimensional, we show that

this Brauer-Clifford group is isomorphic to the Brauer-Clifford group BP (S,H⋆)
of Azumaya-Poisson (S,H⋆)-algebras studied in [14]. We present generalizations

of the Rosenberg-Zelinsky exact sequence for automorphisms of Azumaya-Poisson

(S,H)-Hopf algebras, and we discuss the central twist group actions on BP co(S,H).
If we consider the base field k as a trivial Hopf algebra, then BP co(S,k) is the Brauer

group BP (S) of Azumaya-Poisson S-algebras studied in [13]. In Section 4, we give

some examples of Brauer-Clifford groups. We refer to [1] and [16] for further

information on Brauer groups of commutative rings and of H-comodule algebras.

2. THE CATEGORY OF POISSON (S,H)-HOPF MODULES

Let k be a field. A Hopf algebra over k is a k-algebra H that possesses a mul-

tiplication mH : H ⊗H → H , a comultiplication ∆H : H → H ⊗ H , an antipode

SH : H → H and a counit εH : H → k, satisfying the defining relations

(∆H ⊗ idH)⊗∆H = (idH ⊗∆H)⊗∆H , (coassociativity)

mH ◦ [(SH ⊗ idH)⊗∆H ] = mH ◦ [(idH ⊗SH)⊗∆H ] = εH ,and

(εH ⊗ idH)⊗∆H = (idH ⊗ εH)⊗∆H ] = idH .

For background on Hopf algebras and coactions of Hopf algebras on rings, we

refer the reader to [24] and [20]. We will use Sweedler-Heyneman notation, and

we write :

∆H(h) = h1 ⊗h2, for all h ∈ H.

By an H-comodule, we will mean a right H-comodule. When M and N are

H-comodules, M⊗k N is an H-comodule under the diagonal coaction, that is,

(m⊗n)0 ⊗ (m⊗n)1 = m0 ⊗n0 ⊗m1n1; ∀ m ∈ M,n ∈ N.

A k-algebra S is an H-comodule algebra if S is an H-comodule satisfying

(ss′)0 ⊗ (ss′)1 = s0s′0 ⊗ s1s′1,(1S)0 ⊗ (1S)1 = 1S ⊗1H ,∀s,s′ ∈ S (1).

In this case, we will say that the H-coaction on S is compatible with the multi-

plication in S. A homomorphism of H-comodule algebras is a homomorphism of

H-comodules which is also a homomorphism of k-algebras.

Definition 2.1. Let S be an H-comodule algebra. A vector space M is an (S,H)-
Hopf module if M is an S-module and an H-comodule such that

(sm)0 ⊗ (sm)1 = s0m0 ⊗ s1m1∀s,∈ S,m ∈ M (2).
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It is easy to see that S is an (S,H)-Hopf module whenever S is an H-comodule

algebra.

If S is an H-comodule algebra and T is a sub-H-comodule algebra of S, it is

also easy to see that S is a (T,H)-Hopf module. We denote by SM H the category

of (S,H)-Hopf modules : its morphisms are the S-linear maps which are also H-

colinear.

A Poisson algebra is a commutative associative unitary k-algebra S endowed

with a bilinear map S×S → S denoted by {., .}, called a Poisson bracket, providing

S with a Lie algebra structure and satisfying the relation

{s,s′s′′}= s′{s,s”}+ s”{s,s′} for s, s′, s” ∈ S (3).

The base field k is a Poisson algebra with a trivial bracket. A Poisson subalgebra

of a Poisson algebra S is a subalgebra of S which is also a Lie subalgebra of S.

We denote by U(S) the enveloping algebra of S. Let S be a Poisson algebra. The

Poisson center of S

ZP (S) = {s ∈ S,{s,S} = 0}

is a Poisson subalgebra of S with trivial Poisson bracket : {s,s′} = 0 for all s,s′ ∈
ZP (S).

Let S and T be two Poisson algebras. A homomorphism of Poisson algebras

from S to T is a homomorphism of algebras f from S to T which preserves the

brackets; i.e., f ({s,s′}) = { f (s), f (s′)} for all s, s′ in S. Let us give some examples

of Poisson algebras.

Let S be a Poisson algebra. A vector space M is a Poisson S-module if M is an

S-module: (s,m) 7→ sm, and a Lie S-module: (s,m) 7→ s⋄m satisfying the following

compatibility conditions:

s⋄ (s′m) = {s,s′}m+ s′(s⋄m) (4)

and

(ss′)⋄m = s(s′ ⋄m)+ s′(s⋄m) (5).

Recall that M is a Lie S- module means that the Lie action ⋄ satisfies

{s,s′}⋄m = s⋄ (s′ ⋄m)− s′ ⋄ (s⋄m) ∀ s, s′ ∈ S, m ∈ M (6).

We have 1S ⋄m = 0 for all m ∈ M. Recall also that M is a Lie S-module if and only

if M is a U(S)-module in the natural way. The Poisson algebra S itself is a Poisson

S-module with s ⋄ s′ = {s,s′}. A Poisson k-module is just a vector space over k.

It follows from (3) that if S is a Poisson algebra, then S is a U(S)-module algebra,

and we can form the smash product S#U(S). We deduce from (3) and (4) that M

is a Poisson S-module if and only if M is an S#U(S)-module and the relation (5)

is satisfied. Given two Poisson S-modules M and N, a homomorphism of Poisson

S-modules f from M to N is an S-linear map f which is also a Lie S-linear map

from M to N, that is, an S#U(S)-linear map f from M to N; i.e., f (sm) = s f (m)
and f (s⋄m) = s⋄ f (m).
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Let S, T be two Poisson algebras and f : T → S a homomorphism of Poisson

algebras. If M is a Poisson S-module, then M is a Poisson T -module: tm = f (t)m
and t ⋄m = f (t)⋄m for all t ∈ T , m ∈ M.

Definition 2.2. Let S be a Poisson algebra. We say that S is an H-comodule Poisson

algebra if S is an H-comodule algebra such that the H-coaction is compatible with

the Poisson bracket; that is, S is an H-comodule algebra satisfying the relation

{s,s′}0 ⊗{s,s′}1 = {s0,s
′
0}⊗ s1s′1 ∀s,s′ ∈ S (7).

The base field k is an H-comodule Poisson algebra with a trivial Poisson bracket

and a trivial H-coaction. An H-sub-comodule Poisson algebra of an H-comodule

Poisson algebra S is an H-sub-comodule algebra of S which is also a Lie S-subalgebra

of S.

Lemma 2.1. Let S be an H-comodule Poisson algebra. Then the Poisson-center

ZP (S) of S is an H-sub-comodule Poisson algebra of S.

Proof. We will adapt the proof of [2, Corollary 3.6]. We know that {1S,S} = 0.

So 1S ∈ ZP (S). Using the relation (3), we can show that tt ′ ∈ ZP (S) for all t, t ′

in ZP (S). So ZP (S) is a subalgebra of S. Let t ∈ ZP (S), s ∈ S, ρ(t) = t0 ⊗ t1 and

ρ(s) = s0 ⊗ s1. Using the relation (6), we have

{t0,s}⊗ t1 = [{t,s0}0 ⊗{t,s0}1]⊗ (1⊗SH(s1)).

Each {t,s0} is equal to 0 since t ∈ ZP (S). It follows that the right term is equal to

0. We deduce that {t0,s}⊗ t1 = 0. Now taking the summands {t1} to be linearly

independant, we have {t0,s}= 0 for each summand t0. So ZP (S) is a subcomodule

of S. It is well known that ZP (S) is a Lie subalgebra of S. �

Definition 2.3. Let S be an H-comodule Poisson algebra. A vector space M is a

Poisson (S,H)-Hopf module if M is a Poisson S-module and an (S,H)-Hopf module

such that

(s⋄m)0 ⊗ (s⋄m)1 = (s0 ⋄m0)⊗ s1m1 ∀s ∈ S,m ∈ M (8);

or equivalently, M is an S#U(S)-module, an (S,H)-Hopf module and the relations

(5) and (8) are satisfied.

The H-comodule Poisson algebra S itself is a Poisson (S,H)-Hopf module.

When k is considered as a trivial Hopf algebra, a Poisson (S,k)-Hopf module is

just a Poisson S-module. If we consider k as an H-comodule Poisson algebra with

a trivial Poisson bracket and a trivial H-coaction, a Poisson (k,H)-Hopf module is

just an H-comodule. A Poisson (S,H)-Hopf submodule of a Poisson (S,H)-Hopf

module M is a Poisson S-submodule of M which is also an H-subcomodule of M,

or equivalently, an (S,H)-Hopf submodule of M which is also a Lie S-submodule

of M.

A Poisson (S,H)-Hopf module homomorphism between two Poisson (S,H)-
Hopf modules M and N is an S-linear map from M to N which is also a Lie S-linear
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map and an H-colinear map, that is, a Poisson S-linear map which is also an H-

colinear map, that is, a Lie S-linear map which is also an (S,H)-Hopf module map,

that is, an S#U(S)-linear map which is also an H-colinear map.

We denote by P SM H the category of Poisson (S,H)-Hopf modules with Poisson

(S,H)-Hopf module homomorphisms. The category P SM H is a subcategory of

SM H ; it is also a subcategory of S#U(S)M . This remark will enable us to use some

well known results of modules over smash products and (S,H)-Hopf modules. For

the remainder of the section, H is a commutative Hopf algebra, and S is an H-

comodule Poisson algebra.

Lemma 2.2. Let M and N be Poisson (S,H)-Hopf modules. Then

(i) M ⊗S N is a Poisson (S,H)-Hopf module : the actions and the coaction are

given by

s(m⊗S n) = (sm)⊗S n : this is the natural S-action,

s⋄ (m⊗S n) = (s⋄m)⊗S n+m⊗S (s⋄n) : this is the diagonal U(S)-action,

(m⊗S n)0 ⊗ (m⊗S n)1 = m0 ⊗S n0 ⊗ (m1n1) : this is the diagonal H-coaction.

(ii) the canonical S-isomorphism

M⊗S N → N ⊗S M;m⊗S n 7→ n⊗S m

is an isomorphism of Poisson (S,H)-Hopf modules.

Proof. (i) M ⊗S N is an S#U(S)-module and an (S,H)-Hopf module, since S is

commutative, U(S) is cocommutative and H is commutative [12, Lemma 2.1]. By

[14], the relation (5) is satisfied. We also have

(s⋄ (m⊗S n))0 ⊗ (s⋄ (m⊗S n))1

= [(s⋄m)⊗S n+m⊗S (s⋄n)]0 ⊗ [(s⋄m)⊗S n+m⊗S (s⋄n)]1

= ((s⋄m)⊗S n)0 ⊗ ((s⋄m)⊗S n)1 +(m⊗S (s⋄n))0 ⊗ (m⊗S (s⋄n)]1

= ((s0 ⋄m0)⊗S n0)⊗ ((s1m1)n1)+ (m0 ⊗S (s0 ⋄n0))⊗ (m1(s1n1)]

= [(s0 ⋄m0)⊗S n0 +m0⊗S (s0 ⋄n0)]⊗ (s1m1n1)

= s0 ⋄ (m0 ⊗S n0)⊗ (s1m1n1)

= s0 ⋄ (m⊗S n)0 ⊗ s1(m⊗n)1.

Thus we have shown that

(s⋄ (m⊗S n))0 ⊗ (s⋄ (m⊗S n))1 = s0 ⋄ (m⊗S n)0 ⊗ s1(m⊗n)1,

and the relation (8) is satisfied.

(ii) By [20, Lemma 10.1.2], this natural S-isomorphism is S#U(S)-linear and H-

colinear, since S is commutative, U(S) is cocommutative, and H is commutative

. �
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A monoidal category (C ,⊗, I) is a category C with a bifunctor

⊗ : C ×C → C

and object I ∈ C for which ⊗ satisfies natural coherence conditions, is associa-

tive up to natural transformation, and I is an identity object for ⊗ up to natural

transformation. For background on monoidal categories, see [17]. A monoidal cat-

egory C is symmetric if there are natural isomorphisms γM,N : M⊗N ∼= N⊗M in C

for all M,N ∈ C , such that γN,M ◦ γM,N = idM⊗N and certain hexagonal conditions

are satisfied [17, p. 180]. Note that an H-comodule algebra is an algebra in the

monoidal category M H of H-comodules. One can use the previous lemma to show

that (P SM H
,⊗S,S) is a symmetric monoidal category.

Theorem 2.1. (P SM H
,⊗S,S) is a symmetric monoidal category.

Proof. Let M,N,P be three Poisson (S,H)-Hopf modules. By Lemma 1.5(i), (M⊗S

N)⊗S P and M⊗S (N⊗S P) are Poisson (S,H)-Hopf modules. It is well known that

the natural S-isomorphism

(M ⊗S N)⊗S P → M⊗S (N ⊗S P);(m⊗S n)⊗S p 7→ m⊗S (n⊗S p)

is a homomorphism of S#U(S)-modules and of (S,H)-Hopf modules since S is

commutative, U(S) is cocommutative and H is commutative. By [12], (SM H
,⊗S,S)

and (S#U(S)M ,⊗S,S) are symmetric monoidal categories, since S is commutative,

U(S) is cocommutative and H is commutative. By Lemma 2.2(ii), the switch map

M⊗S N → N ⊗S M is an isomorphism of Poisson (S,H)-Hopf modules. The result

follows. �

Lemma 2.3. Let M and N be Poisson (S,H)-Hopf modules with M finitely gen-

erated as an S-module. Then HomS(M,N) is a Poisson (S,H)-Hopf module : the

actions are given by

(s f )(m) = s f (m) : the natural S-action,

(s⋄ f )(m) = s⋄ f (m)− f (s⋄m) : the diagonal U(S)-action,

and the coaction is the diagonal coaction, that is,

ρ( f ) = f0 ⊗ f1 ⇔ f0(m)⊗ f1 = f (m0)0 ⊗ f (m0)1SH(m1)

for all m ∈ M, s ∈ S and f ∈ HomS(M,N).

Proof. It is well known that HomS(M,N) is an S#U(S)-module and an (S,H)-Hopf

module, since S is commutative, U(S) is cocommutative and H is commutative.

By [13], we have

(ss′)⋄ f = s(s′ ⋄ f )+ s′(s⋄ f ),

and the relation (5) is satisfied. For s ∈ S and m ∈ M, we have
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(s0 ⋄ f0)(m)⊗ s1 f1 = [(s0 ⋄ f0(m)− f0(s0 ⋄m)]⊗ (s1 f1)

= [(s0 ⋄ f0(m))⊗ (s1 f1)]− [ f0(s0 ⋄m)⊗ (s1 f1)

= [s0 ⋄ ( f (m0)0)⊗ (s1 f (m0)1SH(m1)]

− f ((s0 ⋄m)0)0 ⊗ (s1 f ((s0 ⋄m)0)1)SH((s0 ⋄m)1)

= [s0 ⋄ ( f (m0)0)⊗ (s1 f (m0)1SH(m1)]

− f (s00 ⋄m0)0 ⊗ (s1 f (s00 ⋄m0)1)SH(s01m1))

= (s0 ⋄ f (m0)0)⊗ (s1 f (m0)1SH(m1))

− f (s00 ⋄m0)0 ⊗ (s1 f (s00 ⋄m0)1)SH(m1)SH(s01))

= (s0 ⋄ f (m0)0)⊗ (s1 f (m0)1SH(m1))

− f (s⋄m0)0 ⊗ ( f (s⋄m0)1SH(m1))

= [s⋄ f (m0)]0 ⊗ [s⋄ f (m0)]1SH(m1)

− [ f (s⋄m0)0 ⊗ f (s⋄m0)1SH(m1)

= [s⋄ f (m0)− f (s⋄m0)]0 ⊗ [s⋄ f (m0)− f (s⋄m0)]1SH(m1)

= (s⋄ f )(m0)0 ⊗ ((s⋄ f )(m0)1)SH(m1)

= (s⋄ f )0(m)⊗ (s⋄ f )1.

This means that

(s0 ⋄ f0)(m)⊗ s1 f1 = (s⋄ f )0(m)⊗ (s⋄ f )1 ∀m ∈ M.

So the relation (8) is satisfied. �

3. THE MAIN RESULTS

3.1. Algebras in the category P SM H

In this section, H is a commutative Hopf algebra and S is an H-comodule Pois-

son algebra. We refer to [23] for more information on monoids in a monoidal

category.

Definition 3.1. An algebra A in P SM H is an object A of P SM H with the additional

conditions that there are two morphisms mA : A⊗S A → A (the multiplication map)

and µA : S → A (the unit map) in P SM H satisfying

mA ◦ (idA ⊗mA) = mA ◦ (mA ⊗ idA) and

mA ◦ (µA ⊗ idA) = idA = mA ◦ (idA ⊗µA).

It follows from this definition that A is an algebra in P SM H if and only if A is an

algebra in SM H , an algebra in S#U(S)M with the same product map and the same

unit map and the relations (5) and (8) are satisfied. An algebra in SM H is called

an (S,H)-Hopf algebra in [12]. Following this terminology, we will call an algebra

in P SM H a Poisson (S,H)-Hopf algebra. The H-comodule Poisson algebra S is
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an example of a Poisson (S,H)-Hopf algebra. If we consider k as an H-comodule

Poisson algebra with a trivial Poisson bracket and a trivial H-coaction, a Poisson

(k,H)-Hopf algebra is just an H-comodule algebra. When k is considered as a

trivial Hopf algebra, a Poisson (S,k)-Hopf algebra is just a Poisson S-algebra in

the terminology of [13]. A homomorphism of Poisson (S,H)-Hopf algebras is an

S-algebra homomorphism which is also Lie S-linear and H-colinear. If A is an

S-algebra, we denote by Ao the opposite algebra of A.

Lemma 3.1. Let A and B be Poisson (S,H)-Hopf algebras. Then

(i) A⊗S B is a Poisson (S,H)-Hopf algebra;

(ii) the canonical S-algebra isomorphism A⊗S B ≃ B⊗S A is an isomorphism of

Poisson (S,H)-Hopf algebras;

(iii) Ao is a Poisson (S,H)-Hopf algebra, where the co-action of H is given by

ao
o ⊗ ao

1 = a0
o ⊗ a1, the Lie S-action is given by s ⋄ao = (s ⋄a)o and sao =

(sa)o for all s ∈ S,a ∈ A with a 7→ ao being the canonical antiautomorphism;

and

(iv) Ae := A⊗S Ao is a Poisson (S,H)-Hopf algebra.

Proof. (i) A and B are Poisson (S,H)-Hopf modules. By Lemma 2.2(i), A⊗S B

is a Poisson (S,H)-Hopf module. By [12, Lemma 3.2], A⊗S B is an (S,H)-Hopf

algebra and an (S,U(S))-algebra with the same product mA⊗SB and the same unit

map µA⊗SB. This shows the first assertion.

(ii) By [12, Lemma 3.2], the natural S-algebra isomorphism A⊗S B → B⊗S A

given by a⊗S b 7→ b⊗S a, for all a ∈ A and b ∈ B, is an isomorphism of (S,H)-
Hopf modules and of S#U(S)-modules. So it is an isomomorphism of Poisson

(S,H)-Hopf modules.

(iii) By [12, Lemma 3.2], Ao is an (S,H)-Hopf algebra and an (S,U(S))-algebra.

By [13, Lemma 2.3(iii)], the relation (5) is satisfied for A0, since A0 is a Poisson

S-module. Clearly, the relation (8) is satisfied for A0.

(iv) Follows from (i) and (iii). �

Lemma 3.2. Let M and N be Poisson (S,H)-Hopf modules with M finitely gener-

ated as an S-module.

(i) Then EndS(M) is a Poisson (S,H)-Hopf algebra.

(ii) If M and N are finitely generated projective as S-modules, then

EndS(M)⊗S EndS(N)≃ EndS(M⊗S N)

as Poisson (S,H)-Hopf algebras.

Proof. (i) By Lemma 2.3, EndS(M) is a Poisson (S,H)-Hopf module. By [12,

Lemma 3.2], EndS(M) is an (S,H)-Hopf algebra and an (S,U(S))-algebra with the

same product and the same unit map.

(ii) By (i), EndS(M ⊗S N) is an algebra in P SM H . By (i) and Lemma 2.2(i),

EndS(M)⊗S EndS(N) is an algebra in P SM H . It is well known that the canonical
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map from EndS(M)⊗S EndS(N) to EndS(M ⊗S N) is an S-algebra isomorphism

when M and N are finitely generated projective as S-modules. It is obviously H-

colinear and U(S)-linear. �

An S-module is an S-progenerator if it is finitely generated projective and faith-

ful (i.e. a generator) in the category of S-modules. If A is an S-algebra, we denote

by EndS(A) the algebra of S-endomorphisms of A, and by A⊗S Ao the envelop-

ing S-algebra of A. Note that A is a left A⊗S Ao-module with the action defined by

(a⊗b0).x = axb, for all a,x ∈A and b∈ Ao. We say that A is an S-Azumaya algebra

if it is an S-progenerator as an S-module and the canonical map A⊗S Ao → EndS(A)
is an S-algebra isomorphism. We will freely use well-known properties of tensor

products, S-progenerators, and Azumaya algebras, all of which can be found in [6]

or [15].

Definition 3.2. An Azumaya algebra A in P SM H is an algebra A in P SM H which

is an S-progenerator as an S-module and the canonical map A⊗S Ao → EndS(A)
is an isomorphism of Poisson (S,H)-Hopf algebras.

It follows from [12] that A is an Azumaya algebra in P SM H if and only if A is

an Azumaya algebra in SM H , an Azumaya algebra in S#U(S)M and the relations

(5) and (8) are satisfied. In [12], an Azumaya algebra in SM H is called an (S,H)-
Hopf Azumaya algebra. We will call an Azumaya algebra in P SM H an Azumaya-

Poisson (S,H)-Hopf algebra. An Azumaya-Poisson (S,H)-Hopf algebra is just a

Poisson (S,H)-Hopf algebra that is also an S-Azumaya algebra. A homomorphism

of Azumaya-Poisson (S,H)-Hopf algebras is a homomorphism of Poisson (S,H)-
Hopf algebras.

If P is an S-module, we set P∗ := HomS(P,S). A Poisson (S,H)-Hopf lattice is

a Poisson (S,H)-Hopf module that is also an S-progenerator.

Lemma 3.3. (i) If P is a Poisson (S,H)-Hopf lattice, then EndS(P) is an Azumaya-

Poisson (S,H)-Hopf algebra.

(ii) If P is a Poisson (S,H)-Hopf lattice, then P∗ is a Poisson (S,H)-Hopf lattice.

(iii) If A is an Azumaya-Poisson (S,H)-Hopf algebra, then Ao is an Azumaya-

Poisson (S,H)-Hopf algebra.

(iv) If P is a Poisson (S,H)-Hopf lattice, then EndS(P)
o and EndS(P

∗) are iso-

morphic as Poisson (S,H)-Hopf algebras.

(v) If A and B are Azumaya-Poisson (S,H)-Hopf algebras, then A⊗S B is an

Azumaya-Poisson (S,H)-Hopf algebra.

Proof. (i) EndS(P) is an S-Azumaya algebra since P is an S-progenerator. By

Lemma 3.2(i), it is also a Poisson (S,H)-Hopf algebra. The result follows.

(ii) By Lemma 2.3, P∗ is a Poisson (S,H)-Hopf module. By [6, Corollary

I.3.4(f)], P∗ is an S-progenerator.
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(iii) By Lemma 3.1(iii), Ao is a Poisson (S,H)-Hopf algebra. By [6] Ao is an

S-Azumaya algebra.

(iv) Since P is an S-progenerator, it follows from [6, Corollary I.3.4(d)] that the

S-linear map θ : EndS(P)
o → EndS(P

∗) defined by

θ(b)(y) = y◦b, for all b ∈ EndS(P)
o and y ∈ P∗

,

is a ring isomorphism. θ is S-linear since b and y are S-linear. By [12], θ is H-

colinear and U(S)-linear.

(v) This is straightforward, since A⊗S B is both a Poisson (S,H)-Hopf algebra

(Lemma 3.1(i)) and an S-Azumaya algebra. �

We are now ready to define our Brauer-Clifford group BP co(S,H). We will

follow the first approach of Pareigis [23] in his definition of the Brauer group in a

symmetric monoidal category.

Definition 3.3. We say that two Azumaya-Poisson (S,H)-Hopf algebras A and B

are Brauer equivalent if there exists a pair of Poisson (S,H)-Hopf lattices P and

Q such that A⊗S EndS(P)≃ B⊗S EndS(Q) as Azumaya-Poisson (S,H)-Hopf alge-

bras.

It is easy to see that the above relation is an equivalence relation on the set of

Azumaya- Poisson (S,H)-Hopf algebras. Let [A] be the equivalence class of an

Azumaya-Poisson (S,H)-Hopf algebra A under this relation.

Theorem 3.1. The set of equivalence classes of Azumaya-Poisson (S,H)-Hopf al-

gebras under the operation [A][B] = [A⊗S B] is an abelian group.

Proof. It follows from Lemmas 3.1, 3.2 and 3.3 that this operation is a well-defined

associative and commutative product on the collection of equivalence classes of

Azumaya-Poisson (S,H)-Hopf algebras, and that [S] will be the identity for this

operation. When A is an Azumaya-Poisson (S,H)-Hopf algebra, it follows from

Definition 3.2 that A is a Poisson (S,H)-Hopf lattice. So the fact that A⊗S Ao ≃
EndS(A) as Azumaya-Poisson (S,H)-Hopf algebras implies that [Ao] is the inverse

of [A] with respect to this operation. �

Definition 3.4. The abelian group of Theorem 3.1 is called the Brauer-Clifford

group of the equivalence classes of Azumaya-Poisson (S,H)-Hopf algebras, and is

denoted BP co(S,H).

Now we will consider the case where H is finite dimensional. Set H⋆=Homk(H,k).
If H is finite-dimensional, then H∗ is a Hopf algebra, and by [4, Proposition 7.2.1],

there is an equivalence between the categories of right H-comodules and left H∗-

modules : if M is left H∗-module and if {hi,h
∗
i ; i = 1, ...,n} is a dual basis of H ,

then the map ρ : M → M⊗k H given by ρ(m) = ∑i h∗i m⊗hi is an H-coaction on M.
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Using the same dual basis, if M is a right H-comodule, then M becomes a left H∗-

module with h∗i m = 〈h∗i ,m1〉, for all m ∈ M. These correspondences give an equiv-

alence between the categories of (S,H)-Hopf modules and left S#H∗-modules if H

is commutative and S is a commutative H-comodule algebra [4, Proposition 8.1.2] :

if M is an (S,H)-Hopf module, (s#h∗)m = s(h∗m) makes M a left S#H∗-module. If

M is a left S#H∗-module, then h∗m = (1#h∗)m, and then M is a right H-comodule,

therefore an (S,H)-Hopf module. Let S be a Poisson H-comodule algebra. Then S

is a left H∗-module algebra, a Poisson algebra, and we have

h∗.{s,s′}= 〈h∗,{s,s′}1〉{s,s′}0

= 〈h∗,s1s′1〉{s0,s
′
0}

= 〈h∗1,s1〉〈h
∗

2,s
′
1〉{s0,s

′
0}

= {〈h∗1,s1〉s0,〈h
∗

2s′1〉s
′
0}

= {h∗1.s,h
∗

2.s
′}.

It follows that S is a Poisson H∗-module algebra [14]. Then we can construct the

Brauer-Clifford group BP (S,H∗) of Azumaya-Poisson (S,H∗)-algebras [14].

Theorem 3.2. Let H be a commutative finite-dimensional Hopf algebra, and let S

be an H-comodule Poisson algebra. Then

BP co(S,H) = BP (S,H⋆).

Proof. The category of Poisson (S,H∗) will be denoted P S,H∗M . Let M be an

object of P SM H . Then M is an (S,H)-Hopf module, a Poisson S-module, and

(s⋄m)0 ⊗ (s⋄m)1 = (s0 ⋄m0)⊗ s1m1.

We deduce that M is a left S#H∗-module, a Poisson S-module, and we have

rclh∗(s⋄m) = 〈h∗,s1m1〉s0m0

= 〈h∗1,s1〉〈h
∗

2,m1〉s0m0

= (〈h∗1,s1〉s0)⋄ (〈h
∗

2,m1〉m0)

= (h∗1.s)⋄ (h
∗

2m).

Therefore, M is a Poisson (S,H∗)-module, that is, M is an object of P S,H∗M . Let

M be an object of P S,H∗M . Then M is a left S#H∗-module, a Poisson S-module,

and we have

h∗(s⋄m) = (h∗1.s)⋄ (h
∗

2m).

We deduce that M is an (S,H)-Hopf module, a Poisson S-module, and we have

(s⋄m)0 ⊗ (s⋄m)1 = h∗i (s⋄m)⊗hi

= (h∗i 1.s)⋄ (h
∗
i 2m)⊗hi
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= (〈h∗i 1,s1〉s0)⋄ (〈h
∗
i 2,m1〉m0)⊗hi

= (s0 ⋄m0)⊗〈h∗i 1,s1〉〈h
∗
i 2,m1〉hi

= (s0 ⋄m0)⊗〈h∗i ,s1m1〉hi

= (s0 ⋄m0)⊗ s1m1.

Therefore, M is a Poisson (S,H)-Hopf module, that is, M is an object of P SM H . It

is clear that the morphisms of the two categories are the same. So we have an equiv-

alence of categories between P SM H and P S,H∗M . It is routine to check that the

functors involved preserve algebras, Azumaya algebras, algebra homomorphisms,

and lattices in these categories, and hence preserve Brauer equivalence classes. �

The Brauer-Clifford group Bco(S,H) is the abelian group of the equivalence

classes of (S,H)-Hopf Azumaya algebras under the operation [A][B] = [A⊗S B],
for all (S,H)-Hopf Azumaya algebras A and B, where [A] denotes the equivalence

class of an Azumaya (S,H)-Hopf algebra A [12, Definition 3.7].

The Brauer-Clifford group B(S,U(S)) is the abelian group of the equivalence

classes of (S,U(S))-Azumaya algebras under the operation [A][B] = [A⊗S B], for

all (S,U(S))-Azumaya algebras A and B, where [A] denotes the equivalence class

of an (S,U(S))-Azumaya algebra A [12, Definition 3.7].

Lemma 3.4. (i) We have a map from BP co(S,H) → Bco(S,H), sending a class

[A] in BP co(S,H) to the class of (S,H)-Hopf Azumaya algebra represented by

A, viewed as an (S,H)-Hopf algebra, forgetting the Lie S-action. This map is

probably not injective.

(ii) We have a map from BP co(S,H)→B(S,U(S)), sending a class [A] in BP co(S,H)
to the class of (S,U(S))-Azumaya algebra represented by A, viewed as an

(S,U(S))-algebra, forgetting the H-coaction. This map is probably not injec-

tive.

We now present two natural homomorphisms between Brauer-Clifford groups.

The proof is obvious, and is therefore omitted.

Theorem 3.3. Let H be a commutative Hopf algebra, and let S be an H-comodule

Poisson algebra.

(i) (Corestriction) Let H →֒ H ′ be a surjective Hopf algebra homomorphism.

Then any Azumaya-Poisson (S,H)-Hopf algebra can be considered as an

Azumaya-Poisson (S,H ′)-Hopf algebra. This induces a natural group ho-

momorphism

BP co(S,H)→ BP co(S,H ′).

(ii) (Specialization of H-comodule Poisson algebras) Let T be an H-sub-comodule

Poisson algebra of S (for example, T could be the Poisson center of S). If A
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is an Azumaya-Poisson (T,H)-Hopf algebra, then A⊗T S is an Azumaya-

Poisson (S,H)-Hopf algebra. This induces a group homomorphism

BP co(T,H)→ BP co(S,H), [A] 7→ [A⊗T S].

3.2. Generalizations of the Rosenberg-Zelinsky sequence

In this subsection, U(S) is the enveloping algebra of S. We will present a gen-

eralization of the Rosenberg-Zelinsky sequence for H-colinear U(S)− linear S-

algebra automorphisms of Azumaya-Poisson (S,H)-Hopf algebras. The approach

is based on that of [15, Section 4.1] and [4, Section 13.6].

An equivalent form of the definition of an S-algebra A to be an S-Azumaya

algebra is that there is a pair of inverse equivalent adjoint functors between the

category of S-modules and the category of Ae-modules

F : N → A⊗S N,G : M → MA
,

where

MA = {m ∈ M,(a⊗1)m = (1⊗ao)m; ∀ a ∈ A}.

We will see in this subsection that these same functors are an adjoint pair of func-

tors between the symmetric monoidal category P SM H of Poisson (S,H)-Hopf

modules and the category Ae,P SM H of Ae-modules in P SM H for any Poisson (S,H)-
Hopf algebra A, and they are a pair of inverse equivalences exactly when A is an

Azumaya-Poisson (S,H)-Hopf algebra.

Let A be a Poisson (S,H)-Hopf algebra. By Lemma 3.1(iv), Ae is a Poisson

(S,H)-Hopf algebra. Let us denote by Ae,P SM H the category of left Ae-modules in

the symmetric monoidal category P SM H : its morphisms are the homomorphisms

of Poisson (S,H)-Hopf modules which are also Ae-linear maps, that is, the Ae-

linear maps which are also Lie S-linear and H-colinear. The objects of Ae,P SM H

are in fact the (Ae
,H)-Hopf modules which are also Ae#U(S)-modules satisfying

the relations (5) and (8). Clearly A is an object of Ae,P SM H with the Ae-action on

A being the natural one. If N ∈ P SM H , then A⊗S N is an object of Ae,P SM H . So

N 7→ A⊗S N defines a functor

FH : P SM
H → Ae,P SM

H
.

On the other hand, if M ∈ Ae,P SM H , we know that M is an object of AeM H and

an object of Ae#U(S)M which satisfies the relations (5) and (8). Define

MA := {m ∈ M,(a⊗1)m = (1⊗ao)m ∀a ∈ A}.

If we consider M with its natural structure of an (A,A)-bimodule, we have

MA := {m ∈ M,am = ma ∀a ∈ A}.

It is easy to see that

(1⊗SH(x1))ρM(mx0) = m0x⊗m1,



54 THOMAS GUÉDÉNON

and

(1⊗SH(x1))ρM(x0m) = xm0 ⊗m1.

It follows that

(1⊗SH(x1))ρM(mx0 − x0m) = (m0x− xm0)⊗m1.

Now, let m ∈ MA. Then each mx0 − x0m is equal to 0. We deduce that (m0x−
xm0)⊗m1 = 0. Now taking the summands {m1} to be linearly independant, we

have m0x− xm0 = 0 for each summand m0, that is, each m0 ∈ MA. Thus MA is

a subcomodule of M. Clearly, MA is an S-submodule of M. Therefore, MA is an

(S,H)-Hopf submodule of M. By [12], MA is an S#U(S)-module. Clearly, MA

satisfies the relations (5) and (8) as M does. Therefore, MA is an object of P SM H ,

and we have that M 7→ MA defines a functor

GH : Ae,P SM H → P SM H
.

Proposition 3.1. FH and GH are adjoint functors between P SM H and Ae,P S,M
H .

Proof. Let N be a Poisson (S,H)-Hopf module and M an object of Ae,P SM H . It is

well known that F : N → A⊗S N and G : M → MA are adjoint functors between the

category of S-modules and the category of Ae-modules. This means that we have a

bijection

φ : AeHom(A⊗S N,M)→ SHom(N,MA).

Recall that φ is defined by φ( f )(n) = f (1A ⊗S n) for all f ∈ AeHom(A⊗S N,M).
Its inverse ψ is given by ψ(g)(a⊗S n) = ag(n) for all g ∈ SHom(N,MA). The unit

map of the adjunction is

ηN : N → (A⊗S N)A
, ηN(n) = 1⊗S n and

its counit is

εM : A⊗S MA → M, εM(a⊗S m) = am.

Clearly, ηN is H-colinear and Lie S-linear. It is easy to show that φ( f ) is H-colinear

and Lie S-linear if f is H-colinear and Lie S-linear. Note that for every m ∈ M, we

have am = (a⊗S 1)m. We can show that εM is H-colinear and Lie S-linear. Using

this fact, we get that ψ(g) is H-colinear and Lie S-linear if g is H-colinear and

Lie S-linear. So φ is a homomorphism of (Ae
,H)-Hopf modules and an Ae#U(S)-

linear map. Since N, A⊗S N, M and MA satisfy the relations (5) and (8), φ defines a

bijection from Ae,P SHomH(A⊗S N,M) to P SHomH(N,MA). We have seen that FH

and GH are functors between P SM H and Ae,P SM H , so the result follows. �

Theorem 3.4. Let A be a Poisson (S,H)-Hopf algebra. Then A is an Azumaya-

Poisson (S,H)-Hopf algebra if and only if FH and GH are inverse equivalences of

categories between P SM H and Ae,P SM H .
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Proof. If A is an Azumaya-Poisson (S,H)-Hopf algebra, then A is S-Azumaya, so

the corresponding adjoint functors F and G are inverse equivalences. This means

that the unit maps ηN and εM are bijective for all S-modules N and left Ae-modules

M, and therefore for all N ∈ P SM H and M ∈ Ae,P SM H . Hence FH and GH are

inverse equivalences.

Conversely, suppose FH and GH are inverse equivalences of categories. Let

M = EndS(A). A straightforward verification shows that the left Ae-action given

by
(aφb)(x) = aφ(bx)

with the diagonal action of U(S) and the diagonal H-coaction makes M into an

object of Ae,P SM H . Our assumption implies that the counit map εM : A⊗S MA → M

is an isomorphism in Ae,P SM H . Furthermore, φ∈MA if and only if φ is left A-linear.

So φ is of type φb, for some b ∈A, with φb(a) = ab. Observe that MA =CEndS(A)(A)

is an S-algebra. The map φ is an S-algebra isomorphism φ : Ao → MA, sending b to

φb. This φ is also H-colinear and U(S)-linear. We have a commutative diagram

A⊗S MA εM−→ M

1⊗φ ↑ ↓ =

A⊗S Ao α
−→ EndS(A)

since
εM(a⊗S φb)(x) = (aφb)(x) = axb = α(a⊗S b)(x).

Therefore, α : Ae → EndS(A) is an isomorphism of Poisson (S,H)-Hopf algebras.

Finally, that A is an S-progenerator follows now since the Morita context defined

by the S-module A is strict. �

Let A be a Poisson (S,H)-Hopf algebra. Let (U(S),H)-AutS(A) be the group of

all automorphisms of Poisson (S,H)-Hopf algebras of A, that is, the group of all H-

colinear U(S)-linear S-algebra automorphisms of A. An element α of (U(S),H)-
AutS(A) is called (U(S),H)-inner if α(x) = uxu−1 for all x ∈ A, for some unit

u of S. It is obvious that the set of all (U(S),H)-inner automorphisms of A is

a subgroup of (U(S),H)-AutS(A), denoted (U(S),H)-Inn(A). An element α of

(U(S),H)-AutS(A) is (U(S),H)-INNER if there is an invertible H-coinvariant and

U(S)-invariant element u of A such that α(x) = uxu−1 for all x ∈ A: (an element

u ∈ A is H-coinvariant if u0 ⊗ u1 = u⊗ 1H , and U(S)-invariant if s ⋄u = 0 for all

s ∈ S.) The set of all (U(S),H)-INNER automorphisms of A is a subgroup of

(U(S),H)-Inn(A), denoted (U(S),H)-INN(A).
For α, β ∈ (U(S),H)-AutS(A), we define an object αAβ in Ae,P SM H as follows:

αAβ is equal to A as a Poisson (S,H)-Hopf module, but with left Ae-action (a⊗
bo)x = α(a)xβ(b) for all a,b,x ∈ A.

Lemma 3.5. If α, β, γ ∈ (U(S),H)-AutS(A), then

(i) αAβ ≃ γαAγβ in Ae,P SM H;

(ii) 1Aα ⊗A 1Aβ ≃ 1Aαβ in
Ae ,P S

M H;
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(iii) 1Aα ≃ 1A1 as Ae-modules if and only if α is in (U(S),H)-Inn(A); and

(iv) 1Aα ≃ 1A1 in Ae,P SM H if and only if α is in (U(S),H)-INN(A).

Proof. We can adapt the proof of [12, Lemma 3.3]. �

The Picard group Pic(S) of the commutative algebra S is the group of isomor-

phism classes of invertible S-modules; i.e. those S-modules M for which there ex-

ists an S-module N with M⊗S N ≃ S. The isomorphism class in Pic(S) represented

by an invertible S-module M will be denoted by [M]. A Poisson (S,H)-Hopf mod-

ule M is invertible if there exists a Poisson (S,H)-Hopf module N with M⊗S N ≃ S

as Poisson (S,H)-Hopf modules. The Picard group PicP ,H(S,H) is the group of

isomorphism classes of invertible Poisson (S,H)-Hopf modules. The isomorphism

class in PicP ,H(S,H) represented by an object M ∈ P SM H will be denoted by {M}.

Theorem 3.5. Let A be an Azumaya-Poisson (S,H)-Hopf algebra. Then there are

exact sequences of groups

1 → (U(S),H)-Inn(A) → (U(S),H)−AutS(A)
Ψ
→ Pic(S)

and
1 → (U(S),H)-INN(A) → (U(S),H)−AutS(A)

Φ
→ PicP ,H(S,H).

The homomorphisms Ψ and Φ are respectively defined by Ψ(α) = [Iα] and Φ(α) =
{Iα}, for every α in (U(S),H)-AutS(A), where Iα = (1Aα)

A.

Proof. Ψ is simply the restriction of the map

Ψ : AutS(A)→ Pic(S)

used in the original Rosenberg-Zelinsky exact sequence

1 → Inn(A)→ AutS(A)
Ψ
→ Pic(S)

to the subgroup (U(S),H)-AutS(A). So exactness of the first sequence is immedi-

ate. For the other sequence, the fact that Φ is a group homomorphism follows from

Lemma 3.5(ii) and the fact that GH is a category equivalence. Furthermore, if α
is in (U(S),H)-AutS(A), we will have Iα ≃ S if and only if 1Aα ≃ 1A1. Therefore,

KerΦ = H-INN(A). Exactness of the second sequence follows. �

3.3. Central Twists

In this subsection, U(S) is the enveloping algebra of the Lie algebra S. Let

(U(S),H)-Autk(S) be the group of H-colinear U(S)-linear k-algebra automorphisms

of S. We will show that there is an action of (U(S),H)-Autk(S) on the Brauer group

BP co(S,H).
For M ∈ P S,HM and τ ∈ (U(S),H)-Autk(S), let τM be equal to M as a right H-

comodule and U(S)-module but S-module structure given by s ∗m = τ−1(s)m for

all s ∈ S, m ∈ M. By [13], τM is a Poisson S-module. By [12], τM is an object of

SM H . τM is equal to M as a Lie S-module and as an H-comodule, and the relation

(8) is satisfied for M. Then τM ∈ P SM H .
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Lemma 3.6. Let M,N,P ∈ P SM H with M finitely generated as an S-module. If τ
is in (U(S),H)-Autk(S), then

(i) τHomS(M,N) and HomS(τM, τN) are isomorphic in P SM H;

(ii) τEndS(M) and EndS(τM) are isomorphic as algebras in P SM H;

(iii) P is an S-progenerator if and only if τP is an S-progenerator.

Proof. (i) τHomS(M,N) and HomS(τM, τN) are objects of P SM H . By [13], they

are isomorphic as Poisson S-modules. By [12], they are isomorphic as (S,H)-Hopf

modules, the result follows.

(ii) By (i), τEndS(M) and EndS(τM) are isomorphic in P SM H . By [13], they

are isomorphic as algebras in the category of Poisson S-modules. By [12], they are

isomorphic as algebras in the category of (S,H)-Hopf modules.

(iii) Since this statement only depends on the S-module structure of P, the result

follows from [5, Lemma 1(c)]. �

Definition 3.5. Let A be an algebra in P SM H . For any τ ∈ (U(S),H)-Autk(S), we

define τA to be equal to A as an H-comodule algebra and U(S)-module algebra,

but equal to τA as an S-module.

Lemma 3.7. Let τ ∈ H-Autk(S).

(i) If A is an algebra in P SM H , then τA is an algebra in P SM H .

(ii) If A is an Azumaya algebra in P SM H , then τA is an Azumaya algebra in

P SM H .

(iii) If A and B are algebras in P SM H , then τ(A⊗S B) is an algebra in P SM H and

τ(A⊗S B)≃ τA⊗S τB as algebras in P SM H .

Proof. (i) τA is an object of P SM H . By [12], τA is an algebra in SM H and an

algebra in S#U(S)M .

(ii). We can see from the definition of the action of S on τA that if A is S-

Azumaya, then τA is S-Azumaya [5, Lemma 1(d)]. The result follows from (i).

(iii). τ(A⊗S B) is an object of P SM H . By [12], τ(A⊗S B) is an (S,H)-Hopf al-

gebra and an (S,U(S))-algebra. Hence τ(A⊗S B) is a Poisson (S,H)-Hopf algebra.

By (i), τA and τB are Poisson (S,H)-Hopf algebras. So by Lemma 3.1(i), τA⊗S τB

is a Poisson (S,H)-Hopf algebra. By [12], τ(A⊗S B) and τA⊗S τB are isomorphic

as (S,H)-Hopf algebras and as (S,U(S))-algebras. �

Proposition 3.2. (U(S),H)-Autk(S) acts by automorphisms on BP co(S,H): the

action is given by τ.[A] = [τA], for any Azumaya algebra A in P SM H and τ ∈
(U(S),H)-Autk(S).

Proof. Let A and B be two equivalent Azumaya algebras in P SM H . Then there

exist lattices M and N in P SM H such that

A⊗S EndS(M)≃ B⊗S EndS(N)
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as algebras in P SM H . By Lemma 3.6 and Lemma 3.7 (iii), we have the following

isomorphisms of algebras in P SM H :

τA⊗S EndS(τM)≃ τA⊗SτEndS(M)

≃ τ(A⊗S EndS(M))

≃ τ(B⊗S EndS(N))

≃ τB⊗SτEndS(N)

≃ τB⊗SEndS(τN).

Therefore, τA and τB are Brauer equivalent Azumaya algebras in P SM H .

Let A and B be Azumaya algebras in P SM H . Then by Lemma 3.6 and Lemma

3.7 (iii), τ(A ⊗S B) ≃ τA⊗S τB as algebras in P SM H . So we have τ.([A][B]) =
(τ.[A])(τ.[B]).

Let A be an Azumaya algebra in P SM H . If τ,τ′ ∈ (U(S),H)-Autk(S), then by

[12, 6.4], τ(τ′A) and (ττ′)A are isomorphic as (S,H)-Hopf Azumaya algebras and as

(S,U(S))-Azumaya algebras. Since τ(τ′A) and (ττ′)A are objects of P SM H , they are

isomorphic as Azumaya-Poisson (S,H)-Hopf algebras. This means that τ.(τ′.A) =
(ττ′).A. It follows that the group (U(S),H)-Autk(S) acts on the group of these

classes, as required. �

4. SOME EXAMPLES OF BRAUER-CLIFFORD GROUPS

Example 4.1. When k is considered as a trivial Hopf algebra, BP co(S,k) is just

the Brauer group BP (S) of Azumaya-Poisson S-algebras studied in [13].

Example 4.2. Let H be a commutative Hopf algebra. We know that k is an H-

comodule Poisson algebra when k is considered as a Poisson algebra with a trivial

bracket and a trivial H-coaction. So we get the Brauer-Clifford group BP co(k,H).
This Brauer-Clifford group is exactly the Brauer group of Azumaya H-comodule

algebras BC(k,H) studied in [16].

Example 4.3. Let G be an affine algebraic group. By [19], a k-vector space M is

a rational G-module if it is a G-module, and for every m ∈ M, the translates of m

span a finite dimensional subspace N of M and the induced map G → Autk(N) is a

morphism of algebraic groups. A rational G-module algebra is an algebra S which

is a rational G-module such that

g.(ss′) = (g.s)(g.s′), g.1S = 1S ∀s,s′ ∈ S,g ∈ G.

If S is a rational G-module algebra, a k-vector space M is a rational (S,G)-module

if it is an S-module, a rational G-module, and

g(sm) = (g.s)(gm), ∀s ∈ S,m ∈ M,g ∈ G.

Let k[G] be the affine coordinate ring of G (it is a commutative Hopf algebra).

We recall that rational G-modules are k[G]-comodules with (right) coaction ρ :

M → M⊗k[G] characterized by the condition
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ρ(m) = m0 ⊗m1 ∈ M⊗k[G]⇔ g.m = m0m1(g), ∀g ∈ G.

Let S be a rational G-module Poisson algebra, that is, S is a Poisson algebra which

is also a commutative rational G-module algebra such that

g.{s,s′}= {g.s,g.s′}, ∀s,s′ ∈ S,g ∈ G.

Then S is a right k[G]-comodule algebra, and

{s,s′}0 ⊗{s,s′}1 = {s0,s
′
0}⊗ s1s′1, s,s′ ∈ S;

that is, S is a right k[G]-comodule Poisson algebra. Thus we have the Brauer-

Clifford group BP co(S,k[G]) of Azumaya-Poisson (S,k[G])-Hopf algebras.

The category of rational (S −G)-modules and the category of (S,k[G]) Hopf

modules are equivalent. We refer to [18], [19], [7] and [8] for further information

on rational actions of an algebraic group.

A rational Poisson (S,G)-module will be a rational left (S,G)-module M which

is also a Poisson S-module such that

g(s⋄m) = (g.s)⋄ (gm), s ∈ S,g ∈ G,m ∈ M.

It follows that S is a rational Poisson (S,G)-module. We denote by P S,GM the

category of rational Poisson (S,G)-modules: its morphisms are the Poisson S-

linear maps which are also G-linear. It is easy to see that (P S,GM ,⊗S,S) is a

symmetric monoidal category. In this category, we can define algebras, lattices,

Azumaya algebras and Brauer equivalent Azumaya algebras : we will call them re-

spectively, rational Poisson (S,G)-algebras, rational Poisson (S,G)-lattices, ratio-

nal Azumaya-Poisson (S,G)-algebras, and Brauer equivalent rational Azumaya-

Poisson (S,G)-algebras. Then we can define the Brauer-Clifford group BP (S,G)
of rational Azumaya-Poisson (S,G)-algebras.

We can show that the category of rational Poisson (S−G)-modules and the cat-

egory of Poisson (S,k[G]) Hopf modules are equivalent. It follows that the Brauer-

Clifford groups BP co(S,k[G]) and BP (S,G) are isomorphic.

Example 4.4. Let V be an affine Poisson variety over C. Then the coordinate ring

C[V ] of V is a Poisson algebra. Let G be an algebraic group acting morphically

on V via automorphisms of Poisson varieties. There is an induced action of G on

C[V ] by Poisson automorphisms. If C[G] is the coordinate ring of G, we have a

C[G]-coaction on C[V ]. So we get the Brauer-Clifford group BP co(C[V ],C[G]).

Example 4.5. Let S be an H-comodule Poisson algebra, and ZP (S) the Poisson-

center of S. By Lemma 1.3, we get the Brauer-Clifford group BP co(ZP (S),H).

Example 4.6. Let K and L be two commutative Hopf k-algebras. Then H = K×L

is a commutative Hopf algebra over k×k (with component-wise operations). Let

M be a vector space over k. Then M can be seen as a left k× k-module via

the first projection k× k −→ k;(λ,λ′) 7→ λ. If M is a k-comodule (resp. an L-

comodule, an H-comodule), we denote by m 7→ m0 ⊗m1 (resp. m 7→ m(0)⊗m(1),
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m 7→ m[0]⊗m[1]) its comodule structure. Let S be a k-comodule Poisson algebra

and T be an L-comodule Poisson algebra. Then S×T is an H-comodule Poisson

algebra : (λ,λ′)(s, t) = (λs,λ′t), (k, l).(s, t) = (k.s, l.t) and (s, t)[0] ⊗R (s, t)[1] =
(s0, t(0))⊗R (s1, t(1)), ([s, t], [s

′
, t ′]) =([s,s’],tt’)+(ss′ , [t, t ′]) for λ,λ′ ∈ k, k ∈ K, l ∈

L,s,s′ ∈ S and t, t ′ ∈ T . Let S be a k-comodule Poisson algebra and T an L-

comodule Poisson algebra. Thus we can consider the categories P SM K , P T M L,

P (S×T )M
H .

We have three Brauer groups BP co(S,K), BP co(T,L) and BP co(S×T,H). We want

to establish some relations between these Brauer groups. Every object M of the

category P SM K is an object of P (S×T )M
H : (s, t)m = sm, (k, l).m = km, [s, t]⋄m =

s ⋄m, and m[0]⊗m[1] = m0 ⊗ (m1,0L) for s ∈ S, t ∈ T and m ∈ M. Every object

M of the category P T M L is an object of P (S×T)M
H : (s, t)m = tm, (k, l).m = lm,

[s, t]⋄m = t ⋄m and m[0]⊗m[1] = m(0)⊗ (0K ,m(1)).

For every M in P SM K , we have EndS(M) =EndS×T (M). For every M in P T M L,

we have EndT (M) = EndS×T (M).
Every S-progenerator object in P SM K is an S×T -progenerator object in P (S×T)M

H .

Likewise, every T -progenerator object in P T M L is an S×T -progenerator object in

P (S×T )M
H . Let A be a Poisson (S,K)-Hopf algebra (resp. a Poisson (T,L)-Hopf

algebra). Then A is a Poisson (S×T,H)-Hopf algebra. If Ao is the opposite alge-

bra of A as a Poisson (S,K)-Hopf algebra, then Ao is the opposite algebra of A as

a Poisson (S×T,H)-Hopf algebra. Likewise, if Ao is the opposite algebra of A as

a Poisson (T,L)-Hopf algebra, then Ao is the opposite algebra of A as a Poisson

(S× T,H)-Hopf algebra. Azumaya-Poisson (S,K)-Hopf algebras and Azumaya-

Poisson (T,L)-Hopf algebras are Azumaya-Poisson (S×T,H)-Hopf algebras.

We have injective group homomorphisms BP co(S,K) →֒ BP co(S×T,H) and

BP co(T,L) →֒ BP co(S×T,H).
If T = k as a trivial L-comodule Poisson algebra, we deduce an injective group

homomorphism BP co(S,K) →֒ BP co(S×T,H).
If S = k as a trivial k-comodule Poisson algebra, we deduce an injective group

homomorphism BP co(T,L) →֒ BP co(S×T,H).
Let A be an (S,K)-comodule Poisson algebra and B a (T,L)-comodule Poisson

algebra or let A be a (T,L)-comodule Poisson algebra and B an (S,K)-comodule

Poisson algebra. Then the classes of A and B in BP co(S×T,H) commute. Further-

more if A and B are Azumaya, then A⊗S×T B is an Azumaya-Poisson (S×T,H)-
Hopf algebra. We have a well-defined injective group homomorphism

BP co(S,K)×BP co(T,L)→ BP co(S×T,H);([A], [B])→ [A⊗S×T B].

We can show that the intersection of BP co(S,K) and BP co(T,L) in BP co(S×T,H)
is trivial.

We can apply this example to the following situation : Let G and G′ be two

abelian finite groups and k a field. Set H = Maps(G
⊎

G′
,k) the set of all maps
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from the disjoint union G
⊎

G′ of G and G′ to k. Then H = K × L, where K =
Maps(G,k) and L = Maps(G′

,k). We claim that K and L are commutative (co-

commutative) Hopf algebras over k and that H = K ×L is a commutative (cocom-

mutative) Hopf algebra over k×k (with component-wise operations).

Example 4.7. We refer to [21] for further information on localization of Poisson

algebras. Let S be an H-comodule Poisson algebra, T a multiplicative subset of S

stable under the H-coaction. Then the localization T−1S of S with respect to T is

an H-comodule Poisson algebra:

{st−1
,s′t ′−1}= t−2t ′−2

(

tt ′{s s′}− ts′{s t ′}− st ′{t s′}+ ss′{t t ′}
)

,

the H-coaction is defined by (st−1)0 ⊗ (st−1)1 = (s0t0
−1)⊗ (s1t1) for all t, t ′ ∈ T

and s,s′ ∈ S,m ∈ M.

If M is a Poisson (S,H)-Hopf module, then the localization T−1M of M with

respect to T is a Poisson (T−1S,H)-Hopf module: the Lie T−1S-action is given by

(st−1)⋄ (mt ′−1) = t−2t ′−2
(

tt ′(s⋄m)− tm{s t ′}− (st ′)(t ⋄ s′)+ sm{t t ′}
)

,

the coaction is defined by (mt−1)0 ⊗ (mt−1)1 = (m0t0
−1)⊗ (m1t1), for all t, t ′ ∈ T ,

s ∈ S,m ∈ M. Let A be an Azumaya-Poisson (S,H)-Hopf algebra. Since A is an

S-progenerator, it is finitely generated projective as an S-module. So it is finitely

presented as an S-module. Using [14, Remark 2.2], we can show that T−1A is a

Poisson (T−1S,H)-Hopf algebra. It is well known that if A is an S-progenerator

as an S-module, then T−1A is a T−1S-progenerator as a T−1S-module. It follows

that T−1A is an Azumaya-Poisson (T−1S,H)-Hopf algebra. Furthermore, since

Ao is an Azumaya-Poisson (S,H)-Hopf algebra, T−1Ao is an Azumaya-Poisson

(T−1S,H)-Hopf algebra. Clearly, we have T−1Ao = (T−1A)o. Thus we have a

well-defined group homomorphism

BP co(S,H)→ BP co(T−1S,H), [A] 7→ [T−1A].
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