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ON A NEW CLASS RELATED TO THE SUBCLASS OF

CLOSE-TO-CONVEX FUNCTIONS

GAGANDEEP SINGH AND GURCHARANJIT SINGH

ABSTRACT. This paper is concerned with a generalized class of analytic func-

tions which is related to the subclass of close-to-convex functions in the open

unit disc E = {z : |z|< 1}. The coefficient estimates, distortion theorem, growth

theorem, argument theorem, radius of convexity, Fekete-Szegö inequality and

inclusion relation for the functions belonging to this class have been established.

The results so obtained will provide a new direction in the study of certain new

subclasses of analytic functions.

1. INTRODUCTION

Let U denote the class of Schwarzian functions of the form w(z) = ∑∞
k=1 ckzk,

which are analytic in the open unit disc E = {z : |z| < 1} and with the conditions

w(0) = 0, |w(z)|< 1. Also |c1| ≤ 1 and |c2| ≤ 1−|c1|2. For two analytic functions

f and g in E , we say that f is subordinate to g, if a Schwarzian function w(z) ∈ U

exists, such that f (z) = g(w(z)) and this is denoted by f ≺ g. If g is univalent in

E , then f ≺ g is equivalent to f (0) = g(0) and f (E) ⊂ g(E). Littlewood [5] and

Reade [10] introduced the concept of subordination.

The class of functions f which are analytic in E and normalized by the condition

f (0) = f ′(0)− 1 = 0 is denoted by A and has the Taylor series expansion of the

form

f (z) = z+
∞

∑
k=2

akzk
. (1.1)

The well known classes of univalent, starlike and convex functions are denoted by

S , S ∗ and K respectively.

A function f ∈ A is said to be close-to-convex if there exists a starlike function

g such that Re

(

z f ′(z)
g(z)

)

> 0. The class of close-to-convex functions is denoted by

C and was introduced by Kaplan [3]. For −1 ≤ D <C ≤ 1, Mehrok [8] introduced

and studied the subclass of close-to-convex functions C (C,D) which consists of
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the functions f ∈ A with the condition that
z f ′(z)
g(z)

≺ 1+Cz

1+Dz
, where the condition

holds for a starlike function g. Obviously C (1,−1) ≡ C .

Further Abdel Gawad and Thomas [1] studied the class C1 of functions f ∈ A

satisfying the condition Re

(

z f ′(z)
h(z)

)

> 0, where h is a convex function. Clearly C1

is a subclass of close-to-convex functions. Following this, Mehrok and Singh [9]

studied the class C1(C,D) consisting of the functions f ∈ A along with the condi-

tion that
z f ′(z)
h(z)

≺ 1+Cz

1+Dz
,h ∈ K . Particularly C1(1,−1) ≡ C1. Various properties

related to other subclasses of analytic functions were studied recently by Matelje-

vic et al. [7]. Stelin and Selvaraj [13] studied the class K ′
C(α)(α ≥ 0) consisting of

the functions f ∈ A satisfying the following condition:

Re

(

f ′(z)
h′(z)

)

> α,h ∈ C1.

As a generalization, for −1 ≤ D <C ≤ 1, Singh and Singh [11] introduced the

class K ′
C(C,D) containing the functions f ∈ A which satisfy the condition

f ′(z)
h′(z)

≺ 1+Cz

1+Dz
,h ∈ C1.

For C = 1−2α,D =−1, the class K ′
C(C,D) agrees with the class K ′

C(α).
Further, for −1 ≤ D ≤ B < A ≤ C ≤ 1, Singh and Singh [12] studied the class

K ′
C(A,B;C,D) consisting of the functions f ∈ A satisfying the condition

f ′(z)
h′(z)

≺ 1+Cz

1+Dz
,h ∈ C1(A,B),

In particular, K ′
C(1,−1;C,D) ≡ K ′

C(C,D).
Getting motivation from the above work, now we define the following class

which is the subject of study in this paper;

Definition 1.1. For −1 ≤ D ≤ B < A ≤C ≤ 1, K ∗
C (A,B;C,D) denotes the class of

functions f ∈ A satisfying the condition

f ′(z)
g′(z)

≺ 1+Cz

1+Dz
,

where

g(z) = z+
∞

∑
k=2

dkzk ∈ C (A,B).

The following observations are obvious:

(i) K ∗
C (1,−1;C,D) ≡ K ∗

C (C,D).
(ii) K ∗

C (1,−1;C,D) ≡ K ∗
C (C,D).

(iii) K ∗
C (1,−1;C,D) ≡ K ∗

C (C,D).
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The present investigation deals with the study of the class K ∗
C (A,B;C,D). We

establish the coefficient estimates, distortion theorem, growth theorem, argument

theorem, radius of convexity, Fekete-Szegö inequality and inclusion relation for

the functions in this class. This paper will motivate the other researchers for the

further study in this direction.

2. PRELIMINARY RESULTS

Lemma 2.1. [2] If P(z) =
1+Cw(z)

1+Dw(z)
= 1+∑∞

k=1 pkzk, then

|pn| ≤ (C−D),n ≥ 1.

The bound is sharp for the function Pn(z) =
1+Cδzn

1+Dδzn
, |δ|= 1.

Lemma 2.2. [8] If g(z) = z+∑∞
k=2 dkzk ∈ C (A,B), then,

|dn| ≤ 1+
(n−1)(A−B)

2
.

Equality is attained for g′(z) =
1

(1−δ1z)2

(

1+Aδ2zn−1

1+Bδ2zn−1

)

, |δ1|= 1, |δ2|= 1.

Lemma 2.3. [8] If g(z) = z+∑∞
k=2 dkzk ∈ C (A,B), then for |z| = r,0 < r < 1, we

have
1−Ar

(1−Br)(1+ r)2
≤ |g′(z)| ≤ 1+Ar

(1+Br)(1− r)2
.

Lemma 2.4. [8] If g(z) = z+∑∞
k=2 dkzk ∈ C (A,B), then for |z| = r,0 < r < 1, we

have

|arg(g′(z))| ≤ 2sin−1r+ sin−1 (A−B)r

1−ABr2
.

Lemma 2.5. [8] If g(z) = z+∑∞
k=2 dkzk ∈ C (A,B), then

|d2| ≤ 1+
(A−B)

2
,

|d3| ≤ 1+
(A−B)

3
(2+ |B|)

and

|d3 −µd2
2 | ≤

1

3
max{1, |3µ−3|}+ (A−B)

3

[

|2+3µ|+max

{

1,B+
3(A−B)µ

4

}]

.

Lemma 2.6. [4] If w(z) = ∑∞
k=1 ckzk ∈ U, then for µ complex,

|c2 −µc2
1| ≤ max{1, |µ|}.
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Lemma 2.7. [6] Let −1 ≤ D2 ≤ D1 <C1 ≤C2 ≤ 1. Then

1+C1z

1+D1z
≺ 1+C2z

1+D2z
.

3. MAIN RESULTS

Theorem 3.1. If f (z) ∈ K ∗
C (A,B;C,D), then

|an| ≤ 1+
(n−1)

2

[

(A−B)+ (C−D)+
(A−B)(C−D)(n−2)

3

]

. (3.1)

The bound is sharp.

Proof. By using the Principle of subordination in Definition 1.1, we have

f ′(z) = g′(z)

(

1+Cw(z)

1+Dw(z)

)

, (3.2)

where w ∈ U is a Schwarzian function.

After expanding (3.2), it yields

1+2a2z+3a3z2 + ...+nanzn−1 + ...

= (1+2d2z+3d3z2 + ...+ndnzn−1 + ...)(1+ p1z+ p2z2 + ...+ pn−1zn−1 + ...).
(3.3)

On equating the coefficients of zn−1 on both sides of (3.3), we obtain

nan = ndn + p1(n−1)dn−1 + p2(n−2)dn−2...+2pn−2d2 + pn−1. (3.4)

Applying the triangle inequality in (3.4), it yields

n|an| ≤ n|dn|+(n−1)|p1||dn−1|+(n−2)|p2||dn−2|+ ...+2|pn−2||d2|+ |pn−1|.
Again using Lemma 2.1, the above inequality reduces to

n|an| ≤ n|dn|+(C−D) [(n−1)|dn−1|+(n−2)|dn−2|...+2|d2|+1] . (3.5)

Making use of Lemma 2.2 in (3.5), the result (3.1) can be easily obtained.

For n ≥ 2, equality in (3.1) holds for the function fn(z) defined as

f ′n(z) =
1

(1−δ1z)2

(

1+Aδ1zn−1

1+Bδ2zn−1

)(

1+Cδ2zn−1

1+Dδ2zn−1

)

, |δ1|= 1, |δ2|= 1. (3.6)

�

For A = 1,B =−1, Theorem 3.1 gives the following result:

Corollary 3.1. If f (z) ∈ K ∗
C (C,D), then,

|an| ≤ n+
(n−1)(2n−1)(C−D)

6
.

Substituting A = 1,B = −1,C = 1− 2α,D = −1, Theorem 3.1 agrees with the

result given below:
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Corollary 3.2. If f (z) ∈ K ∗
C (α), then,

|an| ≤ n+
(1−α)(n−1)(2n−1)

3
.

Substituting A = 1,B =−1,C = 1,D =−1 in Theorem 3.1, it yields the follow-

ing result:

Corollary 3.3. If f (z) ∈ K ∗
C , then,

|an| ≤
2n2 +1

3
.

Theorem 3.2. If f (z) ∈ K ∗
C (A,B;C,D), then for |z|= r,0 < r < 1, we have

(1−Cr)(1−Ar)

(1−Dr)(1−Br)(1+ r)2
≤ | f ′(z)| ≤ (1+Cr)(1+Ar)

(1+Dr)(1+Br)(1− r)2
; (3.7)

∫ r

0

(1−Ct)(1−At)

(1−Dt)(1−Bt)(1+ t)2
dt ≤ | f (z)| ≤

∫ r

0

(1+Ct)(1+At)

(1+Dt)(1+Bt)(1− t)2
dt. (3.8)

These estimates are sharp.

Proof. From (3.2), we have

| f ′(z)|= |g′(z)|
∣

∣

∣

∣

1+Cw(z)

1+Dw(z)

∣

∣

∣

∣

. (3.9)

It can be easily proved that the transformation

f ′(z)
g′(z)

=
1+Cw(z)

1+Dw(z)

maps |w(z)| ≤ r onto the circle
∣

∣

∣

∣

f ′(z)
g′(z)

− 1−CDr2

1−D2r2

∣

∣

∣

∣

≤ (C−D)r

(1−D2r2)
, |z|= r.

This implies that

1−Cr

1−Dr
≤

∣

∣

∣

∣

1+Cw(z)

1+Dw(z)

∣

∣

∣

∣

≤ 1+Cr

1+Dr
. (3.10)

Using Lemma 2.3 and (3.10) in (3.9), the result (3.7) is obvious. Again, on inte-

grating (3.7) with limits from 0 to r, the result (3.8) can be easily obtained.

Sharpness follows for the function defined in (3.6).

For A = 1,B = −1, Theorem 3.2 gives the following result: Corollary 3.4 If

f (z) ∈ K ∗
C (C,D), then

(1−Cr)(1− r)

(1−Dr)(1+ r)3
≤ | f ′(z)| ≤ (1+Cr)(1+ r)

(1+Dr)(1− r)3
;

∫ r

0

(1−Ct)(1− t)

(1−Dt)(1+ t)3
dt ≤ | f (z)| ≤

∫ r

0

(1+Ct)(1+ t)

(1+Dt)(1− t)3
dt. �
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Substituting A = 1,B = −1,C = 1− 2α,D = −1, Theorem 3.2 agrees with the

result given below:

Corollary 3.5. If f (z) ∈ K ∗
C (α), then,

(1− (1−2α)r)(1− r)

(1+ r)4
≤ | f ′(z)| ≤ (1+(1−2α)r)(1+ r)

(1− r)4
;

∫ r

0

(1− (1−2α)t)(1− t)

(1+ t)4
dt ≤ | f (z)| ≤

∫ r

0

(1+(1−2α)t)(1+ t)

(1− t)4
dt.

On Substituting A = 1,B =−1,C = 1,D =−1, Theorem 3.2 gives the following

result:

Corollary 3.6. If f (z) ∈ K ∗
C , then,

(1− r)2

(1+ r)4
≤ | f ′(z)| ≤ (1+ r)2

(1− r)4
;

∫ r

0

(1− t)2

(1+ t)4
dt ≤ | f (z)| ≤

∫ r

0

(1+ t)2

(1− t)4
dt.

Theorem 3.3. If f (z) ∈ K ∗
C (A,B;C,D), then

∣

∣arg( f ′(z))
∣

∣ ≤ 2sin−1r+ sin−1

(

(C−D)r

1−CDr2

)

+ sin−1

(

(A−B)r

1−ABr2

)

. (3.11)

The estimate is sharp.

Proof. (3.2) can be expressed as

f ′(z) = g′(z)

(

1+Cw(z)

1+Dw(z)

)

.

Therefore, we have

∣

∣arg f ′(z)
∣

∣ ≤
∣

∣

∣

∣

arg

(

1+Cw(z)

1+Dw(z)

)
∣

∣

∣

∣

+
∣

∣argg′(z)
∣

∣ . (3.12)

As in Theorem 2, it is clear that
∣

∣

∣

∣

f ′(z)
g′(z)

− 1−CDr2

1−D2r2

∣

∣

∣

∣

≤ (C−D)r

(1−D2r2)
.

So, it yields
∣

∣

∣

∣

arg

(

1+Cw(z)

1+Dw(z)

)∣

∣

∣

∣

≤ sin−1

(

(C−D)r

1−CDr2

)

. (3.13)

By using Lemma 2.4 and inequality (3.13) in (3.12), the result (3.11) is obvious.

�
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The result is sharp for the function defined in (3.6), where

δ1 =
r

z

[

−(C+D)r+ i((1−C2r2)(1−D2r2))
1
2

(1+CDr2)

]

,δ2 =
r

z

[

−Dr+ i(1−D2r2)
1
2

]

.

For A = 1,B =−1, Theorem 3.3 gives the following result:

Corollary 3.7. If f (z) ∈ K ∗
C (C,D), then

∣

∣arg f ′(z)
∣

∣≤ 2sin−1r+ sin−1

(

(C−D)r

1−CDr2

)

+ sin−1

(

2r

1+ r2

)

.

Substituting A = 1,B = −1,C = 1− 2α,D = −1, Theorem 3.3 agrees with the

result given below:

Corollary 3.8. If f (z) ∈ K ∗
C (α), then,

∣

∣arg f ′(z)
∣

∣ ≤ 2sin−1r+ sin−1

(

(2−2α)r

1+(1−2α)r2

)

+ sin−1

(

2r

1+ r2

)

.

For A = 1,B = −1,C = 1,D = −1, Theorem 3.3 agrees with the result given

below:

Corollary 3.9. If f (z) ∈ K ∗
C , then,

∣

∣arg f ′(z)
∣

∣ ≤ 2sin−1r+2sin−1

(

2r

1+ r2

)

.

Theorem 3.4. If f (z) ∈ K ∗
C (A,B;C,D), then f (z) is convex in |z| < r0 where r0 is

the smallest positive root of

1+[2D−2A−1]r+[2B−2C+AB−AC+BC−3AD+CD−BD]r2

+(−AB+3BC+BD+2ABD−CD−2ACD+AC−AD)r3

+(−2ABC+2BCD+ABCD)r4−ABCDr5 = 0 (3.14)

in the interval (0,1).

Proof. As f (z) ∈ K ∗
C (A,B;C,D), we have

f ′(z) = g′(z)

(

1+Cw(z)

1+Dw(z)

)

= g′(z)P(z).

After differentiating it logarithmically, we get

1+
z f ′′(z)
f ′(z)

= 1+
zg′′(z)
g′(z)

+
zP′(z)
P(z)

. (3.15)

Also from (3.10), we have
∣

∣

∣

∣

1+Cw(z)

1+Dw(z)

∣

∣

∣

∣

= |P(z)| ≤ 1+Cr

1+Dr
,
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which implies
∣

∣

∣

∣

zP′(z)
P(z)

∣

∣

∣

∣

≤ r(C−D)

(1+Cr)(1+Dr)
. (3.16)

f ∈ C (A,B), so as proved by Mehrok [8], we have

Re

(

1+
zg′′(z)
g′(z)

)

≥ 1− (1+2A)r+B(2+A)r2−ABr3

(1+ r)(1−Ar)(1−Br)
. (3.17)

(3.15) yields,

Re

(

1+
z f ′′(z)
f ′(z)

)

≥ Re

(

1+
zg′′(z)
g′(z)

)

−
∣

∣

∣

∣

zP′(z)
P(z)

∣

∣

∣

∣

. (3.18)

Therefore using inequalities (3.16) and (3.17), (3.18)gives

Re

(

1+
z f ′′(z)
f ′(z)

)

≥ 1− (1+2A)r+B(2+A)r2−ABr3

(1+ r)(1−Ar)(1−Br)
− r(C−D)

(1+Cr)(1+Dr)
.

After simplification, the above inequality can be expressed as

Re

(

1+
z f ′′(z)
f ′(z)

)

≥ 1+[2D−A]r+[CD−AC−AD+BC−BD]r2 −ACDr3

(1−Br)(1+Cr)(1+Dr)
.

Hence f (z) is convex in |z|< r0 where r0 is the smallest positive root of

1+[2D−2A−1]r+[2B−2C+AB−AC+BC−3AD+CD−BD]r2

+(−AB+3BC+BD+2ABD−CD−2ACD+AC−AD)r3

+(−2ABC+2BCD+ABCD)r4−ABCDr5 = 0 in the interval (0,1).

Sharpness follows for the function fn(z) defined in (3.6). �

For A = 1,B =−1, Theorem 3.4 gives the following result:

Corollary 3.10. If f (z) ∈ K ∗
C (C,D), then f (z) is convex in |z|< r1 where r1 is the

smallest positive root of 1+ [2D− 3]r+ [−4C− 2D+CD− 3]r2 +(−2C− 4D−
3CD+1)r3 +(2C−3CD)r4 +CDr5 = 0 in the interval (0,1).

Substituting A = 1,B = −1,C = 1− 2α,D = −1, Theorem 3.4 agrees with the

result given below:

Corollary 3.11. If f (z) ∈ K ∗
C (α), then f (z) is convex in |z| < r2 where r2 is the

smallest positive root of

1−5r+2(−3+5α)r2 +2(3−α)r3 +5(1−2α)r4 − (1−2α)r5 = 0

in the interval (0,1).
Substituting A = 1,B =−1,C = 1,D =−1, Theorem 3.4 agrees with the result

given below:

Corollary 3.12. If f (z) ∈ K ∗
C , then f (z) is convex in |z|< r3 where r3 = 3−2

√
2.
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Theorem 3.5. For f ∈ K ∗
C (A,B;C,D),

|a2| ≤ 1+
1

2
[(A−B)+ (C−D)] , (3.19)

|a3| ≤ 1+
(A−B)

3
[2+ |B|+(C−D)]+ (C−D) (3.20)

and for µ complex,

|a3 −µa2
2| ≤ 1

3
max{1, |3µ−3|}+ (A−B)

3

[

|2+3µ|+max
{

1,B+ 3(A−B)µ
4

}]

+
(C−D)

3

[(

1+
(A−B)

2

)

|2−3µ|+max

{

1,D+
3(C−D)µ

4

}]

. (3.21)

Proof. Expanding (3.2), gives

1+2a2z+3a3z2 + ...+nanzn−1 + ...

=(1+2d2z+3d3z2+ ...+ndnzn−1+ ...)(1+(C−D)c1z+(C−D)[c2−Dc2
1]z

2+ ...).
(3.22)

Equating coefficients of z and z2 in (3.22), it yields

a2 = b2 +
(C−D)

2
c1, (3.23)

and

a3 = b3 +
2

3
(C−D)b2c1 +

(C−D)

3

[

c2 −Dc2
1

]

. (3.24)

After applying the triangle inequality, (3.23) and (3.24) reduce respectively to

|a2| ≤ |b2|+
(C−D)

2
|c1|, (3.25)

and

|a3| ≤ |b3|+
2

3
(C−D)|b2||c1|+

(C−D)

3

∣

∣c2 −Dc2
1

∣

∣ . (3.26)

Using |c1| ≤ 1 and Lemma 2.5, the result (3.19) can be easily obtained from (3.25).

Again applying Lemma 2.5, Lemma 2.6 and the inequality |c1| ≤ 1 , the result

(3.20) can be derived from (3.25).

From (3.23) and (3.24), we obtain |a3−µa2
2| ≤ |b3−µb2

2|+(C−D)|b2||c1||2
3
−µ|

+
(C−D)

3

∣

∣

∣

∣

c2 −
{

D+
3(C−D)µ

4

}

c2
1

]

. (3.27)

Using the inequality |c1| ≤ 1, and applying Lemma 2.5, Lemma 2.6, the result

(3.21) can be easily obtained from (3.27). �

Theorem 3.6. If −1 ≤ D2 ≤ D1 <C1 ≤C2 ≤ 1, then

K
∗

C (A,B;C1,D1)⊂ K
∗

C (A,B;C2,D2).

Proof. As K ∗
C (A,B;C1,D1),
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f ′(z)
g′(z)

≺ 1+C1z

1+D1z
.

As −1 ≤ D2 ≤ D1 <C1 ≤C2 ≤ 1, by Lemma 2.7, we have

f ′(z)
g′(z)

≺ 1+C1z

1+D1z
≺ 1+C2z

1+D2z
,

which proves the desired result. �
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