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DECOMPOSABLE EXTENSIONS BETWEEN RANK 1 MODULES IN

GRASSMANNIAN CLUSTER CATEGORIES

DUSKO BOGDANIC AND IVAN-VANJA BOROJA

ABSTRACT. Rank 1 modules are the building blocks of the category CM(Bk,n)
of Cohen-Macaulay modules over a quotient Bk,n of a preprojective algebra of

affine type A. Jensen, King and Su showed in [8] that the category CM(Bk,n) pro-

vides an additive categorification of the cluster algebra structure on the coordi-

nate ring C[Gr(k,n)] of the Grassmannian variety of k-dimensional subspaces in

Cn. Rank 1 modules are indecomposable, they are known to be in bijection with

k-subsets of {1,2, . . . ,n}, and their explicit construction has been given in [8].

In this paper, we give necessary and sufficient conditions for indecomposabil-

ity of an arbitrary rank 2 module in CM(Bk,n) whose filtration layers are tightly

interlacing. We give an explicit construction of all rank 2 decomposable mod-

ules that appear as extensions between rank 1 modules corresponding to tightly

interlacing k-subsets I and J.

1. INTRODUCTION

A categorification of the cluster algebra structure on the homogeneous coordi-

nate ring C[Gr(k,n)] of the Grassmannian variety of k-dimensional subspaces in

Cn has been given by Geiss, Leclerc, and Schroer [6, 7] in terms of a subcate-

gory of the category of finite dimensional modules over the preprojective algebra

of type An−1. Jensen, King, and Su [8] gave a new categorification of this cluster

structure using the maximal Cohen-Macaulay modules over the completion of an

algebra Bk,n which is a quotient of the preprojective algebra of type An−1. Rank

1 modules are the building blocks of the category CM(Bk,n) of Cohen-Macaulay

modules over a quotient Bk,n of a preprojective algebra of affine type An−1. Rank

1 modules are indecomposable, they are known to be in bijection with k-subsets

of [n] = {1,2, . . . ,n}, and their explicit construction has been given in [8]. These

are the building blocks of the category as any module in CM(Bk,n) can be filtered

by rank 1 modules (the filtration is noted in the profile of a module, [8, Corollary

6.7]). The number of rank 1 modules appearing in the filtration of a given module is

called the rank of that module. In [4], we explicitly constructed all indecomposable

rank 2 modules in tame cases.
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In this paper, we give necessary and sufficient conditions for indecomposabil-

ity of an arbitrary rank 2 module in CM(Bk,n) whose filtration layers are tightly

interlacing. Moreover, we construct explicitly all rank 2 decomposable Cohen-

Macaulay Bk,n-modules that appear as middle terms in the short exact sequences

where the end terms are rank 1 modules corresponding to tightly interlacing sub-

sets. The central combinatorial notion throughout this paper is that of r-interlacing

(Definition 2.3). If I and J are k-subsets of {1, . . . ,n}, then I and J are said to be r-

interlacing if there exist subsets {i1, i3, . . . , i2r−1} ⊂ I \J and {i2, i4, . . . , i2r} ⊂ J \ I

such that i1 < i2 < i3 < · · · < i2r < i1 (cyclically) and if there are not exist larger

subsets of I and of J with this property.

Denote by LI the rank 1 module corresponding to the k-subset I. By [8, Propo-

sition 5.6], Ext1B(LI ,LJ) 6= 0 if and only if I and J are r-interlacing, where r ≥ 2. In

particular, rank 1 modules are rigid, i.e., Ext1B(LI,LI) 6= 0 for every I. This means

that if I and J are 1-interlacing, then the only module appearing as the middle term

in short exact sequences with end terms LI and LJ is the direct sum LI ⊕LJ . For this

reason, we will assume most of the time that I and J are r-interlacing with r ≥ 2.

Note that, since the Grassmannian cluster category CM(Bk,n) is a 2-CY category,

Ext1B(LI ,LJ)∼= Ext1B(LJ,LI), so we have the same arguments for the short exact se-

quences with LI as the left term and LJ as the right term, and for the short exact

sequences with LJ as the left term and LI as the right term (cf. Theorem 3.7 in [1]).

The paper is organized as follows. In Section 2, we recall the definitions and key

results about Grassmannian cluster categories. In Section 3, we study the filtration

I | J, where I = {1,3, . . . ,2r − 1} and J = {2,4, . . . ,2r}, in the case (r,2r). We

explain how the general case of a module with tight r-interlacing filtration layers

reduces to the case of the module with filtration I | J. For the filtration layers I and

J of a module with profile I | J, we construct all decomposable rank 2 modules that

are extensions of these rank 1 modules, i.e. we construct all decomposable modules

that appear as middle terms in short exact sequences with I and J as end terms. In

particular, we associate with every subset of peaks of the rim I a decomposable

rank 2 module that is extension of LJ by LI .

Our main results are Theorem 3.1 in which we give necessary and sufficient con-

ditions for a rank 2 module with filtration I | J to be indecomposable, and Theorem

3.2 in which we give an explicit construction of all rank 2 decomposable modules

that appear as extensions between rank 1 modules corresponding to I and J.

2. PRELIMINARIES

We follow closely the exposition from [1, 2, 4, 8] in order to introduce notation

and background results. Let Γn be the quiver of the boundary algebra, with vertices

1,2, . . . ,n on a cycle and arrows xi : i−1 → i, yi : i → i−1 (see Figure 1). We write

CM(Bk,n) for the category of maximal Cohen-Macaulay modules for the completed

path algebra Bk,n of Γn, with relations xy− yx and xk − yn−k (at every vertex). The
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centre of Bk,n is Z := C[|t|], where t = ∑i xiyi.

•

x1

y1

•

x2

y2

•

x3

y3

•

x4

y4

•x5

y5

5

4

3 2

1

FIGURE 1. The quiver Γn for n = 5.

The algebra Bk,n coincides with the quotient of the completed path algebra of

the graph C (a circular graph with vertices C0 = Zn set clockwise around a circle,

and with the set of edges, C1, also labeled by Zn, with edge i joining vertices i−1

and i), i.e. the doubled quiver as above, by the closure of the ideal generated by the

relations above (we view the completed path algebra of the graph C as a topological

algebra via the m-adic topology, where m is the two-sided ideal generated by the

arrows of the quiver, see [5, Section 1]). The algebra Bk,n, that we will often denote

by B when there is no ambiguity, was introduced in [8, Section 3]. Observe that

Bk,n is isomorphic to Bn−k,n, so we will always assume that k ≤ n
2
.

The (maximal) Cohen-Macaulay B-modules are precisely those which are free

as Z-modules. Such a module M is given by a representation {Mi : i ∈C0} of the

quiver with each Mi a free Z-module of the same rank (which is the rank of M).

Definition 2.1 ( [8], Definition 3.5). For any Bk,n-module M and K the field of

fractions of Z, the rank of M, denoted by rk(M), is rk(M) = len(M⊗Z K).

Note that B⊗Z K ∼= Mn(K), which is a simple algebra. It is easy to check that the

rank is additive on short exact sequences, that rk(M) = 0 for any finite-dimensional

B-module (because these are torsion over Z) and that, for any Cohen-Macaulay B-

module M and every idempotent e j, 1 ≤ j ≤ n, rkZ(e jM) = rk(M), so that, in

particular, rkZ(M) = nrk(M).

Definition 2.2 ( [8], Definition 5.1). For any k-subset I of C0, we define a rank 1

Bk,n-module

LI = (Ui, i ∈C0 ; xi,yi, i ∈C0)

as follows. For each vertex i ∈C0, the set Ui = C[[t]], ei acts as the identity on Ui

and eiU j = 0, for i 6= j. For each i ∈C0, set

xi : Ui−1 →Ui to be multiplication by 1 if i ∈ I, and by t if i 6∈ I,

yi : Ui →Ui−1 to be multiplication by t if i ∈ I, and by 1 if i 6∈ I.
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The module LI can be represented by a lattice diagram LI in which U0,U1, . . . ,Un

are represented by columns of vertices (dots) from left to right (with U0 and Un to

be identified), going down infinitely. The vertices in each column correspond to the

natural monomial C-basis of C[t]. The column corresponding to Ui+1 is displaced

half a step vertically downwards (resp., upwards) in relation to Ui if i+1 ∈ I (resp.,

i+1 6∈ I), and the actions of xi and yi are shown as diagonal arrows. Note that the

k-subset I can then be read off as the set of labels on the arrows pointing down

to the right which are exposed to the top of the diagram. For example, the lattice

diagram L{1,4,5} in the case k = 3, n = 8, is shown in Figure 2.

1
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7 8

8

8

8

FIGURE 2. Lattice diagram of the module L{1,4,5}

We see from Figure 2 that the module LI is determined by its upper boundary,

denoted by the thick lines, which we refer to as the rim of the module LI (this is

why we call the k-subset I the rim of LI). Throughout this paper we will identify a

rank 1 module LI with its rim. Moreover, most of the time we will omit the arrows

in the rim of LI and represent it as an undirected graph.

We say that i is a peak of the rim I if i /∈ I and i+1 ∈ I. In the above example,

the peaks of I = {1,4,5} are 3 and 8. We say that i is a valley of the rim I if i ∈ I

and i+1 /∈ I. In the above example, the valleys of I = {1,4,5} are 1 and 5.

Proposition 2.1 ( [8], Proposition 5.2). Every rank 1 Cohen-Macaulay Bk,n-module

is isomorphic to LI for some unique k-subset I of C1.

Every B-module has a canonical endomorphism given by multiplication by t ∈
Z. For LI this corresponds to shifting LI one step downwards. Since Z is cen-

tral, HomB(M,N) is a Z-module for arbitrary B-modules M and N. If M,N are

free Z-modules, then so is HomB(M,N). In particular, for any two rank 1 Cohen-

Macaulay B-modules LI and LJ , HomB(LI ,LJ) is a free module of rank 1 over

Z =C[[t]], generated by the canonical map given by placing the lattice of LI inside

the lattice of LJ as far up as possible so that no part of the rim of LI is strictly above

the rim of LJ [8, Section 6].
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Definition 2.3 (r-interlacing). Let I and J be two k-subsets of {1, . . . ,n}. The sets I

and J are said to be r-interlacing if there exist subsets {i1, i3, . . . , i2r−1} ⊂ I \J and

{i2, i4, . . . , i2r} ⊂ J \ I such that i1 < i2 < i3 < · · ·< i2r < i1 (cyclically) and if there

are not exist larger subsets of I and of J with this property. We say that I and J are

tightly r-interlacing if they are r-interlacing and |I∩ J|= k− r.

Definition 2.4. A B-module is rigid if Ext1B(M,M) = 0.

If I and J are r-interlacing k-subsets, where r < 2, then Ext1B(LI ,LJ) = 0, in

particular, rank 1 modules are rigid (see [8, Proposition 5.6]).

Every indecomposable M of rank n in CM(B) has a filtration with factors LI1
,

LI2
, . . . ,LIn

of rank 1. This filtration is noted in its profile, pr(M) = I1 | I2 | . . . | In, [8,

Corollary 6.7]. In the case of a rank 2 module M with filtration LI | LJ (i.e. with

profile I | J), we picture this module by drawing the rim J below the rim I, in such

a way that J is placed as far up as possible so that no part of the rim J is strictly

above the rim I. We refer to this picture of M as its lattice diagram. Note that there

is at least one point where the rims I and J meet (see Figure 3).

0 10 2 3 4 5 6 7 8

FIGURE 3. The lattice diagram of a module with filtration

L{1,3,5,7} | L{2,4,6,8}.

The two rims in the lattice diagram of a rank 2 module M form a number of

regions between the points where the two rims meet but differ in direction before

and/or after meeting. We call these regions the boxes formed by the rims or by

the profile. The term box is a combinatorial tool which is very useful in finding

conditions for indecomposability. However, let us point out that the module M

might be a direct sum in which case the lattice diagram is really a pair of lattice

diagrams of rank 1 modules. We still view the corresponding diagram as forming

boxes. If I and J are r-interlacing, then they form exactly r-boxes if and only if they

are tightly r-interlacing. A lattice diagram with three boxes is shown in Figure 4.

Moreover, the filtration layers of a module M give a poset structure. If M is a

rank 2 module with r1 boxes, with r1 ≤ r, the poset structure associated with M is

1r1 | 2, see Figure 4. The poset consists of a tree with one vertex of degree r1 and r1

leaves, it has dimension 1 at the leaves and dimension 2 at central vertex (we also

refer to this as a dimension lattice). For background on the poset associated with

an indecomposable module or its profile, we refer to [8, Section 6] and [3, Section

2].
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0 1 2 3 4 5 6 7 8 9 0

I = {2, 5, 7, 8, 10} J = {1, 3, 4, 6, 9}

(a) (b) (c)

(b) (c)(a)

1 1

2

1

x2

x5 x7

x8 x10

x1 x3

x4 x6

x9

FIGURE 4. The profile of a module with 4-interlacing layers

forming three boxes with poset 13 | 2. The dashed line shows the

rim of LI with arrows xi, i ∈ I, indicated. The solid line below is

the rim of LJ, with arrows xi, i ∈ J, indicated.

A partial answer to the question of indecomposability of a rank 2 module in

terms of its poset is given in the following proposition.

Proposition 2.2 ( [2], Remark 3.2). Let M ∈ CM(Bk,n) be an indecomposable

module with profile I | J. Then I and J are r-interlacing and their poset is 1r1 | 2,

where r ≥ r1 ≥ 3.

This result tells us that when dealing with rank 2 indecomposable modules, we

can assume that the poset of such a module is of the form 1r1 | 2, for r1 ≥ 3.

Throughout the paper, our strategy to prove that a module is indecomposable is

to show that its endomorphism ring does not have non-trivial idempotent elements.

When we deal with a decomposable rank 2 module, in order to determine the sum-

mands of this module, we construct a non-trivial idempotent in its endomorphism

ring, and then find corresponding eigenvectors at each vertex of the quiver and

check the action of the morphisms xi on these eigenvectors.

3. TIGHT r-INTERLACING

In this section we construct all rank 2 decomposable modules with the profile

I | J in the case when I and J are tightly r-interlacing k-subsets, i.e., when |I \J|=
|J \ I|= r and non-common elements of I and J interlace.

We are interested in the modules M that are decomposable and appear as the

middle term in a short exact sequence of the form:

0 −→ LJ −→ M −→ LI −→ 0.

In [4], we defined a rank 2 module M(I,J) with filtration LI | LJ in a similar

way as rank 1 modules are defined in CM(Bk,n). We recall the construction here.

Let Vi := C[|t|]⊕C[|t|], i = 1, . . . ,n. The module M(I,J) has Vi at each vertex

1,2, . . . ,n of Γn. In order to have a module structure, for every i we need to define

xi : Vi−1 →Vi and yi : Vi →Vi−1 in such a way that xiyi = t · id and xk = yn−k.
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Since LJ is a submodule of a rank 2 module M(I,J), and LI is the quotient, if

we extend the basis of LJ to the basis of the module M(I,J), then with respect to

that basis all the matrices xi, yi must be upper triangular with diagonal entries from

the set {1, t}. More precisely, the diagonal of xi (resp. yi) is (1, t) (resp. (t,1)) if

i ∈ J \ I, it is (t,1) (resp. (1, t)) if i ∈ I \J, (t, t) (resp. (1,1)) if i ∈ Ic∩Jc, and (1,1)
(resp. (t, t)) if i ∈ I ∩ J. The only entries in all these matrices that are left to be

determined are the ones in the upper right corner.

Let us assume that we deal with the profile {1,3, . . . ,2r − 1} | {2,4, . . . ,2r} in

the case (r,2r). In the general case, all arguments are the same. Denote by bi the

upper right corner element of xi. From xiyi = t · id, we have that the upper right

corner element of yi is −bi. From the relation xk = yn−k it follows that ∑2r
i=1 bi = 0.

If n = 6, I = {1,3,5} and J = {2,4,6}, then our module M(I,J) is

V0

(

t b1

0 1

)

//
V1

(

1 b2

0 t

)

//

(

1 −b1

0 t

)

oo V2

(

t b3

0 1

)

//

(

t −b2

0 1

)

oo V3

(

1 b4

0 t

)

//

(

1 −b3

0 t

)

oo V4

(

t b5

0 1

)

//

(

t −b4

0 1

)

oo V5

(

1 b6

0 t

)

//

(

1 −b5

0 t

)

oo V0
(

t −b6

0 1

)

oo

FIGURE 5. A module with filtration {1,3,5} | {2,4,6}.

The question is how to determine the bi’s so that the module M(I,J) is decom-

posable. In [4], we dealt with the tame cases (3,9) and (4,8), and more generally,

the 3-interlacing case, and we constructed all such modules and given criteria, in

terms of divisibility by t of the sums bi +bi+1 (where i is odd), for the constructed

module to be indecomposable. Moreover, in the case of a decomposable module,

we determined the summands of such a module. In this paper we construct all

decomposable modules in the general case of tight r-interlacing. We first consider

the case (r,2r) and show how the general case reduces to this case.

Assume first that M(I,J) is decomposable and that LJ is a direct summand of

M(I,J). Then there exists a retraction µ = (µi)
n
i=1 such that µi ◦ θi = id, where

(θi)
n
i=1 is the natural injection of LJ into M(I,J). Using the same basis as before,

we can assume that µi = [1 αi]. From the commutativity relations we have id ◦
µi = µi+1 ◦ xi+1 for i odd, and t · id ◦ µi = µi+1 ◦ xi+1 for i even. It follows that

αi = bi+1 + tαi+1 for i odd, and tαi = bi+1 +αi+1 for i even. From this we have

t(α2i −α2i+2) = b2i+1 +b2i+2, for i = 0, . . . ,r−1.

Thus, if LJ is a direct summand of M(I,J), then t|bi + bi+1, for i odd, and we

can easily find αi, i = 1, . . . ,n, satisfying previous equations. If only one of these

divisibility conditions is not met, then LJ is not a direct summand of M(I,J). Note

that if LJ is not a summand of M(I,J), it does not mean that M is indecomposable
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(cf. Theorem 3.12 in [2]). We will study the structure of the module M(I,J) in

terms of the divisibility conditions the sums bi +bi+1 satisfy.

Let us now consider the general case, that is, let M(I,J) be the module as defined

above, when I and J are tightly r-interlacing. Write I \ J as {i1, . . . , ir} and J \ I as

{ j1, . . . , jr} so that 1 ≤ i1 < j1 < i2 < j2 < · · ·< ir < jr ≤ n. Define

xil =

Å

t bil

0 1

ã

, x jl =

Å

1 b jl

0 t

ã

, yil =

Å

1 −bil

0 t

ã

, y jl =

Å

t −b jl

0 1

ã

,

for l = 1,2, . . . ,r (see previous figure for n = 6). For i∈ Ic∩Jc, we set xi =

Å

t 0

0 t

ã

and yi =

Å

1 0

0 1

ã

. For i ∈ I ∩ J, we set xi =

Å

1 0

0 1

ã

and yi =

Å

t 0

0 t

ã

. Also, we

assume that ∑n
l=1 bl = 0. Note that for i ∈ (Ic ∩ Jc)∪ (I∩ J) we define the matrices

xi and yi to be diagonal, i.e. we assume that the upper right corner of xi and yi is

0 if i ∈ (Ic ∩ Jc)∪ (I ∩ J). This is because if it were not 0, then by a suitable base

change of the Vi, by changing the second basis element, we obtain a scalar matrix.

By construction, xy = yx and xk = yn−k at all vertices, and M(I,J) is free over the

centre of Bk,n. Hence, the following proposition holds.

Proposition 3.1. The module M(I,J) as constructed above is in CM(Bk,n).

As in the case of the profile {1,3, . . . ,2r−1} | {2,4, . . . ,2r}, LJ is a direct sum-

mand of M(I,J) if and only if t | bil +b jl , for all l. In order to determine the struc-

ture of the module M(I,J) when these divisibility conditions are not fulfilled (i.e.,

at least one of the sums bil +b jl is not divisible by t), we determine the structure of

an endomorphism of this module. The following proposition is a generalization of

Proposition 3.3 in [4].

For the rest of the paper, if tdv = w, for a positive integer d, then t−dw denotes v.

Proposition 3.2. For n ≥ 6, let I,J be tightly r-interlacing, I \ J = {i1, . . . , ir},

and J \ I = { j1, . . . , jr}, where 1 ≤ i1 < j1 < i2 < j2 < · · · < ir < jr ≤ n. Let

Bl := ∑l
g=1(big +b jg). If ϕ = (ϕi)

n
i=1 ∈ End(M(I,J)), then

ϕ jr=

Å

a b

c d

ã

,

ϕil=

Å

a+(Bl−1 +bil )t
−1c tb+(d −a)(Bl−1 +bil )− (Bl−1 +bil )

2t−1c

t−1c d − (Bl−1 +bil )t
−1c

ã

, (3.1)

ϕ jl=

Å

a+Blt
−1c b+ t−1((d −a)Bl −B2

l t−1c)
c d −Blt

−1c

ã

,

ϕi = ϕi−1, for i ∈ (Ic ∩ Jc)∪ (I∩ J),

where l = 1,2, . . . ,r−1, with a,b,c,d ∈C[|t|], and

t | c, t | (d −a)Bl −B2
l t−1c. (3.2)
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Proof. Let ϕ = (ϕ1, . . . ,ϕn) be an endomorphism of M(I,J), where each ϕi is an

element of M2(C[|t|]) (matrices over the centre). We use commutativity relations

xi+1ϕi = ϕi+1xi+1. That xi1 ϕ jr = ϕi1xi1 follows directly from xi1 xi1−1 · · ·x jr+1ϕ jr =
ϕi1 xi1 xi1−1 · · ·x jr+1. Recall that xi1−1, . . . ,x jr+1 are scalar matrices so they cancel

out. If ϕ jr =

Å

a b

c d

ã

and ϕi1 =

Å

e f

g h

ã

, then t | c, e = a+b1t−1c, f = tb+(d −

a)b1 −b2
1t−1c, g = t−1c, and h = d−b1t−1c. The rest is shown in the same way.

Vjr

x jr+1
//

ϕ jr

��

Vjr+1

x jr+2
//

y jr+1

oo · · ·
xi1−1

//

y jr+2

oo Vi1−1

(

t b1

0 1

)

//

yi1−1

oo Vi1
(

1 −b1

0 t

)

oo

ϕi1

��

Vjr

x jr+1
//
Vjr+1

x jr+2
//

y jr+1

oo . . .
xi1−1

//

y jr+2

oo Vi1−1

(

t b1

0 1

)

//

yi1−1

oo Vi1
(

1 −b1

0 t

)

oo

The only thing left to note is that if i∈ (Ic∩Jc)∪(I∩J), then xi is a scalar matrix

(either identity or t times identity), so from xiϕi−1 = ϕixi, we have ϕi−1 = ϕi. �

By Remark 3.4 in [4], if ϕ is the morphism from the previous proposition, then

it is sufficient to prove for a single index i that ϕi is idempotent in order to prove

that ϕ is idempotent. Also, note that in our computations, for i ∈ (Ic∩Jc)∪ (I∩J),
xi is a scalar matrix, it commutes with every other matrix and it cancels out in

xiϕi−1 = ϕixi, so it can be left out.

We now give necessary and sufficient conditions for the module M(I,J) to be

indecomposable.

Theorem 3.1. Let M(I,J) be as in the previous proposition. The module M(I,J)
is indecomposable if and only if there exist indices ig and il , where g < l, such that

t | bis +b js , for g < s < l, t ∤ big +b jg , t ∤ bil +b jl , and t ∤ big +b jg +bil +b jl .

Proof. As in the proof of the previous proposition, it is sufficient to consider the

case (k,n) = (r,2r) of tight r-interlacing where I = {1,3,5, . . . ,2r − 1} and J =
{2,4,6, . . . ,2r}. Let il1 , il2 , . . . , ils be all odd indices i (in cyclic ordering) such that

bi + bi+1 is not divisible by t (note that ilg +1 = jlg ). We assume that there is at

least one such index because if t | bi +bi+1 for all odd i, then M(I,J)∼= LI ⊕LJ.
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Let ϕ = (ϕi)
n−1
i=0 ∈ End(M(I,J)) be an idempotent homomorphism and assume

that ϕ jr =

Å

a b

c d

ã

. Again, denote by Bm the sum ∑m
g=1(bilg

+b jlg
). The divisibility

conditions (3.2) from the previous proposition reduce to

t | c and t | (d −a)Bi −B2
i t−1c, i = 1,2, . . . ,s−1. (3.3)

Without loss of generality we assume that t ∤ B2. Relations (3.3) imply that

t | d −a−B1t−1c and t | d −a−B2t−1c.

Thus, it must hold that t | (bil2
+b jl2

)t−1c, and since t ∤ bil2
+b jl2

, it must be that

t | t−1c, and subsequently that t | d −a.

From the fact that ϕ jr is idempotent and t | c it follows that t | a−a2 and t | d−d2.

Also, from ϕ2
jr
= ϕ jr it follows that either a = d or a + d = 1. If a = d, then

b = c = 0 (otherwise a = d = 1
2

and 1
4
= bc, which is not possible as c is divisible

by t), and a = d = 1 or a = d = 0 giving us the trivial idempotents. If a+ d = 1,

then t | a or t | d. Taking into account that t | d − a, we conclude that t | a and

t | d. This implies that 1 = a+ d is divisible by t, which is not true. Thus, the

only idempotent homomorphisms of M(I,J) are the trivial ones. Hence, M(I,J) is

indecomposable.

Assume now that t | bilg
+ b jlg

+ bilg+1
+ b jlg+1

for every g < s. Then the divisi-

bility conditions (3.3) for the endomorphism ϕ reduce to a single condition

t | d −a− (bil1
+b jl1

)t−1c.

In order to find a non-trivial idempotent ϕ, we only need to find elements a, b,

c, and d in such a way that t | c and t | d − a − (bil1
+ b jl1

)t−1c. Recall that if

a = d, then we only obtain the trivial idempotents because t | c. So it must be

a+ d = 1 if we want to find a non-trivial idempotent. If we choose a = 1, d = 0,

then t | 1+(bil1
+ b jl1

)t−1c. Thus, we can define c = −t(bil1
+ b jl1

)−1, and b = 0

since a−a2 = bc and c 6= 0, to get the idempotent ϕ jr =

Å

1 0

−t(bil1
+b jl1

)−1 0

ã

.

Since this is a non-trivial idempotent, the module M(I,J) is decomposable. �

Remark 3.1. From the previous theorem, keeping the notation from the case (k,n)=
(r,2r), it follows that if M(I,J) is a decomposable module, then since ∑n

i=1 bi = 0

there is an even number of odd i such that t ∤ bi +bi+1. If there was not were an odd

number of odd i such that t ∤ bi +bi+1, then for two consecutive l1 and l2, it would

hold that t ∤ bil1
+bil1+1 +bil2

+bil2+1. Our aim is to determine all such decompos-

able modules, so for the rest of the paper we assume that there is an even number

of odd indices ilg such that t ∤ bilg
+ bilg+1 and t | bilg

+ bilg+1 + bilg+1
+ bilg+1

+1 for

every g.

Corollary 3.1. If n < 6, there are no indecomposable rank 2 modules in CM(Bk,n).
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The rest of the paper is dedicated to the determination of the summands of the

module M(I,J) in the case when this module is decomposable. It is sufficient to

study the case of the filtration {1,3, . . . ,2r−1} | {2,4, . . . ,2r} when k = r and n =
2r. Then the general case of tight r-interlacing follows because the scalar matrices

can be ignored since they do not affect any of the computations we conduct.

Denote I = {1,3, . . . ,2r−1} and J = {2,4, . . . ,2r}. As before, assume that xi =
Å

t bi

0 1

ã

for odd i and xi =

Å

1 bi

0 t

ã

for even i, and that ∑2r
i=1 bi = 0 so that we have

a module structure, which we again denote by M(I,J).
The dimension lattice of a given module in CM(Bk,n) is additive on short exact

sequences. If M(I,J)is the direct sum LX ⊕LY , then from the short exact sequence

0 −→ LJ −→ LX ⊕LY −→ LI −→ 0

follows that the dimension lattices of LX and LY add up to the sum of the dimension

lattice of LI and the dimension lattice of LJ. In terms of the rims, one way to

combinatorially describe possible summands LX and LY is by the fact that the rim

of X has to be “taken out” from the lattice diagram of LX ⊕LY in such a way that

the leftover part of the lattice diagram is the rim Y .

In terms of the peaks of the profile I | J, the rim X corresponds to a subset of

the set of the peaks of I, and the rim Y corresponds to the complement of this set

with respect to the set of peaks of I. To describe it in terms of the path we take in

the lattice diagram of I | J by travelling from left to right, we start from a peak of

I and move to the right (we either go up or down in each step). If we are at a peak

of I (resp. valley of J), then the next step has to be down (resp. up). If we are at a

peak of J, which is also a valley of I, then we have a choice of going up or down.

Eventually, to finish our trip, we have to return to the peak where we started off.

The rim X is determined by the set of peaks of I we passed through during our trip

(by abuse of notation we say that X passes through this set of peaks), and the rim

Y is determined by the peaks of I we did not pass through.

The first four pictures in Figure 6 correspond to the case when X passes through

a single peak of I (and Y passes through three peaks) when we travel from left to

right through the lattice diagram of I | J. The next three pictures correspond to the

case when X passes through two peaks of I (and Y passes through two peaks), and

the last picture corresponds to the case when X passes through all peaks of I and

Y passes through none. Obviously, there is symmetry in the argument so the case

when X passes through one peak and Y through three peaks is the same as the case

when X passes through three peaks and Y passes through one peak. In total, there

are 2r−1 different cases.

Example 3.1. In the case r = 4, there are eight possible choices for X and Y in

such a way that the sum of the dimension lattices of X and Y is the sum of the

dimension lattices of LI and LJ. They are given in Figure 6.
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0 10 2 3 4 5 6 7 8

(A) L{1,3,5,6} ⊕
L{2,4,7,8}

0 10 2 3 4 5 6 7 8

(B) L{1,2,4,6} ⊕
L{3,5,7,8}

0 10 2 3 4 5 6 7 8

(C) L{1,2,5,7} ⊕
L{3,4,6,8}

0 10 2 3 4 5 6 7 8

(D) L{1,3,4,7} ⊕
L{2,5,6,8}

0 10 2 3 4 5 6 7 8

(E) L{1,3,4,6} ⊕
L{2,5,7,8}

0 10 2 3 4 5 6 7 8

(F) L{1,2,4,7} ⊕
L{3,5,6,8}

0 10 2 3 4 5 6 7 8

(G) L{1,2,5,6} ⊕
L{3,4,7,8}

0 10 2 3 4 5 6 7 8

(H) L{1,3,5,7} ⊕
L{2,4,6,8}

FIGURE 6. The pairs of profiles of decomposable extensions be-

tween L{1,3,5,7} and L{2,4,6,8}.

Note that we only classify decomposable modules that are extensions of LJ by

LI , not all possible extensions (cf. Remark 3.9 in [4]).

For a given set X , i.e., for a given subset of the set of peaks of I, and the cor-

responding Y , we give the divisibility conditions for the sums bi +bi+1 so that the

module M(I,J) is isomorphic to LX ⊕ LY . We denote by X ′ (resp. Y ′) the set of

peaks of I that corresponds to X (resp. Y ).

If X passes through every peak of I, then this is the case when X = I and Y = J,

i.e., the case of the direct sum LI ⊕LJ. In terms of the divisibility conditions, this

is the case when t | bi +bi+1, for every odd i.

Assume now that X ′ does not contain all peaks of I. This means that there is a

peak, say 2 j, that belongs to X ′, such that the next peak 2 j+2 belongs to Y ′.



DECOMPOSABLE EXTENSIONS BETWEEN RANK 1 MODULES 309

Then b2 j+1 +b2 j+2 is not divisible by t. If it were divisible by t, then 2 j+2 would

belong to X ′ as we explain in the proof of the next theorem.

Recall that there has to be an even number of steps where we go from a valley to

a peak or from a peak to a valley so that we can come back up to the starting point.

Theorem 3.2. Let X ′ be a subset of the set of peaks of I, {0,2,4, . . . ,2r − 2}, Y ′

its complement, and X and Y corresponding k-subsets of [n]. Also, assume that

1 ≤ |X ′| < r. Starting from a peak in X ′, and moving to the right, define sums

bi +bi+1 so that the following conditions hold:

(1) Assume that the current peak 2 j belongs to X ′. If the next peak 2 j+2 belongs

to X ′, then t | b2 j+1 +b2 j+2.

(2) Assume that the current peak 2 j does not belong to X ′. If the next peak 2 j+2

belongs to X ′, then t ∤ b2 j+1 +b2 j+2.

(3) Assume that the current peak 2 j belongs to X ′. If the next peak 2 j+2 does not

belong to X ′, then t ∤ b2 j+1 +b2 j+2.

(4) Assume that the current peak 2 j does not belong to X ′. If the next peak 2 j+2

does not belong to X ′, then t | b2 j+1 +b2 j+2.

Additionally, we assume that t | bi1 +bi1+1+bi2 +bi2+1 for every two consecutive

odd indices i1 and i2 such that t ∤ bil + bil+1
, l = 1,2. Then the module M(I,J) is

isomorphic to the direct sum LX ⊕LY .

Proof. By Theorem 3.1, the module is decomposable. We start our path at a

peak from X ′. Assume without loss of generality that this peak is 0 and that

the next peak 2 does not belong to X ′, i.e., t ∤ b1 + b2. Define an idempotent

ϕ0 =

Å

1 0

−t(b1 +b2)
−1 0

ã

. Its orthogonal complement is ϕ̃0=

Å

0 0

t(b1 +b2)
−1 1

ã

.

From (3.1) we compute other idempotents ϕi. Let Bl = ∑l
i=1 bi. For odd indices we

get

ϕ2 j+1 =

Å

1−B2 j+1(b1 +b2)
−1 −B2 j+1 +B2

2 j+1(b1 +b2)
−1

−(b1 +b2)
−1 −B2 j+1(b1 +b2)

−1

ã

,

ϕ̃2 j+1 =

Å

B2 j+1(b1 +b2)
−1 B2 j+1(1−B2 j+1(b1 +b2)

−1)
(b1 +b2)

−1 1−B2 j+1(b1 +b2)
−1

ã

,

and for even indices

ϕ2 j =

Å

1−B2 j(b1 +b2)
−1 −t−1B2 j(1−B2 j(b1 +b2)

−1)
−t(b1 +b2)

−1 B2 j(b1 +b2)
−1

ã

,

ϕ̃2 j =

Å

B2 j(b1 +b2)
−1 t−1B2 j(1−B2 j(b1 +b2)

−1)
t(b1 +b2)

−1 1−B2 j(b1 +b2)
−1

ã

.

Let vi (resp. wi) be the eigenvector of ϕi (resp. ϕ̃i) corresponding to the eigen-

value 1. The vectors wi (resp. vi) form a basis for LX (resp. LY ). We compute

directly these eigenvectors. For an odd index we have
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w2 j+1 =

Å

B2 j+1

1

ã

, v2 j+1 =

Å

1−B2 j+1(b1 +b2)
−1

−(b1 +b2)
−1

ã

.

Since t | bi1 +bi1+1 +bi2 +bi2+1, for every two consecutive odd indices i1 and i2
such that t ∤ bil +bil+1, l = 1,2, when computing w2 j and v2 j we have to distinguish

between the following cases. Let g be the number of indices in the set [1, j] such

that t ∤ b2 j−1 +b2 j. If g is even (resp. odd), then t | B2 j (resp. t ∤ B2 j). Therefore, if

g is even, i.e., if B2 j is divisible by t, then

w2 j =

Å

t−1B2 j

1

ã

, v2 j =

Å

1−B2 j(b1 +b2)
−1

−t(b1 +b2)
−1

ã

.

If g is odd, i.e., if B2 j is not divisible by t (B2 j = b1 +b2 + tz, for some z), then

w2 j =

Å

B2 j

t

ã

, v2 j =

Å

t−1(1−B2 j(b1 +b2)
−1)

−(b1 +b2)
−1

ã

.

Combinatorially, g is even (resp. odd) if and only if we are positioned at a peak

(resp. valley) 2 j after (2 j)th step. This follows from the fact that t ∤ b2 j−1 + b2 j

means that we are moving either from a peak to a valley, or from a valley to a peak.

Since we started from a peak, if we are currently at a peak 2 j, then this means that

we had an even number of the moves that correspond to the sums b2i−1 + b2i that

are not divisible by t.

Consider the eigenvectors v0 = [1 , −t(b1 + b2)
−1]t , w0 = [0 , 1]t for ϕ0 and

its orthogonal complement. Then x1w0 = w1 and x2w1 = w2, so 1,2 ∈ X . Also,

x1v0 = tv1 and x2v1 = tv2, so 1,2 /∈ Y . We continue by moving to the right and

consider the four cases from the statement of the theorem.

Case 1: Assume that the current peak 2 j belongs to X ′. If the next peak 2 j +
2 belongs to X ′, then t | b2 j+1 + b2 j+2. In this situation we are moving from a

peak to another peak by going down and then up. Here, t | B2 j and t | B2 j+2.

Since w2 j =

Å

t−1B2 j

1

ã

, w2 j+1 =

Å

B2 j+1

1

ã

, and w2 j+2 =

Å

t−1B2 j+2

1

ã

, we have

x2 j+1w2 j = w2 j+1 and x2 j+2w2 j+1 = tw2 j+2. Thus, 2 j + 1 ∈ X and 2 j + 2 /∈ X .

Analogously, x2 j+1v2 j = tv2 j+1 and x2 j+2v2 j+1 = v2 j+2. Hence, 2 j + 1 /∈ Y and

2 j+2 ∈Y .

Case 2: Assume that the current peak 2 j is not in X ′. If the next peak 2 j + 2

belongs to X ′, then t ∤ b2 j+1 + b2 j+2 and we are moving from a valley to a peak,

i.e., t ∤ B2 j, t | B2 j+2, w2 j=

Å

B2 j

t

ã

, w2 j+1=

Å

B2 j+1

1

ã

, and w2 j+2=

Å

t−1B2 j+2

1

ã

. It

follows that x2 j+1w2 j = tw2 j+1 and x2 j+2w2 j+1 = tw2 j+2. Therefore, 2 j + 1 /∈ X

and 2 j + 2 /∈ X . Analogously, x2 j+1v2 j = v2 j+1 and x2 j+2v2 j+1 = v2 j+2. Thus,

2 j+1 ∈Y and 2 j+2 ∈ Y .

Case 3: Assume that the current peak 2 j belongs to X ′. If the next peak 2 j+2 is

not in X ′, then t ∤ b2 j+1+b2 j+2 and we move from a peak to a valley. Here, t |B2 j, t ∤
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B2 j+2, w2 j =

Å

t−1B2 j

1

ã

, w2 j+1 =

Å

B2 j+1

1

ã

, and w2 j+2 =

Å

B2 j+2

t

ã

. It follows that

x2 j+1w2 j = w2 j+1 and x2 j+2w2 j+1 = w2 j+2. Thus, 2 j+1,2 j+2 ∈ X . Analogously,

x2 j+1v2 j = tv2 j+1 and x2 j+2v2 j+1 = tv2 j+2. Therefore, 2 j+1,2 j+2 /∈Y .

Case 4: Assume that the current peak 2 j is not in X ′. If the next peak 2 j+2 is not

in X ′, then t | b2 j+1+b2 j+2 and we move from a valley to a valley. Here, t ∤ B2 j and

t ∤ B2 j+2. In this case w2 j =

Å

B2 j

t

ã

, w2 j+1 =

Å

B2 j+1

1

ã

, and w2 j+2 =

Å

B2 j+2

t

ã

.

It follows that x2 j+1w2 j = tw2 j+1 and x2 j+2w2 j+1 = w2 j+2. Hence, 2 j + 1 /∈ X

and 2 j + 2 ∈ X . Analogously, x2 j+1v2 j = v2 j+1 and x2 j+2v2 j+1 = tv2 j+2. Thus,

2 j+1 ∈Y and 2 j+2 /∈ Y . �

Remark 3.2. Since X ′ was arbitrary in the previous theorem, and it corresponds to

an arbitrary rim X and the module LX that is, combinatorially, a possible summand

of M(I,J), it follows that we proved that the modules constructed in the previous

theorem are all possible decomposable modules with filtration I | J.

Example 3.2. Consider Figure (F) from Example 3.1 (see Figure 6). Here, X =

0 10 2 3 4 5 6 7 8

FIGURE 7. A pair of profiles for L{1,2,4,7}⊕L{3,5,6,8}

{1,2,4,7}, X ′ = {0,6}, Y = {3,5,6,8}, and Y ′ = {2,4}. Define bi, i = 1, . . . ,8,

as follows. We start at the peak 0, and we travel to the right by going through

two points at each step. We first reach valley 2 by going down and down. Here,

t ∤ b1 +b2 because of the third condition from the previous theorem. Then we reach

valley 4 by going up and down. Here, t | b3 + b4 because of the fourth condition

from the previous theorem. Next, we reach peak 6 by going up and up. By the

second condition from the previous theorem, it must be t ∤ b5 + b6. Finally, we

come back to the starting peak 0 by going down and then up. As stated in the first

condition of the previous theorem, we have that t | b7 +b8. Therefore, if t ∤ b1 +b2,

t | b3 + b4, t ∤ b5 + b6, and t | b7 + b8, then the module M(I,J) is isomorphic to

L{1,2,4,7} ⊕ L{3,5,6,8}. Note that we also have to make sure that ∑8
i=1 bi = 0. For

example, we can set b1 +b2 =−(b5 +b6) = 1 and b3 +b4 =−(b7 +b8) = t.

Remark 3.3. It is not too difficult to generalize Theorem 3.2, by taking analogous

paths in the lattice diagram, to the general case when the layers of the profile I | J

are r-interlacing, r ≥ 3, and the profile I | J has r squared boxes, with poset 1r | 2

(we refer the reader to [4] for details on the notion of a box, the poset of a profile,



312 DUSKO BOGDANIC AND IVAN-VANJA BOROJA

and a branching point of a profile). The path is analogous to the path in the tight

interlacing case, at each branching point (a point where the rims meet) we have

an option to either go up or down. This path uniquely determines the summands

LX and LY . For instance, in [4, Example 4.14], in order to construct decomposable

modules with the profile 2478 | 1356 we define xi =

Å

t bi

0 1

ã

, for i = 2,4,7,8,

and xi =

Å

1 bi

0 t

ã

, for i = 1,3,5,6, and assume that ∑6
i=1 bi + t(b6 + b7) = 0. If

t | b8+b1, t | b2+b3, and t | b4+b5, then M(I,J)∼= LI ⊕LJ. If t ∤ b2+b3, t | b4+b5,

t ∤ b8 +b1, then M(I,J)∼= L{2,3,5,6}⊕L{1,4,7,8}. If t | b2 +b3, t ∤ b4 +b5, t ∤ b8 +b1,

then M(I,J) ∼= L{2,4,5,6} ⊕ L{1,3,7,8}. If t ∤ b2 + b3, t ∤ b4 + b5, t | b8 + b1, then

M(I,J)∼= L{2,3,7,8}⊕L{1,4,5,6}.

REFERENCES

[1] K. Baur and D. Bogdanic, Extensions between Cohen–Macaulay modules of Grassmannian

cluster categories, J. Algebraic Combin., (2016), 1–36.

[2] K. Baur, D. Bogdanic, and A. G. Elsener, Cluster categories from Grassmannians and root

combinatorics, Nagoya Math. J., (2019), 1–33.

[3] K. Baur, D. Bogdanic, A. G. Elsener, and J.-R. Li, Rigid indecomposable modules in Grass-

mannian cluster categories, arXiv:2011.09227, (2020)

[4] K. Baur, D. Bogdanic, and J.-R. Li, Construction of rank 2 indecomposable modules in Grass-

mannian cluster categories, Advanced Studies in Pure Mathematics, Volume 88 ”The McKay

correspondence, Mutation and related topics”, Mathematical Society of Japan, (2022).

[5] H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their representations.

I. Mutations, Selecta Math. (N.S.), vol. 14, no. 1, (2008), 59–119.
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