# ON A NEW CLASS RELATED TO THE SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS 

GAGANDEEP SINGH AND GURCHARANJIT SINGH


#### Abstract

This paper is concerned with a generalized class of analytic functions which is related to the subclass of close-to-convex functions in the open unit disc $E=\{z:|z|<1\}$. The coefficient estimates, distortion theorem, growth theorem, argument theorem, radius of convexity, Fekete-Szegö inequality and inclusion relation for the functions belonging to this class have been established. The results so obtained will provide a new direction in the study of certain new subclasses of analytic functions.


## 1. Introduction

Let $\mathcal{U}$ denote the class of Schwarzian functions of the form $w(z)=\sum_{k=1}^{\infty} c_{k} z^{k}$, which are analytic in the open unit disc $E=\{z:|z|<1\}$ and with the conditions $w(0)=0,|w(z)|<1$. Also $\left|c_{1}\right| \leq 1$ and $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$. For two analytic functions $f$ and $g$ in $E$, we say that $f$ is subordinate to $g$, if a Schwarzian function $w(z) \in \mathcal{U}$ exists, such that $f(z)=g(w(z))$ and this is denoted by $f \prec g$. If $g$ is univalent in $E$, then $f \prec g$ is equivalent to $f(0)=g(0)$ and $f(E) \subset g(E)$. Littlewood [5] and Reade [10] introduced the concept of subordination.

The class of functions $f$ which are analytic in $E$ and normalized by the condition $f(0)=f^{\prime}(0)-1=0$ is denoted by $\mathcal{A}$ and has the Taylor series expansion of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

The well known classes of univalent, starlike and convex functions are denoted by $\mathcal{S}, \mathcal{S}^{*}$ and $\mathcal{K}$ respectively.

A function $f \in \mathscr{A}$ is said to be close-to-convex if there exists a starlike function $g$ such that $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0$. The class of close-to-convex functions is denoted by $\mathcal{C}$ and was introduced by Kaplan [3]. For $-1 \leq D<C \leq 1$, Mehrok [8] introduced and studied the subclass of close-to-convex functions $\mathcal{C}(C, D)$ which consists of

[^0]the functions $f \in \mathcal{A}$ with the condition that $\frac{z f^{\prime}(z)}{g(z)} \prec \frac{1+C z}{1+D z}$, where the condition holds for a starlike function $g$. Obviously $\mathcal{C}(1,-1) \equiv \mathcal{C}$.

Further Abdel Gawad and Thomas [1] studied the class $\mathcal{C}_{1}$ of functions $f \in \mathcal{A}$ satisfying the condition $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{h(z)}\right)>0$, where $h$ is a convex function. Clearly $\mathcal{C}_{1}$ is a subclass of close-to-convex functions. Following this, Mehrok and Singh [9] studied the class $\mathcal{C}_{1}(C, D)$ consisting of the functions $f \in \mathcal{A}$ along with the condition that $\frac{z f^{\prime}(z)}{h(z)} \prec \frac{1+C z}{1+D z}, h \in \mathcal{K}$. Particularly $\mathcal{C}_{1}(1,-1) \equiv \mathcal{C}_{1}$. Various properties related to other subclasses of analytic functions were studied recently by Mateljevic et al. [7]. Stelin and Selvaraj [13] studied the class $K_{\epsilon}^{\prime}(\alpha)(\alpha \geq 0)$ consisting of the functions $f \in \mathcal{A}$ satisfying the following condition:

$$
\operatorname{Re}\left(\frac{f^{\prime}(z)}{h^{\prime}(z)}\right)>\alpha, h \in \mathcal{C}_{1} .
$$

As a generalization, for $-1 \leq D<C \leq 1$, Singh and Singh [11] introduced the class $\mathcal{K}_{\epsilon}^{\prime}(C, D)$ containing the functions $f \in \mathcal{A}$ which satisfy the condition

$$
\frac{f^{\prime}(z)}{h^{\prime}(z)} \prec \frac{1+C z}{1+D z}, h \in \mathcal{C}_{1} .
$$

For $C=1-2 \alpha, D=-1$, the class $\mathcal{K}_{C}^{\prime}(C, D)$ agrees with the class $\mathcal{K}_{C}^{\prime}(\alpha)$.
Further, for $-1 \leq D \leq B<A \leq C \leq 1$, Singh and Singh [12] studied the class $\mathcal{K}_{\epsilon}^{\prime}(A, B ; C, D)$ consisting of the functions $f \in \mathcal{A}$ satisfying the condition

$$
\frac{f^{\prime}(z)}{h^{\prime}(z)} \prec \frac{1+C z}{1+D z}, h \in \mathcal{C}_{1}(A, B),
$$

In particular, $\mathcal{K}_{C}^{\prime}(1,-1 ; C, D) \equiv \mathcal{K}_{\epsilon}^{\prime}(C, D)$.
Getting motivation from the above work, now we define the following class which is the subject of study in this paper;
Definition 1.1. For $-1 \leq D \leq B<A \leq C \leq 1, \mathcal{K}_{\epsilon}^{*}(A, B ; C, D)$ denotes the class of functions $f \in \mathcal{A}$ satisfying the condition

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)} \prec \frac{1+C z}{1+D z},
$$

where

$$
g(z)=z+\sum_{k=2}^{\infty} d_{k} z^{k} \in \mathcal{C}(A, B)
$$

The following observations are obvious:
(i) $\mathcal{K}_{\epsilon}^{*}(1,-1 ; C, D) \equiv \mathcal{K}_{\epsilon}^{*}(C, D)$.
(ii) $\mathcal{K}_{\epsilon}^{*}(1,-1 ; C, D) \equiv \mathcal{K}_{C}^{*}(C, D)$.
(iii) $\mathcal{K}_{\epsilon}^{*}(1,-1 ; C, D) \equiv \mathcal{K}_{\epsilon}^{*}(C, D)$.

The present investigation deals with the study of the class $\mathcal{K}_{\epsilon}^{*}(A, B ; C, D)$. We establish the coefficient estimates, distortion theorem, growth theorem, argument theorem, radius of convexity, Fekete-Szegö inequality and inclusion relation for the functions in this class. This paper will motivate the other researchers for the further study in this direction.

## 2. Preliminary Results

Lemma 2.1. [2] If $P(z)=\frac{1+C w(z)}{1+D w(z)}=1+\sum_{k=1}^{\infty} p_{k} z^{k}$, then

$$
\left|p_{n}\right| \leq(C-D), n \geq 1 .
$$

The bound is sharp for the function $P_{n}(z)=\frac{1+C \delta z^{n}}{1+D \delta z^{n}},|\delta|=1$.
Lemma 2.2. [8] If $g(z)=z+\sum_{k=2}^{\infty} d_{k} z^{k} \in \mathcal{C}(A, B)$, then,

$$
\left|d_{n}\right| \leq 1+\frac{(n-1)(A-B)}{2} .
$$

Equality is attained for $g^{\prime}(z)=\frac{1}{\left(1-\delta_{1} z\right)^{2}}\left(\frac{1+A \delta_{2} z^{n-1}}{1+B \delta_{2} z^{n-1}}\right),\left|\delta_{1}\right|=1,\left|\delta_{2}\right|=1$.
Lemma 2.3. [8] If $g(z)=z+\sum_{k=2}^{\infty} d_{k} z^{k} \in \mathcal{C}(A, B)$, then for $|z|=r, 0<r<1$, we have

$$
\frac{1-A r}{(1-B r)(1+r)^{2}} \leq\left|g^{\prime}(z)\right| \leq \frac{1+A r}{(1+B r)(1-r)^{2}} .
$$

Lemma 2.4. [8] If $g(z)=z+\sum_{k=2}^{\infty} d_{k} z^{k} \in \mathcal{C}(A, B)$, then for $|z|=r, 0<r<1$, we have

$$
\left|\arg \left(g^{\prime}(z)\right)\right| \leq 2 \sin ^{-1} r+\sin ^{-1} \frac{(A-B) r}{1-A B r^{2}} .
$$

Lemma 2.5. [8] If $g(z)=z+\sum_{k=2}^{\infty} d_{k} z^{k} \in \mathcal{C}(A, B)$, then

$$
\begin{gathered}
\left|d_{2}\right| \leq 1+\frac{(A-B)}{2}, \\
\left|d_{3}\right| \leq 1+\frac{(A-B)}{3}(2+|B|)
\end{gathered}
$$

and

$$
\left|d_{3}-\mu d_{2}^{2}\right| \leq \frac{1}{3} \max \{1,|3 \mu-3|\}+\frac{(A-B)}{3}\left[|2+3 \mu|+\max \left\{1, B+\frac{3(A-B) \mu}{4}\right\}\right] .
$$

Lemma 2.6. [4] If $w(z)=\sum_{k=1}^{\infty} c_{k} z^{k} \in \mathcal{U}$, then for $\mu$ complex,

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq \max \{1,|\mu|\} .
$$

Lemma 2.7. [6] Let $-1 \leq D_{2} \leq D_{1}<C_{1} \leq C_{2} \leq 1$. Then

$$
\frac{1+C_{1} z}{1+D_{1} z} \prec \frac{1+C_{2} z}{1+D_{2} z} .
$$

## 3. Main Results

Theorem 3.1. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(A, B ; C, D)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq 1+\frac{(n-1)}{2}\left[(A-B)+(C-D)+\frac{(A-B)(C-D)(n-2)}{3}\right] . \tag{3.1}
\end{equation*}
$$

The bound is sharp.
Proof. By using the Principle of subordination in Definition 1.1, we have

$$
\begin{equation*}
f^{\prime}(z)=g^{\prime}(z)\left(\frac{1+C w(z)}{1+D w(z)}\right), \tag{3.2}
\end{equation*}
$$

where $w \in \mathscr{U}$ is a Schwarzian function.
After expanding (3.2), it yields

$$
\begin{gather*}
1+2 a_{2} z+3 a_{3} z^{2}+\ldots+n a_{n} z^{n-1}+\ldots \\
=\left(1+2 d_{2} z+3 d_{3} z^{2}+\ldots+n d_{n} z^{n-1}+\ldots\right)\left(1+p_{1} z+p_{2} z^{2}+\ldots+p_{n-1} z^{n-1}+\ldots\right) . \tag{3.3}
\end{gather*}
$$

On equating the coefficients of $z^{n-1}$ on both sides of (3.3), we obtain

$$
\begin{equation*}
n a_{n}=n d_{n}+p_{1}(n-1) d_{n-1}+p_{2}(n-2) d_{n-2} \ldots+2 p_{n-2} d_{2}+p_{n-1} . \tag{3.4}
\end{equation*}
$$

Applying the triangle inequality in (3.4), it yields

$$
n\left|a_{n}\right| \leq n\left|d_{n}\right|+(n-1)\left|p_{1}\right|\left|d_{n-1}\right|+(n-2)\left|p_{2}\right|\left|d_{n-2}\right|+\ldots+2\left|p_{n-2}\right|\left|d_{2}\right|+\left|p_{n-1}\right| .
$$

Again using Lemma 2.1, the above inequality reduces to

$$
\begin{equation*}
n\left|a_{n}\right| \leq n\left|d_{n}\right|+(C-D)\left[(n-1)\left|d_{n-1}\right|+(n-2)\left|d_{n-2}\right| \ldots+2\left|d_{2}\right|+1\right] . \tag{3.5}
\end{equation*}
$$

Making use of Lemma 2.2 in (3.5), the result (3.1) can be easily obtained.
For $n \geq 2$, equality in (3.1) holds for the function $f_{n}(z)$ defined as

$$
\begin{equation*}
f_{n}^{\prime}(z)=\frac{1}{\left(1-\delta_{1} z\right)^{2}}\left(\frac{1+A \delta_{1} z^{n-1}}{1+B \delta_{2} z^{n-1}}\right)\left(\frac{1+C \delta_{2} z^{n-1}}{1+D \delta_{2} z^{n-1}}\right),\left|\delta_{1}\right|=1,\left|\delta_{2}\right|=1 . \tag{3.6}
\end{equation*}
$$

For $A=1, B=-1$, Theorem 3.1 gives the following result:
Corollary 3.1. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(C, D)$, then,

$$
\left|a_{n}\right| \leq n+\frac{(n-1)(2 n-1)(C-D)}{6} .
$$

Substituting $A=1, B=-1, C=1-2 \alpha, D=-1$, Theorem 3.1 agrees with the result given below:

Corollary 3.2. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(\alpha)$, then,

$$
\left|a_{n}\right| \leq n+\frac{(1-\alpha)(n-1)(2 n-1)}{3} .
$$

Substituting $A=1, B=-1, C=1, D=-1$ in Theorem 3.1, it yields the following result:
Corollary 3.3. If $f(z) \in \mathcal{K}_{\epsilon}^{*}$, then,

$$
\left|a_{n}\right| \leq \frac{2 n^{2}+1}{3} .
$$

Theorem 3.2. If $f(z) \in \mathcal{K}_{E}^{*}(A, B ; C, D)$, then for $|z|=r, 0<r<1$, we have

$$
\begin{align*}
\frac{(1-C r)(1-A r)}{(1-D r)(1-B r)(1+r)^{2}} \leq\left|f^{\prime}(z)\right| & \leq \frac{(1+C r)(1+A r)}{(1+D r)(1+B r)(1-r)^{2}}  \tag{3.7}\\
\int_{0}^{r} \frac{(1-C t)(1-A t)}{(1-D t)(1-B t)(1+t)^{2}} d t \leq|f(z)| & \leq \int_{0}^{r} \frac{(1+C t)(1+A t)}{(1+D t)(1+B t)(1-t)^{2}} d t \tag{3.8}
\end{align*}
$$

These estimates are sharp.
Proof. From (3.2), we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right|=\left|g^{\prime}(z)\right|\left|\frac{1+C w(z)}{1+D w(z)}\right| . \tag{3.9}
\end{equation*}
$$

It can be easily proved that the transformation

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)}=\frac{1+C w(z)}{1+D w(z)}
$$

maps $|w(z)| \leq r$ onto the circle

$$
\left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-\frac{1-C D r^{2}}{1-D^{2} r^{2}}\right| \leq \frac{(C-D) r}{\left(1-D^{2} r^{2}\right)},|z|=r .
$$

This implies that

$$
\begin{equation*}
\frac{1-C r}{1-D r} \leq\left|\frac{1+C w(z)}{1+D w(z)}\right| \leq \frac{1+C r}{1+D r} . \tag{3.10}
\end{equation*}
$$

Using Lemma 2.3 and (3.10) in (3.9), the result (3.7) is obvious. Again, on integrating (3.7) with limits from 0 to $r$, the result (3.8) can be easily obtained.

Sharpness follows for the function defined in (3.6).
For $A=1, B=-1$, Theorem 3.2 gives the following result: Corollary 3.4 If $f(z) \in \mathcal{K}_{\epsilon}^{*}(C, D)$, then

$$
\begin{aligned}
& \frac{(1-C r)(1-r)}{(1-D r)(1+r)^{3}} \leq\left|f^{\prime}(z)\right| \leq \frac{(1+C r)(1+r)}{(1+D r)(1-r)^{3}} ; \\
& \int_{0}^{r} \frac{(1-C t)(1-t)}{(1-D t)(1+t)^{3}} d t \leq|f(z)| \leq \int_{0}^{r} \frac{(1+C t)(1+t)}{(1+D t)(1-t)^{3}} d t .
\end{aligned}
$$

Substituting $A=1, B=-1, C=1-2 \alpha, D=-1$, Theorem 3.2 agrees with the result given below:
Corollary 3.5. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(\alpha)$, then,

$$
\begin{aligned}
\frac{(1-(1-2 \alpha) r)(1-r)}{(1+r)^{4}} \leq\left|f^{\prime}(z)\right| & \leq \frac{(1+(1-2 \alpha) r)(1+r)}{(1-r)^{4}} ; \\
\int_{0}^{r} \frac{(1-(1-2 \alpha) t)(1-t)}{(1+t)^{4}} d t \leq|f(z)| & \leq \int_{0}^{r} \frac{(1+(1-2 \alpha) t)(1+t)}{(1-t)^{4}} d t .
\end{aligned}
$$

On Substituting $A=1, B=-1, C=1, D=-1$, Theorem 3.2 gives the following result:
Corollary 3.6. If $f(z) \in \mathcal{K}_{\in}^{*}$, then,

$$
\begin{aligned}
& \frac{(1-r)^{2}}{(1+r)^{4}} \leq\left|f^{\prime}(z)\right| \leq \frac{(1+r)^{2}}{(1-r)^{4}} \\
& \int_{0}^{r} \frac{(1-t)^{2}}{(1+t)^{4}} d t \leq|f(z)| \leq \int_{0}^{r} \frac{(1+t)^{2}}{(1-t)^{4}} d t .
\end{aligned}
$$

Theorem 3.3. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(A, B ; C, D)$, then

$$
\begin{equation*}
\left|\arg \left(f^{\prime}(z)\right)\right| \leq 2 \sin ^{-1} r+\sin ^{-1}\left(\frac{(C-D) r}{1-C D r^{2}}\right)+\sin ^{-1}\left(\frac{(A-B) r}{1-A B r^{2}}\right) . \tag{3.11}
\end{equation*}
$$

The estimate is sharp.
Proof. (3.2) can be expressed as

$$
f^{\prime}(z)=g^{\prime}(z)\left(\frac{1+C w(z)}{1+D w(z)}\right) .
$$

Therefore, we have

$$
\begin{equation*}
\left|\arg f^{\prime}(z)\right| \leq\left|\arg \left(\frac{1+C w(z)}{1+D w(z)}\right)\right|+\left|\arg g^{\prime}(z)\right| . \tag{3.12}
\end{equation*}
$$

As in Theorem 2, it is clear that

$$
\left|\frac{f^{\prime}(z)}{g^{\prime}(z)}-\frac{1-C D r^{2}}{1-D^{2} r^{2}}\right| \leq \frac{(C-D) r}{\left(1-D^{2} r^{2}\right)} .
$$

So, it yields

$$
\begin{equation*}
\left|\arg \left(\frac{1+C w(z)}{1+D w(z)}\right)\right| \leq \sin ^{-1}\left(\frac{(C-D) r}{1-C D r^{2}}\right) . \tag{3.13}
\end{equation*}
$$

By using Lemma 2.4 and inequality (3.13) in (3.12), the result (3.11) is obvious.

The result is sharp for the function defined in (3.6), where

$$
\delta_{1}=\frac{r}{z}\left[\frac{-(C+D) r+i\left(\left(1-C^{2} r^{2}\right)\left(1-D^{2} r^{2}\right)\right)^{\frac{1}{2}}}{\left(1+C D r^{2}\right)}\right], \delta_{2}=\frac{r}{z}\left[-D r+i\left(1-D^{2} r^{2}\right)^{\frac{1}{2}}\right]
$$

For $A=1, B=-1$, Theorem 3.3 gives the following result:
Corollary 3.7. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(C, D)$, then

$$
\left|\arg f^{\prime}(z)\right| \leq 2 \sin ^{-1} r+\sin ^{-1}\left(\frac{(C-D) r}{1-C D r^{2}}\right)+\sin ^{-1}\left(\frac{2 r}{1+r^{2}}\right)
$$

Substituting $A=1, B=-1, C=1-2 \alpha, D=-1$, Theorem 3.3 agrees with the result given below:
Corollary 3.8. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(\alpha)$, then,

$$
\left|\arg f^{\prime}(z)\right| \leq 2 \sin ^{-1} r+\sin ^{-1}\left(\frac{(2-2 \alpha) r}{1+(1-2 \alpha) r^{2}}\right)+\sin ^{-1}\left(\frac{2 r}{1+r^{2}}\right)
$$

For $A=1, B=-1, C=1, D=-1$, Theorem 3.3 agrees with the result given below:

Corollary 3.9. If $f(z) \in \mathcal{K}_{\epsilon}^{*}$, then,

$$
\left|\arg f^{\prime}(z)\right| \leq 2 \sin ^{-1} r+2 \sin ^{-1}\left(\frac{2 r}{1+r^{2}}\right)
$$

Theorem 3.4. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(A, B ; C, D)$, then $f(z)$ is convex in $|z|<r_{0}$ where $r_{0}$ is the smallest positive root of

$$
\begin{align*}
1 & +[2 D-2 A-1] r+[2 B-2 C+A B-A C+B C-3 A D+C D-B D] r^{2} \\
& +(-A B+3 B C+B D+2 A B D-C D-2 A C D+A C-A D) r^{3} \\
& +(-2 A B C+2 B C D+A B C D) r^{4}-A B C D r^{5}=0 \tag{3.14}
\end{align*}
$$

in the interval $(0,1)$.
Proof. As $f(z) \in \mathcal{K}_{C}^{*}(A, B ; C, D)$, we have

$$
f^{\prime}(z)=g^{\prime}(z)\left(\frac{1+C w(z)}{1+D w(z)}\right)=g^{\prime}(z) P(z)
$$

After differentiating it logarithmically, we get

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+\frac{z P^{\prime}(z)}{P(z)} \tag{3.15}
\end{equation*}
$$

Also from (3.10), we have

$$
\left|\frac{1+C w(z)}{1+D w(z)}\right|=|P(z)| \leq \frac{1+C r}{1+D r}
$$

which implies

$$
\begin{equation*}
\left|\frac{z P^{\prime}(z)}{P(z)}\right| \leq \frac{r(C-D)}{(1+C r)(1+D r)} . \tag{3.16}
\end{equation*}
$$

$f \in \mathcal{C}(A, B)$, so as proved by Mehrok [8], we have

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right) \geq \frac{1-(1+2 A) r+B(2+A) r^{2}-A B r^{3}}{(1+r)(1-A r)(1-B r)} \tag{3.17}
\end{equation*}
$$

(3.15) yields,

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq \operatorname{Re}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)-\left|\frac{z P^{\prime}(z)}{P(z)}\right| . \tag{3.18}
\end{equation*}
$$

Therefore using inequalities (3.16) and (3.17), (3.18)gives

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq \frac{1-(1+2 A) r+B(2+A) r^{2}-A B r^{3}}{(1+r)(1-A r)(1-B r)}-\frac{r(C-D)}{(1+C r)(1+D r)}
$$

After simplification, the above inequality can be expressed as

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq \frac{1+[2 D-A] r+[C D-A C-A D+B C-B D] r^{2}-A C D r^{3}}{(1-B r)(1+C r)(1+D r)} .
$$

Hence $f(z)$ is convex in $|z|<r_{0}$ where $r_{0}$ is the smallest positive root of

$$
\begin{aligned}
1 & +[2 D-2 A-1] r+[2 B-2 C+A B-A C+B C-3 A D+C D-B D] r^{2} \\
& +(-A B+3 B C+B D+2 A B D-C D-2 A C D+A C-A D) r^{3} \\
& +(-2 A B C+2 B C D+A B C D) r^{4}-A B C D r^{5}=0 \text { in the interval }(0,1) .
\end{aligned}
$$

Sharpness follows for the function $f_{n}(z)$ defined in (3.6).
For $A=1, B=-1$, Theorem 3.4 gives the following result:
Corollary 3.10. If $f(z) \in \mathcal{K}_{\epsilon}^{*}(C, D)$, then $f(z)$ is convex in $|z|<r_{1}$ where $r_{1}$ is the smallest positive root of $1+[2 D-3] r+[-4 C-2 D+C D-3] r^{2}+(-2 C-4 D-$ $3 C D+1) r^{3}+(2 C-3 C D) r^{4}+C D r^{5}=0$ in the interval $(0,1)$.

Substituting $A=1, B=-1, C=1-2 \alpha, D=-1$, Theorem 3.4 agrees with the result given below:
Corollary 3.11. If $f(z) \in \mathcal{K}_{ष}^{*}(\alpha)$, then $f(z)$ is convex in $|z|<r_{2}$ where $r_{2}$ is the smallest positive root of
$1-5 r+2(-3+5 \alpha) r^{2}+2(3-\alpha) r^{3}+5(1-2 \alpha) r^{4}-(1-2 \alpha) r^{5}=0$ in the interval $(0,1)$.

Substituting $A=1, B=-1, C=1, D=-1$, Theorem 3.4 agrees with the result given below:
Corollary 3.12. If $f(z) \in \mathcal{K}_{\varepsilon}^{*}$, then $f(z)$ is convex in $|z|<r_{3}$ where $r_{3}=3-2 \sqrt{2}$.

Theorem 3.5. For $f \in \mathcal{K}_{\varepsilon}^{*}(A, B ; C, D)$,

$$
\begin{gather*}
\left|a_{2}\right| \leq 1+\frac{1}{2}[(A-B)+(C-D)],  \tag{3.19}\\
\left|a_{3}\right| \leq 1+\frac{(A-B)}{3}[2+|B|+(C-D)]+(C-D) \tag{3.20}
\end{gather*}
$$

and for $\mu$ complex,

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3} \max \{1,|3 \mu-3|\}+\frac{(A-B)}{3}\left[|2+3 \mu|+\max \left\{1, B+\frac{3(A-B) \mu}{4}\right\}\right] \\
& +\frac{(C-D)}{3}\left[\left(1+\frac{(A-B)}{2}\right)|2-3 \mu|+\max \left\{1, D+\frac{3(C-D) \mu}{4}\right\}\right] . \tag{3.21}
\end{align*}
$$

Proof. Expanding (3.2), gives

$$
\begin{align*}
& 1+2 a_{2} z+3 a_{3} z^{2}+\ldots+n a_{n} z^{n-1}+\ldots \\
& =\left(1+2 d_{2} z+3 d_{3} z^{2}+\ldots+n d_{n} z^{n-1}+\ldots\right)\left(1+(C-D) c_{1} z+(C-D)\left[c_{2}-D c_{1}^{2}\right] z^{2}+\ldots\right) . \tag{3.22}
\end{align*}
$$

Equating coefficients of $z$ and $z^{2}$ in (3.22), it yields

$$
\begin{equation*}
a_{2}=b_{2}+\frac{(C-D)}{2} c_{1}, \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=b_{3}+\frac{2}{3}(C-D) b_{2} c_{1}+\frac{(C-D)}{3}\left[c_{2}-D c_{1}^{2}\right] . \tag{3.24}
\end{equation*}
$$

After applying the triangle inequality, (3.23) and (3.24) reduce respectively to

$$
\begin{equation*}
\left|a_{2}\right| \leq\left|b_{2}\right|+\frac{(C-D)}{2}\left|c_{1}\right|, \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|b_{3}\right|+\frac{2}{3}(C-D)\left|b_{2}\right|\left|c_{1}\right|+\frac{(C-D)}{3}\left|c_{2}-D c_{1}^{2}\right| . \tag{3.26}
\end{equation*}
$$

Using $\left|c_{1}\right| \leq 1$ and Lemma 2.5, the result (3.19) can be easily obtained from (3.25).
Again applying Lemma 2.5, Lemma 2.6 and the inequality $\left|c_{1}\right| \leq 1$, the result (3.20) can be derived from (3.25).

From (3.23) and (3.24), we obtain $\left|a_{3}-\mu a_{2}^{2}\right| \leq\left|b_{3}-\mu b_{2}^{2}\right|+(C-D)\left|b_{2}\right|\left|c_{1}\right|\left|\frac{2}{3}-\mu\right|$

$$
\begin{equation*}
\left.+\frac{(C-D)}{3} \left\lvert\, c_{2}-\left\{D+\frac{3(C-D) \mu}{4}\right\} c_{1}^{2}\right.\right] . \tag{3.27}
\end{equation*}
$$

Using the inequality $\left|c_{1}\right| \leq 1$, and applying Lemma 2.5, Lemma 2.6, the result (3.21) can be easily obtained from (3.27).

Theorem 3.6. If $-1 \leq D_{2} \leq D_{1}<C_{1} \leq C_{2} \leq 1$, then

$$
\mathcal{K}_{C}^{*}\left(A, B ; C_{1}, D_{1}\right) \subset \mathcal{K}_{C}^{*}\left(A, B ; C_{2}, D_{2}\right) .
$$

Proof. As $\mathcal{K}_{E}^{*}\left(A, B ; C_{1}, D_{1}\right)$,

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)} \prec \frac{1+C_{1} z}{1+D_{1} z}
$$

As $-1 \leq D_{2} \leq D_{1}<C_{1} \leq C_{2} \leq 1$, by Lemma 2.7, we have

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)} \prec \frac{1+C_{1} z}{1+D_{1} z} \prec \frac{1+C_{2} z}{1+D_{2} z},
$$

which proves the desired result.

## REFERENCES

[1] H. R. Abdel-Gawad and D. K. Thomas, A subclass of close-to-convex functions, Publ. De L'Inst. Mathematique, Nouvelle serie tome, Vol. 49, No. 63,(1991), pp. 61-66.
[2] R. M. Goel and B. S. Mehrok, A subclass of univalent functions, Houston J. Math. Vol. 8, No. 3, (1982), pp. 343-357.
[3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. Vol. 1, (1952), pp. 169-185.
[4] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., Vol. 20, (1969), pp. 8-12.
[5] J. E. Littlewood, On inequalities in the theory of functions, Proc. Lond. Math. Soc. Vol. 23, (1925), pp. 481-519.
[6] M. S. Liu, On a subclass of p-valent close-to-convex functions of order $\beta$ and type $\alpha$, J. Math. Study, Vol. 30, (1997), pp. 102-104.
[7] M. Mateljevic, N. Mutavdzic and B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's Lemma, Inequalities and extremal problems-GFT, Supported by Ministry of Science, Serbia, Project OI 174032, pp. 1-18, 2020.
[8] B. S. Mehrok, A subclass of close-to-convex functions, Bull. Inst. Math. Acad. Sin., Vol. 10, No. 4, (1982), pp. 389-398.
[9] B. S. Mehrok and G. Singh, A subclass of close-to-convex functions, Int. J. Math. Anal., Vol. 4, No. 27, (2010), pp. 1319-1327.
[10] M. O. Reade, On close-to-convex univalent functions, Michigan Math. J. Vol. 3, (1955-56), pp. 59-62.
[11] G. Singh and G. Singh, A subclass of close-to-convex functions subordinate to a bilinear transformation, Int. J. Math. Anal. Vol. 11, No. 5, (2017), pp. 247-253.
[12] G. Singh and G. Singh, A generalized subclass of close-to-convex functions, Int. J. Math. Appl. Vol. 6, No. 1-D, (2018), pp. 635-641.
[13] S. Stelin and C. Selvaraj, On a generalized class of close-to-convex functions of order $\alpha$, Int. J. Pure Appl. Math. Vol. 109, No.5, (2016), pp. 141-149.
(Received: February 02, 2021)
(Revised: November 11, 2021)

Gagandeep Singh<br>Department of Mathematics<br>Khalsa College, Amritsar 03200 Punjab, India.<br>e-mail: kamboj.gagandeep@yahoo.in<br>and<br>Gurcharanjit Singh<br>G.N.D.U. College<br>Chungh(Tarn-Taran)<br>Punjab, India<br>e-mail: dhillongs82@yahoo.com


[^0]:    2010 Mathematics Subject Classification. 30C45, 30C50.
    Key words and phrases. Univalent functions, Analytic functions, Starlike functions, Convex functions, Close-to-convex functions, Subordination.

