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GENERALIZED RELATIVE ORDER (α,β) ORIENTED GROWTH

ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS

TANMAY BISWAS AND CHINMAY BISWAS

ABSTRACT. The main aim of this paper is to study some growth properties of

entire functions on the basis of their maximum modulus and generalized relative

order (α,β).

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

We denote by C the set of all finite complex numbers. Let f be an entire function

defined on C. The maximum modulus function M f (r) of f =
∞

∑
n=0

anzn on |z| = r

is defined as M f = max
|z|=r

| f (z)|. Moreover, if f is non-constant entire, then M f (r)

is also strictly an increasing and continuous function of r. Therefore its inverse

M−1
f : (M f (0),∞) → (0,∞) exists and is such that lim

s→+∞
M−1

f (s) = ∞. We use the

standard notations and definitions from the theory of entire functions which are

available in [11] and [12], and therefore we do not explain those in details.

Let L be a class of continuous non-negative on (−∞,+∞) functions α such that

α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞ and α((1+ o(1))x) =
(1+o(1))α(x) as x→+∞. We say that α∈ L0, if α∈ L and α(cx) = (1+o(1))α(x)
as x0 ≤ x→+∞ for each c∈ (0,+∞), i.e., α is a slowly increasing function. Clearly

L0 ⊂ L. Moreover we assume that throughout the present paper α and β always

denote the functions belonging to L0 unless otherwise specifically stated. The value

ρ(α,β)[ f ] = limsup
r→+∞

α(log M f (r))

β(logr)
(α ∈ L, β ∈ L)

is called [10] the generalized order (α,β) of f . Several authors made close investi-

gations on the properties of entire functions related to the generalized order (α,β)
in some different direction.

For the purpose of further applications of the generalized order (α,β) of an

entire function, Biswas et al. [4] rewrite the definition of generalized order (α,β)
of an entire function after giving a minor modification to the original definition of

the generalized order (α,β) of an entire function (e.g. see, [10]).
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Definition 1.1. [4] The generalized order (α,β) and generalized lower order

(α,β) of an entire function f are defined as:

ρ(α,β)[ f ] = limsup
r→+∞

α(M f (r))

β(r)
and λ(α,β)[ f ] = liminf

r→+∞

α(M f (r))

β(r)
.

Mainly the growth investigation of entire functions has usually been done through

their maximum moduli function in comparison with those of exponential functions.

But if one is paying attention to evaluate the growth rates of any entire function

with respect to a new entire function, the notions of relative growth indicators (see

e.g. [1, 2]) will come. Now in order to make some progress in the study of relative

order, one may introduce the definitions of generalized relative order (α,β) and

generalized relative lower order (α,β) of an entire function with respect to another

entire function in the following way:

Definition 1.2. [5] The generalized relative order (α,β) and generalized relative

lower order (α,β) of an entire function f with respect to an entire function g are

defined as:

ρ(α,β)[ f ]g = limsup
r→+∞

α(M−1
g (M f (r)))

β(r)
and λ(α,β)[ f ]g = lim inf

r→+∞

α(M−1
g (M f (r)))

β(r)
.

The main aim of this paper is to establish some newly developed results related

to the growth rates of the composition of two entire functions on the basis of gen-

eralized relative order (α,β) and generalized relative lower order (α,β) of entire

function with respect to another entire function which extend some earlier results

(see, e.g., [3]). If fact some works on generalized relative order (α,β) related to

the growth of entire Dirichlet series have been explored by Mulyava et al. (see,

e.g., [7], [8]).

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [9] If f and g are any two entire functions with g(0) = 0. Then

M f (g)(r)≥ Mg(
r

2
) for all sufficiently large values of r.

Lemma 2.2. [6] Let f and g be any two entire functions with g(0) = 0. Also let B

satisfy 0 < B < 1 and c(B) = (1−B)2

4B
. Then for all sufficiently large values of r,

M f (c(B)Mg(Br))≤ M f (g)(r)≤ M f (Mg(r)).

In addition if B = 1
2
, then for all sufficiently large values of r,

M f (g)(r)≥ M f (
1

8
Mg(

r

2
)).
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Lemma 2.3. [2] Suppose f is an entire function and A > 1, 0 < B < A. Then for

all sufficiently large r,

M f (Ar)≥ BM f (r).

3. THEOREMS

In this section we present the main results of the paper.

Theorem 3.1. Let f , g and h be any three entire functions such that

limsup
r→+∞

α(M−1
h (Mg(r)))

(β(r))γ
= A, a real number > 0 (3.1)

and

lim inf
r→+∞

α(M−1
h (M f (r)))

(α(M−1
h (r)))η+1

= B, a real number > 0 (3.2)

for any γ, η satisfying 0 < γ < 1, η > 0 and γ(η+1)> 1. Then

ρ(α,β)[ f (g)]h =+∞.

Proof. From (3.1) we have for a sequence of values of r tending to infinity

α(M−1
h (Mg(r))) ≥ (A− ε)(β(r))γ (3.3)

and from (3.2) we obtain for all sufficiently large values of r that

α(M−1
h (M f (r))) ≥ (B− ε)(α(M−1

h (r)))η+1.

Since Mg(r) is a continuous, increasing and unbounded function of r, we get from

above for all sufficiently large values of r that

α(M−1
h (M f (Mg(r)))) ≥ (B− ε)(α(M−1

h (Mg(r))))
η+1. (3.4)

Also M−1
h (r) is an increasing function of r, so it follows from Lemma 2.2, Lemma

2.3, (3.3) and (3.4) for a sequence of values of r tending to infinity that

α(M−1
h (M f (g)(18r))) ≥ α(M−1

h (M f (Mg(r)))) (3.5)

i.e., α(M−1
h (M f (g)(18r))) ≥ (B− ε)(α(M−1

h (Mg(r))))
η+1

i.e., α(M−1
h (M f (g)(18r))) ≥ (B− ε)[(A− ε)(β(r))γ]η+1

i.e., α(M−1
h (M f (g)(18r))) ≥ (B− ε)(A− ε)η+1(β(r))γ(η+1)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥

(B− ε)(A− ε)η+1(β(r))γ(η+1)

β(r)

i.e., limsup
r→+∞

α(M−1
h (M f (g)(18r)))

β(r)
≥ liminf

r→+∞

(B− ε)(A− ε)η+1(β(r))γ(η+1)

β(r)
.

Since ε(> 0) is arbitrary and γ(η+1)> 1 it follows from above that

ρ(α,β)[ f (g)]h =+∞,

which proves the theorem. �
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In the line of Theorem 3.1 one may state the following two theorems without

proof :

Theorem 3.2. Let f , g and h be any three entire functions such that

liminf
r→+∞

α(M−1
h (Mg(r)))

(β(r))γ
= A, a real number > 0

and

limsup
r→+∞

α(M−1
h (M f (r)))

(α(M−1
h (r)))η+1

= B, a real number > 0,

for any γ, η satisfying 0 < γ < 1, η > 0, and γ(η+1)> 1. Then

ρ(α,β)[ f (g)]h =+∞.

Theorem 3.3. Let f , g and h be any three entire functions such that

lim inf
r→+∞

α(M−1
h (Mg(r)))

(β(r))γ
= A, a real number > 0

and

liminf
r→+∞

αM−1
h (M f (r))

(α(M−1
h (r)))η+1

= B, a real number > 0,

for any γ, η with 0 < γ < 1, η > 0 and γ(η+1)> 1. Then

λ(α,β)[ f (g)]h =+∞.

Theorem 3.4. Let f , g and h be any three entire functions such that

limsup
r→+∞

α(M−1
h (Mg(r)))

(β(r))γ
= A, a real number > 0 (3.6)

and

lim inf
r→+∞

log[
α(M−1

h (M f (r)))

α(M−1
h (r))

]

[α(M−1
h (r))]η

= B, a real number > 0 (3.7)

for any γ, η satisfying γ > 1, 0 < η < 1 and ηγ > 1. Then

ρ(α,β)[ f (g)]h =+∞.

Proof. From (3.6) for a sequence of values of r tending to infinity we get that

α(M−1
h (Mg(r))) ≥ (A− ε)(β(r))γ (3.8)

and from (3.7) we obtain for all sufficiently large values of r that

log[
α(M−1

h (M f (r)))

α(M−1
h (r))

] ≥ (B− ε)[α(M−1
h (r))]η

i.e.,
α(M−1

h (M f (r)))

α(M−1
h (r))

≥ exp[(B− ε)[α(M−1
h (r))]η].
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Since Mg(r) is a continuous, increasing and unbounded function of r, we get from

above for all sufficiently large values of r that

α(M−1
h (M f (Mg(r))))

α(M−1
h (Mg(r)))

≥ exp[(B− ε)[α(M−1
h (Mg(r)))]

η]. (3.9)

Also M−1
h (r) is an increasing function of r, so it follows from (3.5), (3.8) and (3.9)

for a sequence of values of r tending to infinity that

α(M−1
h (M f (g)(18r)))

β(r)
≥

α(M−1
h (M f (Mg(r))))

β(r)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥

α(M−1
h (M f (Mg(r))))

α(M−1
h (Mg(r)))

·
α(M−1

h (Mg(r)))

β(r)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥ exp[(B− ε)[α(M−1

h (Mg(r)))]
η] ·

(A− ε)(β(r))γ

β(r)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥ exp[(B− ε)(A− ε)η(β(r))ηγ] ·

(A− ε)(β(r))γ

β(r)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥ exp[(B− ε)(A− ε)η(β(r))ηγ−1β(r)] ·

(A− ε)(β(r))γ

β(r)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥ (exp β(r))(B−ε)(A−ε)η(β(r))ηγ−1

·
(A− ε)(β(r))γ

β(r)

i.e., limsup
r→+∞

α(M−1
h (M f (g)(18r)))

β(r)

≥ liminf
r→+∞

(

(expβ(r))(B−ε)(A−ε)η(β(r))ηγ−1

·
(A− ε)(β(r))γ

β(r)

)

.

Since ε(> 0) is arbitrary and γ > 1, ηγ > 1, the theorem follows from the above.

�

In the line of Theorem 3.4 one may also state the following two theorems with-

out proof :

Theorem 3.5. Let f , g and h be any three entire functions such that

liminf
r→+∞

α(M−1
h (Mg(r)))

(β(r))γ
= A, a real number > 0

and limsup
r→+∞

log[
α(M−1

h (M f (r)))

α(M−1
h (r))

]

[α(M−1
h (r))]η

= B, a real number > 0
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for any γ, η with γ > 1, 0 < η < 1 and ηγ > 1. Then

ρ(α,β)[ f (g)]h =+∞.

Theorem 3.6. Let f , g and h be any three entire functions such that

liminf
r→+∞

α(M−1
h (Mg(r)))

(log[q+1] r)γ
= A, a real number > 0

and liminf
r→+∞

log[
α(M−1

h (M f (r)))

α(M−1
h (r))

]

[α(M−1
h (r))]η

= B, a real number > 0

for any γ, η satisfying γ > 1, 0 < η < 1 and ηγ > 1. Then

λ(α,β)[ f (g)]h =+∞.

Theorem 3.7. Let f , g and h be any three entire functions such that 0< λ(α,β)[g]h ≤
ρ(α,β)[g]h <+∞ and

limsup
r→+∞

α(M−1
h (M f (r)))

α(M−1
h (r))

= A, a real number <+∞.

Then
λ(α,β)[ f (g)]h ≤ Aλ(α,β)[g]h ≤ ρ(α,β)[ f (g)]h ≤ Aρ(α,β)[g]h.

Proof. Since M−1
h (r) is an increasing function of r, it follows from Lemma 2.2 for

all sufficiently large values of r that

M−1
h (M f (g)(r)) ≤ M−1

h (M f (Mg(r))). (3.10)

Now from (3.5) we get for all sufficiently large values of r that

α(M−1
h (M f (g)(18r)))

β(r)
≥

α(M−1
h (M f (Mg(r))))

β(r)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥

α(M−1
h (M f (Mg(r))))

α(M−1
h (Mg(r)))

·
α(M−1

h (Mg(r)))

β(r)

i.e., limsup
r→+∞

α(M−1
h (M f (g)(18r)))

β(r)

≥ limsup
r→+∞

α(M−1
h (M f (Mg(r))))

α(M−1
h (Mg(r)))

· liminf
r→+∞

α(M−1
h (Mg(r)))

β(r)

i.e., ρ(α,β)[ f (g)]h ≥ A ·λ(α,β)[g]h. (3.11)

Similarly from (3.10) it follows for all sufficiently large values of r that

α(M−1
h (M f (g)(r)))

β(r)
≤

α(M−1
h (M f (Mg(r))))

α(M−1
h (Mg(r)))

·
α(M−1

h (Mg(r)))

β(r)
(3.12)
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i.e., liminf
r→+∞

α(M−1
h (M f (g)(r)))

β(r)

≤ limsup
r→+∞

α(M−1
h (M f (Mg(r))))

α(M−1
h (Mg(r)))

· liminf
r→+∞

α(M−1
h (Mg(r)))

β(r)

i.e., λ(α,β)[ f (g)]h ≤ A.λ(α,β)[g]h. (3.13)

Also from (3.12) we obtain for all sufficiently large values of r that

limsup
r→+∞

α(M−1
h (M f (g)(r)))

β(r)
≤ limsup

r→+∞

α(M−1
h (M f (Mg(r))))

α(M−1
h (Mg(r)))

· limsup
r→+∞

α(M−1
h (Mg(r)))

β(r)

i.e., ρ(α,β)[ f (g)]h ≤ A.ρ(α,β)[g]h. (3.14)

Therefore the theorem follows from (3.11), (3.13) and (3.14) . �

Theorem 3.8. Let f , g and h be any three entire functions such that 0< λ(α,β)[g]h ≤
ρ(α,β)[g]h <+∞ and

lim inf
r→+∞

α(M−1
h (M f (r)))

α(M−1
h (r))

= A, a real number <+∞.

Then
λ(α,β)[ f (g)]h ≤ Aρ(α,β)[g]h ≤ ρ(α,β)[ f (g)]h.

The proof of Theorem 3.8 is omitted because it can be carried out in the line of

Theorem 3.7.

Theorem 3.9. Let f , g and h be any three entire functions with g(0) = 0. Then

(i) ρ(α,β)[ f (g)]h =+∞ if ρ(α,β)[g]h =+∞ or

(ii) ρ(α,β)[ f (g)]h =+∞ if ρ(α,β)[ f ]h > 0 and λ(ϕ,β)[g]> 0

where exp(ϕ(β−1(r))) < r.

Proof. Case I. Let ρ(α,β)[g]h = ∞.

Since M−1
h (r) is an increasing function of r, it follows from Lemma 2.1, for all

sufficiently large values of r that

M f (g)(r)≥ Mg(
r

2
) for all sufficiently large values of r.

α(M−1
h (M f (g)(2r)))

β(r)
≥

α(M−1
h (Mg(r)))

β(r)

i.e., limsup
r→+∞

α(M−1
h (M f (g)(2r)))

β(r)
≥ limsup

r→+∞

α(M−1
h (Mg(r)))

β(r)

i.e., ρ(α,β)[ f (g)]h ≥ ρ(α,β)[g]h

i.e., ρ(α,β)[ f (g)]h =+∞.

This proves the first part of the theorem.
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Case II. Suppose ρ(α,β)[ f ]h > 0 and λ(ϕ,β)[g]> 0.

As M−1
h (r) is an increasing function of r, we get from Lemma 2.2, for a sequence

of values of r tending to infinity that

α(M−1
h (M f (g)(18r))) ≥ α(M−1

h (M f (Mg(r))))

i.e., α(M−1
h (M f (g)(18r))) ≥ (ρ(α,β)[ f ]h − ε)β(Mg(r))

i.e., α(M−1
h (M f (g)(18r))) ≥ (ρ(α,β)[ f ]h − ε)exp(ϕ(Mg(r)))

i.e., α(M−1
h (M f (g)(18r))) ≥ (ρ(α,β)[ f ]h − ε)(expβ(r))(λ(ϕ,β) [g]−ε)

i.e.,
α(M−1

h (M f (g)(18r)))

β(r)
≥

(ρ(α,β)[ f ]h − ε)(expβ(r))(λ(ϕ,β) [g]−ε)

β(r)

i.e., ρ(α,β)[ f (g)]h =+∞,

which is the second part of the theorem. �

Corollary 3.1. Let f , g and h be any three entire functions such that g(0) = 0,

ρ(ϕ,β)[g]> 0 and λ(α,β)[ f ]h > 0 where exp(ϕ(β−1(r))) < r. Then

ρ(α,β)[ f (g)]h =+∞.

The proof of Corollary 3.1 is omitted as it can be carried out in the line of

Theorem 3.9.

In the line of Theorem 3.9 one can easily prove the following theorem :

Theorem 3.10. Let f , g and h be any three entire functions with g(0) = 0. Then

(i) λ(α,β)[ f (g)]h =+∞ if λ(α,β)[g]h =+∞ or

(ii) λ(α,β)[ f (g)]h =+∞ if λ(α,β)[ f ]h > 0 and λ(ϕ,β)[g]> 0

where exp(ϕ(β−1(r))) < r.

Theorem 3.11. Let f ,g and h be any three entire functions such that g(0) =
0, ρ(α,β)[ f ]h > 0 and λ(ϕ,β)[g]> 0 where exp(ϕ(β−1(r)))< r. Then

limsup
r→+∞

α(M−1
h (M f (g)(r)))

α(M−1
h (M f (r)))

= +∞.

Proof. In view of Theorem 3.9, we obtain that

limsup
r→+∞

α(M−1
h (M f (g)(r)))

α(M−1
h (M f (r)))

≥ limsup
r→+∞

α(M−1
h (M f (g)(r)))

β(r)
· lim inf

r→+∞

β(r)

α(M−1
h (M f (r)))

i.e., limsup
r→+∞

α(M−1
h (M f (g)(r)))

α(M−1
h (M f (r)))

≥ ρ(α,β)[ f (g)]h ·
1

ρ(α,β)[ f ]h

i.e., limsup
r→+∞

α(M−1
h (M f (g)(r)))

α(M−1
h (M f (r)))

= +∞.

Thus the theorem follows. �
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Theorem 3.12. Let f , g and h be any three entire functions such that g(0) =
0, λ(α,β)[ f ]h > 0 and λ(ϕ,β)[g]> 0 where exp(ϕ(β−1(r)))< r. Then

limsup
r→+∞

α(M−1
h (M f (g)(r)))

α(M−1
h (M f (r)))

= +∞.

The Proof of Theorem 3.12 is omitted as it can be carried out in the line of

Theorem 3.11 and in view of Theorem 3.10.

Two entire functions f and g are said to be asymptotically equivalent if there

exists a, 0 < a < ∞ such that
M f (r)
Mg(r)

→ a as r →+∞ and in this case we write f ∼ g.

If f ∼ g, then clearly g ∼ f . Our next theorem deals with the asymptotic behaviour

of two entire functions.

Theorem 3.13. Let f and g be any two entire functions such that 0 < λ(α,β)[ f ]g ≤
ρ(α,β)[ f ]g <+∞. If g ∼ h, then ρ(α,β)[ f ]h = ρ(α,β)[ f ]g and λ(α,β)[ f ]h = λ(α,β)[ f ]g.

Proof. Let ε > 0. Since g ∼ h , then for any a (0 < a < ∞) it follows for all

sufficiently large positive numbers of r that

Mg(r)< (a+ ε)Mh(r).

Now for b > max{1,(a+ ε)}, we get by Lemma 2.2 and the above that for all

sufficiently large positive values of r

M−1
h (r)< bM−1

g (r).

Therefore we obtain that

ρ(α,β)[ f ]h = limsup
r→+∞

α(M−1
h (M f (r)))

β(r)
≤ limsup

r→+∞

α(bM−1
g (M f (r)))

β(r)
.

Now we get from the above that ρ(α,β)[ f ]h ≤ ρ(α,β)[ f ]g. The reverse inequality

is clear because h ∼ g and so ρ(α,β)[ f ]g = ρ(α,β)[ f ]h.

In a similar manner, λ(α,β)[ f ]h = λ(α,β)[ f ]g.
This proves the theorem. �

Theorem 3.14. Let f and g be any two entire functions such that 0 < λ(α,β)[ f ]g ≤
ρ(α,β)[ f ]g <+∞. If f ∼ h, then ρ(α,β)[h]g = ρ(α,β)[ f ]g and λ(α,β)[h]g = λ(α,β)[ f ]g.

Proof. Since f ∼ h, then for any ε > 0 we obtain that

M f (r)< (a+ ε)Mh(r),

where 0 < a < ∞.

Therefore for b> max{1,(a+ε)} and in view of Lemma 2.2, we get from above

for all sufficiently large positive numbers of r that

M f (r)< Mh(br).
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Now we obtain from the above that

i.e., ρ(α,β)[ f ]g = limsup
r→+∞

α(M−1
g (M f (r)))

β(r)
≤ limsup

r→+∞

α(M−1
g (Mh(br)))

β(r)
.

Now we get from the above that ρ(α,β)[ f ]g ≤ ρ(α,β)[h]g. Further f ∼ h ⇒ h ∼ f ,

so we also obtain that ρ(α,β)[h]g ≤ ρ(α,β)[ f ]g and therefore ρ(α,β)[h]g = ρ(α,β)[ f ]g.

In a similar manner, λ(α,β)[h]g = λ(α,β)[ f ]g.
This proves the theorem. �

Theorem 3.15. Let f and g be any two entire functions such that 0 < λ(α,β)[g] f ≤
ρ(α,β)[g] f < +∞. Also let k and h be any two entire functions such that g ∼ h

and f ∼ k. Then ρ(α,β)[g] f = ρ(α,β)[h]k = ρ(α,β)[h] f = ρ(α,β)[g]k and λ(α,β)[g] f =
λ(α,β)[h]k = λ(α,β)[h] f = λ(α,β)[g]k.

Theorem 3.15 follows from Theorem 3.13 and Theorem 3.14.

Now we state the following four theorems which can easily be carried out from

the definitions of the generalized relative order (α,β) and the generalized relative

lower order (α,β) of an entire function with respect to another entire function and

with the help of Theorem 3.13, Theorem 3.14 and Theorem 3.15, and therefore

their proofs are omitted.

Theorem 3.16. Let f , g and h be any three entire functions such that g ∼ h, 0 <

λ(α,β)[ f ]g ≤ ρ(α,β)[ f ]g <+∞ and 0 < λ(α,β)[ f ]h ≤ ρ(α,β)[ f ]h <+∞. Then

liminf
r→+∞

α(M−1
g (M f (r)))

α(M−1
h (M f (r)))

≤ 1 ≤ limsup
r→+∞

α(M−1
g (M f (r)))

α(M−1
h (M f (r)))

.

Theorem 3.17. Let f , g and h be any three entire functions such that f ∼ h, 0 <

λ(α,β)[ f ]g ≤ ρ(α,β)[ f ]g <+∞ and 0 < λ(α,β)[h]g ≤ ρ(α,β)[h]g <+∞. Then

liminf
r→+∞

α(M−1
g (M f (r)))

α(M−1
g (Mh(r)))

≤ 1 ≤ limsup
r→+∞

α(M−1
g (M f (r)))

α(M−1
g (Mh(r)))

.

Theorem 3.18. Let f , g, h and k be any four entire functions such that f ∼ h and

g ∼ k. Also let 0 < λ(α,β)[ f ]g ≤ ρ(α,β)[ f ]g < +∞ and 0 < λ(α,β)[h]k ≤ ρ(α,β)[h]k <
+∞. Then

liminf
r→+∞

α(M−1
g (M f (r)))

α(M−1
k (Mh(r)))

≤ 1 ≤ limsup
r→+∞

α(M−1
g (M f (r)))

α(M−1
k (Mh(r)))

.

Theorem 3.19. Let f , g, h and k be any four entire functions such that f ∼ h and

g ∼ k. Also let 0 < λ(α,β)[h]g ≤ ρ(α,β)[h]g < +∞ and 0 < λ(α,β)[ f ]k ≤ ρ(α,β)[ f ]k <
+∞. Then

liminf
r→+∞

α(M−1
g (Mh(r)))

α(M−1
k (M f (r)))

≤ 1 ≤ limsup
r→+∞

α(M−1
g (Mh(r)))

α(M−1
k (M f (r)))

.
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