ON DECOMPOSITION OF THE DIRICHLET KERNEL ON VILENKIN GROUPS

AMIL PEČENKOVIĆ

Abstract. We give a useful decomposition of the Dirichlet kernel on Vilenkin groups.

1. Introduction

The Dirichlet kernel is an important concept in harmonic analysis on Vilenkin groups. Indeed, it is well known (see [1]) that for a function $f \in L^{1}(G)$ we have

$$
\begin{equation*}
S_{n}(f, x)=\int_{G} f(x-u) \cdot D_{n}(u) d \mu(u), x \in G, \tag{1.1}
\end{equation*}
$$

where G is a Vilenkin group, μ is the normalized Haar measure on G, D_{n} is the Dirichlet kernel on G, and $S_{n}(f, x)$ is the n-th partial sum of the Fourier-Vilenkin series of the function f. So, (1.1) shows that the properties of the Dirichlet kernel affect the properties of the sequence $\left(S_{n}(f, x)\right)_{n=0}^{\infty}$. But, one of the main questions in harmonic analysis on Vilenkin groups is whether $\left(S_{n}(f, x)\right)_{n=0}^{\infty}$ converges in some sense to f (and under which conditions on f).

Some properties of the Dirichlet kernel on the dyadic group are given in [5], [9], and on Vilenkin groups are given in [1], [3], [8], [10]. In [4] the author introduced the Dirichlet kernel of the Vilenkin-like orthonormal system, which is a generalization of the Vilenkin system. In [7] we studied the Dirichlet kernel on the group of 2 -adic integers (which is an example of a Vilenkin group).

2. Preliminaries

Let us denote with \mathbb{N} the set of nonnegative integers.
For a positive integer n define

$$
\mathbb{Z}_{n}:=\{0,1, \ldots, n-1\} .
$$

We shall endow \mathbb{Z}_{n} with the discrete topology as well with the operation of addition modulo n.

Let $\left(m_{i}\right)_{i=0}^{\infty}$ be a sequence of positive integers which satisfies $m_{i} \geq 2, \forall i \in \mathbb{N}$.
Define

$$
G:=\prod_{i=0}^{\infty} \mathbb{Z}_{m_{i}}
$$

2010 Mathematics Subject Classification. 42C10.
Key words and phrases. Dirichlet kernel, Vilenkin group.

We shall endow G with the product topology and with the component-wise addition.

Then (see [1]) G is a Vilenkin group.
In particular, if $m_{i}=2$ for all $i \in \mathbb{N}$, we call G the dyadic group.
Define the sequence of integers $\left(M_{i}\right)_{i=0}^{\infty}$ by

$$
\begin{equation*}
M_{0}:=1, M_{i+1}:=m_{i} \cdot M_{i}, i \geq 0 \tag{2.1}
\end{equation*}
$$

It is known (see [1]) that each $n \in \mathbb{N}$ can be expressed as

$$
\begin{equation*}
n=\sum_{i=0}^{\infty} n_{i} \cdot M_{i}, n_{i} \in\left\{0,1, \ldots, m_{i}-1\right\} \tag{2.2}
\end{equation*}
$$

in a unique way. We'll call (2.2) the representation of n.
Define

$$
\begin{equation*}
I_{0}:=G, I_{n}:=\left\{\left(x_{i}\right)_{i=0}^{\infty} \in G \mid x_{0}=\cdots=x_{n-1}=0\right\} \tag{2.3}
\end{equation*}
$$

Then $\left\{I_{n} \mid n \in \mathbb{N}\right\}$ is a family of both open and closed sets which satisfies

$$
\begin{equation*}
I_{0} \supseteq I_{1} \supseteq \ldots I_{n} \supseteq \ldots \tag{2.4}
\end{equation*}
$$

It is known (see [1], [6]) that there is a unique Haar measure μ on G such that $\mu(G)=1$.

For $k \in \mathbb{N}$ define

$$
\begin{equation*}
r_{k}(x):=e^{\frac{2 \pi i x_{k}}{m_{k}}}, x=\left(x_{i}\right)_{i=0}^{\infty} \in G \tag{2.5}
\end{equation*}
$$

For $n \in \mathbb{N}$ define

$$
\psi_{n}(x):=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x), x \in G
$$

It is known (see [1]) that $\left(\psi_{n}\right)_{n=0}^{\infty}$ is an orthonormal system on G, i.e. it satisfies

$$
\int_{G} \psi_{n}(x) \overline{\psi_{m}(x)} d \mu(x)=\delta_{m, n}, m, n \in \mathbb{N}
$$

where $\delta_{m, n}$ is the Kronecker symbol. The system $\left(\psi_{n}\right)_{n=0}^{\infty}$ is called a Vilenkin system.

The Dirichlet kernel is defined by

$$
D_{0}:=(x)=0, D_{n}(x):=\sum_{i=0}^{n-1} \psi_{i}(x), n \geq 1
$$

It is known (see [1], [2]) that for each $n \in \mathbb{N}$

$$
D_{M_{n}}(x)= \begin{cases}M_{n}, & x \in I_{n} \tag{2.6}\\ 0, & x \notin I_{n}\end{cases}
$$

It is also known (see [2]) that

$$
\begin{equation*}
D_{n}(x)=\psi_{n}(x) \cdot\left(\sum_{k=0}^{\infty} D_{M_{k}}(x) \cdot \sum_{s=m_{k}-n_{k}}^{m_{k}-1} r_{k}^{s}(x)\right), x \in G, n \in \mathbb{N} \tag{2.7}
\end{equation*}
$$

where $n=\sum_{k=0}^{\infty} n_{k} \cdot M_{k}$ is the representation of n.

The sequence $\left(e_{i}\right)_{i=0}^{\infty}$ of elements in G is defined as

$$
\begin{equation*}
e_{i}:=\left(\delta_{j, i}\right)_{j=0}^{\infty}, i \in \mathbb{N} \tag{2.8}
\end{equation*}
$$

where $\delta_{j, i}$ denotes the Kronecker symbol.
The characteristic function of the set A will be denoted with χ_{A}.
The support of a function $f: G \rightarrow \mathbb{C}$ will be defined by

$$
\operatorname{supp}(f):=\overline{\{x \in G: f(x) \neq 0\}}
$$

3. RESULTS

For $j \in \mathbb{N}$ define

$$
y_{j}:=\sum_{i=0}^{\infty} j_{i} \cdot e_{i}
$$

where $j=\sum_{i=0}^{\infty} j_{i} \cdot M_{i}$ is the representation of j.
Lemma 3.1. Let $j \in \mathbb{N}$. Suppose

$$
\begin{equation*}
j=\sum_{i=0}^{\infty} j_{i} \cdot M_{i}, j_{i} \in\left\{0,1, \ldots, m_{i}-1\right\} \tag{3.1}
\end{equation*}
$$

is the representation of j. Then:
i) For each positive integer k

$$
\begin{equation*}
j \leq M_{k}-1 \Leftrightarrow y_{j}=j_{0} \cdot e_{0}+j_{1} \cdot e_{1}+\ldots+j_{k-1} \cdot e_{k-1} \tag{3.2}
\end{equation*}
$$

ii) For each positive integer k, the function
$f_{k}:\left\{0,1, \ldots, M_{k}-1\right\} \rightarrow\left\{\alpha_{0} \cdot e_{0}+\ldots \alpha_{k-1} \cdot e_{k-1}: \alpha_{i} \in\left\{0,1, \ldots, m_{i}-1\right\}, i=\overline{0, k-1}\right\}$
defined by

$$
\begin{equation*}
f_{k}(j)=\sum_{i=0}^{k-1} j_{i} \cdot e_{i}, \forall j=\sum_{i=0}^{\infty} j_{i} M_{i} \in\left\{0,1, \ldots, M_{k}-1\right\} \tag{3.3}
\end{equation*}
$$

is bijective.
Notice that (3.3) is equivalent to $f_{k}(j)=y_{j}, j=\overline{0, M_{k}-1}$.
iii) For each positive integer k

$$
\begin{equation*}
G=\biguplus_{j=0}^{M_{k}-1}\left(y_{j}+I_{k}\right) \tag{3.4}
\end{equation*}
$$

iv) For each $k, j \in \mathbb{N}$

$$
\begin{equation*}
y_{j} \in I_{k} \Leftrightarrow j \equiv 0\left(\bmod M_{k}\right) \tag{3.5}
\end{equation*}
$$

In particular,

$$
y_{j} \in I_{k} \backslash I_{k+1} \Leftrightarrow j \equiv 0\left(\bmod M_{k}\right) \wedge j \not \equiv 0\left(\bmod M_{k+1}\right)
$$

Proof.
i) If $j \leq M_{k}-1$, then obviously $j_{i}=0$ for $i \geq k$. Conversely, if $y_{j}=j_{0} \cdot e_{0}+\ldots+$ $j_{k-1} \cdot e_{k-1}$, we get

$$
j=\sum_{i=0}^{k-1} j_{i} M_{i} \leq \sum_{i=0}^{k-1}\left(m_{i}-1\right) M_{i}=\sum_{i=0}^{k-1}\left(M_{i+1}-M_{i}\right)=M_{k}-1
$$

where we used (2.1).
ii) The function f_{k} is well defined because of (3.1) and (3.2). Obviously, f_{k} is bijective.
iii) Using (2.3) we get

$$
\begin{equation*}
G=\biguplus_{\alpha_{0}=0}^{m_{0}-1} \cdots \biguplus_{\alpha_{k-1}=0}^{m_{k-1}-1}\left(\alpha_{0} \cdot e_{0}+\cdots+\alpha_{k-1} \cdot e_{k-1}+I_{k}\right) \tag{3.6}
\end{equation*}
$$

Now, (3.4) follows from (3.6) and claim ii) of this Lemma.
iv) If $y_{j} \in I_{k}$, then (2.3) implies $j_{0}=\cdots=j_{k-1}=0$. Therefore,

$$
j=\sum_{i=k}^{\infty} j_{i} \cdot M_{i} \equiv 0\left(\bmod M_{k}\right)
$$

Conversely, if $j \equiv 0\left(\bmod M_{k}\right)$, then

$$
\sum_{i=0}^{k-1} j_{i} M_{i} \equiv \sum_{i=0}^{\infty} j_{i} M_{i}=j \equiv 0\left(\bmod M_{k}\right)
$$

But, since

$$
0 \leq \sum_{i=0}^{k-1} j_{i} M_{i} \leq \sum_{i=0}^{k-1}\left(m_{i}-1\right) M_{i}=M_{k}-1
$$

we get $j_{0}=\cdots=j_{k-1}=0$. Therefore, (3.5) holds.
Lemma 3.2. For each $n, k \in \mathbb{N}$

$$
\begin{equation*}
D_{M_{n}}=M_{n} \cdot \sum_{s_{0}=0}^{m_{n}-1} \sum_{s_{1}=0}^{m_{n+1}-1} \cdots \sum_{s_{k}=0}^{m_{n+k}-1} \chi_{s_{0} e_{n}+s_{1} e_{n+1}+\ldots+s_{k} e_{n+k}+I_{n+k+1}} \tag{3.7}
\end{equation*}
$$

where the supports of characteristic functions appearing on the right side of (3.7) are pairwise disjoint.

Proof. By applying (2.3) and (2.8) we get

$$
\begin{equation*}
I_{n}=\biguplus_{s_{0}=0}^{m_{n}-1} \biguplus_{s_{1}=0}^{m_{n+1}-1} \cdots \biguplus_{s_{k}=0}^{m_{n+k}-1}\left(s_{0} e_{n}+s_{1} e_{n+1}+\ldots+s_{k} e_{n+k}+I_{n+k+1}\right) \tag{3.8}
\end{equation*}
$$

for all $n, k \in \mathbb{N}$.
Therefore, using (2.6) we have

$$
D_{M_{n}}=M_{n} \cdot \chi_{I_{n}}=M_{n} \cdot \sum_{s_{0}=0}^{m_{n}-1} \sum_{s_{1}=0}^{m_{n+1}-1} \cdots \sum_{s_{k}=0}^{m_{n+k}-1} \chi_{s_{0} e_{n}+s_{1} e_{n+1}+\ldots+s_{k} e_{n+k}+I_{n+k+1}}
$$

Disjointness of supports of the functions appearing on the right side of (3.7) follows from (3.8).

Lemma 3.3. For each $n, l, k \in \mathbb{N}$ and each $x \in G$

$$
D_{M_{n}}(x) \cdot r_{n}^{l}(x)=\sum_{j=0}^{M_{n+k+1}-1} a_{j}(n, l, k) \cdot D_{M_{n+k+1}}\left(x-y_{j}\right),
$$

where $a_{j}(n, l, k), j=\overline{0, M_{n+k+1}-1}$ are constants.
Proof. Using Lemma 3.2 we get

$$
\begin{equation*}
D_{M_{n}}(x) r_{n}^{l}(x)=M_{n} \cdot \sum_{s_{0}=0}^{m_{n}-1} \sum_{s_{1}=0}^{m_{n+1}-1} \cdots \sum_{s_{k}=0}^{m_{n+k}-1} r_{n}^{l}(x) \chi_{s_{0} e_{n}+s_{1} e_{n+1}+\ldots+s_{k} e_{n+k}+l_{n+k+1}}(x), \tag{3.9}
\end{equation*}
$$

for each $x \in G$ and each $n, l, k \in \mathbb{N}$.
By applying (2.5) we have

$$
\begin{equation*}
r_{n}^{l}(x) \cdot \chi_{s_{0} e_{n}+\ldots+s_{k} e_{n+k}+I_{n+k+1}}(x)=e^{\frac{2 \pi i_{0} l}{m_{n} l}} \chi_{s_{0} e_{n}+\ldots+s_{k} e_{n+k}+I_{n+k+1}}(x) \tag{3.10}
\end{equation*}
$$

for all $x \in G$.
Besides, using (2.6) we get

$$
\begin{equation*}
\chi_{s_{0} e_{n}+\ldots+s_{k} e_{n+k}+I_{n+k+1}}(x)=\frac{1}{M_{n+k+1}} D_{M_{n+k+1}}\left(x-\left(s_{0} e_{n}+\ldots+s_{k} e_{n+k}\right)\right) \tag{3.11}
\end{equation*}
$$

for all $x \in G$ and all $s_{i} \in\left\{0,1, \ldots, m_{n+i}-1\right\}, i=\overline{0, k}$.
Now, combining (3.9), (3.10) and (3.11) gives us

$$
D_{M_{n}}(x) r_{n}^{l}(x)=\sum_{s_{0}=0}^{m_{n}-1} \sum_{s_{1}=0}^{m_{n+1}-1} \cdots \sum_{s_{k}=0}^{m_{n+k}-1} \frac{M_{n} \cdot e^{\frac{2 \pi s_{0} l}{m_{n}}}}{M_{n+k+1}} D_{M_{n+k+1}}\left(x-\left(s_{0} e_{n}+\ldots+s_{k} e_{n+k}\right)\right) .
$$

Finally, this and claim i) of Lemma 3.1 gives us the claim of this Lemma.
Theorem 3.1. Let n be a positive integer and

$$
n=n_{k_{1}} M_{k_{1}}+\ldots+n_{k_{l}} M_{k_{l}}
$$

be the representation of n, where $0 \leq k_{1}, k_{i}<k_{j}$ for $i<j$, and $n_{k_{i}} \in\left\{1, \ldots, m_{k_{i}}-\right.$ $1\}, i=\overline{1, l}$. Then

$$
\begin{equation*}
D_{n}(x)=\psi_{n}(x)\left(\sum_{j=0}^{M_{k_{l}}-1} a_{n, j} \cdot D_{M_{k_{l}}}\left(x-y_{j}\right)\right), x \in G \tag{3.12}
\end{equation*}
$$

where $a_{n, j}, j=\overline{1, M_{k_{l}}-1}$ are constants, and $a_{n, 0}$ is a function on G. Moreover, we have:
i) If $j \not \equiv 0\left(\bmod M_{k_{1}}\right)$, then $a_{n, j}=0$,
ii) If $j \equiv 0\left(\bmod M_{k_{p}}\right), j \not \equiv 0\left(\bmod M_{k_{p+1}}\right)$ for some $p \in\{1, \ldots, l-1\}$, then

$$
a_{n, j}=\frac{1}{M_{k_{l}}} \sum_{i=1}^{p-1} n_{k_{i}} M_{k_{i}}+\frac{M_{k_{p}}}{M_{k_{l}}} \sum_{s=m_{k_{p}}-n_{k_{p}}}^{m_{k_{p}}-1} e^{\frac{2 \pi i s a}{m_{k_{p}}}},
$$

where $a=\frac{j\left(\bmod M_{k_{p}+1}\right)}{M_{k_{p}}}$. In particular, if $j \equiv 0\left(\bmod M_{k_{p}+1}\right)$, then

$$
a_{n, j}=\frac{1}{M_{k_{l}}} \sum_{i=1}^{p} n_{k_{i}} M_{k_{i}}
$$

iii)

$$
a_{n, 0}(x)=\frac{1}{M_{k_{l}}} \sum_{i=1}^{l-1} n_{k_{i}} M_{k_{i}}+\sum_{s=m_{k_{l}}-n_{k_{l}}}^{m_{k_{l}}-1} e^{\frac{2 \pi i x_{k_{l}} s}{m_{k_{l}}}}, x \in I_{k_{l}} .
$$

Proof. From (2.7) we have

$$
D_{n}(x)=\psi_{n}(x)\left(\sum_{i=1}^{l} D_{M_{k_{i}}}(x) \cdot \sum_{s=m_{k_{i}}-n_{k_{i}}}^{m_{k_{i}}-1} r_{k_{i}}^{s}(x)\right)
$$

Applying Lemma 3.3 to each of the functions $D_{M_{k_{i}}}(x) \cdot r_{k_{i}}^{s}(x), i \in\{1, \ldots, l-1\}$, $s \in\left\{m_{k_{i}}-n_{k_{i}}, \ldots, m_{k_{i}}-1\right\}$ gives us for each $x \in G$

$$
\sum_{i=1}^{l-1} D_{M_{k_{i}}}(x) \cdot \sum_{s=m_{k_{i}}-n_{k_{i}}}^{m_{k_{i}}-1} r_{k_{i}}^{s}(x)=b_{0} \cdot D_{M_{k_{l}}}\left(x-y_{0}\right)+\sum_{j=1}^{M_{k_{l}}-1} a_{n, j} \cdot D_{M_{k_{l}}}\left(x-y_{j}\right)
$$

where $b_{0}, a_{n, j}, j=\overline{1, M_{k_{l}}-1}$ are constants. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{l} D_{M_{k_{i}}}(x) \sum_{s=m_{k_{i}}-n_{k_{i}}}^{m_{k_{i}}-1} r_{k_{i}}^{s}(x)=a_{n, 0}(x) \cdot D_{M_{k_{l}}}\left(x-y_{0}\right)+\sum_{p=1}^{M_{k_{l}}-1} a_{n, p} \cdot D_{M_{k_{l}}}\left(x-y_{p}\right) \tag{3.13}
\end{equation*}
$$

for all $x \in G$, where $a_{n, j}, j=\overline{1, M_{k_{l}}-1}$ are constants.
On the other hand, using (2.6) and the fact that $y_{j}+I_{k_{l}}$ is closed we conclude that the support of the function $D_{M_{k_{l}}}\left(x-y_{j}\right)$ satisfies

$$
\begin{equation*}
\operatorname{supp}\left(D_{M_{k_{l}}}\left(\cdot-y_{j}\right)\right)=y_{j}+I_{k_{l}}, j \in\left\{0,1, \ldots, M_{k_{l}}\right\} \tag{3.14}
\end{equation*}
$$

Besides, using claim iii) of Lemma 3.1 we have

$$
G=\biguplus_{j=0}^{M_{k_{l}}-1}\left(y_{j}+I_{k_{l}}\right)
$$

Let's take $j \in\left\{1,2, \ldots, M_{k_{l}}-1\right\}$ arbitrary and fix it. If we put $x=y_{j}$ into (3.13) and take into account (3.14) and (3.15), we get

$$
\begin{equation*}
a_{n, j} \cdot M_{k_{l}}=\sum_{i=1}^{l} D_{M_{k_{i}}}\left(y_{j}\right) \cdot \sum_{s=m_{k_{i}}-n_{k_{i}}}^{m_{k_{i}}-1} r_{k_{i}}^{s}\left(y_{j}\right) . \tag{3.16}
\end{equation*}
$$

Now, we consider two cases:
i) $j \not \equiv 0\left(\bmod M_{k_{1}}\right)$.

Then, using (2.4) and claim iv) of Lemma 3.1 gives us

$$
y_{j} \notin I_{k_{1}} \supseteq I_{k_{2}} \ldots \supseteq I_{k_{l}} .
$$

This together with (2.6) implies

$$
\begin{equation*}
D_{M_{k_{1}}}\left(y_{j}\right)=\cdots=D_{M_{k_{l}}}\left(y_{j}\right)=0 \tag{3.17}
\end{equation*}
$$

Now, combining (3.17) with (3.16) gives us $a_{n, j}=0$.
ii) $j \equiv 0\left(\bmod M_{k_{p}}\right), j \not \equiv 0\left(\bmod M_{k_{p+1}}\right)$ for some $1 \leq p \leq l-1$.

Therefore, the representation of j is

$$
j=\sum_{i=k_{p}}^{\infty} j_{i} \cdot M_{i}, j_{i} \in\left\{0,1, \ldots, m_{i}-1\right\}, \forall i \geq k_{p} .
$$

Put $a:=j_{k_{p}}$. Notice that $a=\frac{j\left(\bmod M_{k_{p}+1}\right)}{M_{k_{p}}}$. Using claim iv) of Lemma 3.1 we conclude $y_{j} \in I_{k_{p}}, y_{j} \notin I_{k_{p+1}}$. Applying (2.6) gives us

$$
\begin{equation*}
D_{M_{k_{i}}}\left(y_{j}\right)=M_{k_{i}}, \forall i \in\{1, \ldots, p\}, D_{M_{k_{i}}}\left(y_{j}\right)=0, \forall i \in\{p+1, \ldots, l\} . \tag{3.18}
\end{equation*}
$$

Combining (3.18) with (3.16) gives us

$$
\begin{equation*}
a_{n, j} \cdot M_{k_{l}}=\sum_{i=1}^{p} M_{k_{i}} \cdot \sum_{s=m_{k_{i}}-n_{k_{i}}}^{m_{k_{i}}-1} r_{k_{i}}^{s}\left(y_{j}\right) . \tag{3.19}
\end{equation*}
$$

On the other hand, using (2.5) and the fact $y_{j} \in I_{k_{p}}$, we get

$$
r_{k_{1}}\left(y_{j}\right)=\cdots=r_{k_{p-1}}\left(y_{j}\right)=1, \text { a } r_{k_{p}}\left(y_{j}\right)=e^{\frac{2 \pi i a}{m_{k_{p}}}}
$$

This together with (3.19) gives us

$$
a_{n, j}=\frac{1}{M_{k_{l}}} \sum_{i=1}^{p-1} n_{k_{i}} M_{k_{i}}+\frac{M_{k_{p}}}{M_{k_{l}}} \sum_{s=m_{k_{p}}-n_{k_{p}}}^{m_{k_{p}}-1} e^{\frac{2 \pi i s a}{m_{k_{p}}}}
$$

Now, let's assume $x \in I_{k_{l}}$. Since $y_{0}=(0)_{n=0}^{\infty}$, we have

$$
\begin{equation*}
x \in y_{0}+I_{k_{l}} . \tag{3.20}
\end{equation*}
$$

From (3.20) and (3.15) we get

$$
\begin{equation*}
x \notin y_{j}+I_{k_{l}}, \forall j \in\left\{1,2, \ldots, M_{k_{l}}-1\right\} . \tag{3.21}
\end{equation*}
$$

Finally, (3.21), (3.13) and (3.14) imply

$$
\begin{aligned}
a_{n, 0}(x) \cdot M_{k_{l}} & =\sum_{i=1}^{l} D_{M_{k_{i}}}(x) \cdot \sum_{s=m_{k_{i}}-n_{k_{i}}}^{m_{k_{i}}-1} r_{k_{i}}^{s}(x) \\
& =\sum_{i=1}^{l-1} n_{k_{i}} M_{k_{i}}+M_{k_{l}} \sum_{s=m_{k_{l}}-n_{k_{l}}}^{m_{k_{l}}-1} e^{\frac{2 \pi i k_{k_{l}} s}{m_{k_{l}}}},
\end{aligned}
$$

where we have used $D_{M_{k_{i}}}(x)=M_{k_{i}}, i=\overline{1, l}$, and

$$
r_{k_{1}}(x)=\cdots=r_{k_{l-1}}(x)=1, r_{k_{l}}(x)=e^{\frac{2 \pi i x_{k_{l}} s}{m_{k_{l}}}}\left(\text { since } x \in I_{k_{l}}\right)
$$

Remark 3.1. From (3.14) and (3.15) we see that (3.12) gives us a decomposition of the Dirichlet kernel D_{n} into the sum of functions with disjoint supports.

Remark 3.2. We can define the function $a_{n, 0}$ in an arbitrary way outside the set $I_{k_{l}}$,, because of (3.12) and the fact that $D_{M_{k_{l}}}$ vanishes outside the set $I_{k_{l}}$.

REFERENCES

[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshteĭn, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups (in Russian), Baku, 1981.
[2] I. Blahota, L. E. Persson, G. Tephnadze, Two-sided estimates of the Lebesgue constants with respect to Vilenkin systems and applications, Glasg. Math. J. 60 (2018), no. 1, 17-34.
[3] S. Fridli, P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Math. Hung. 45 (1985), no. 1-2, 223-234.
[4] G. Gat, On (C, 1) summability for Vilenkin-like systems, Studia Math. 144 (2001), no. 2, 101120.
[5] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Kluwer Academic Publishers Group, Dordrecht, 1991.
[6] E. Hewitt, K. A. Ross, Abstract harmonic analysis, vol. I, Springer-Verlag, Berlin, 1963.
[7] N. Memić, A. Pečenković, On the L_{1} norm of the Dirichlet kernel on the group of 2-adic integers, Acta Univ. Apulensis Math. Inform. 63 (2020), 123-130.
[8] M. Pepić, About characters and the Dirichlet kernel on Vilenkin groups, Sarajevo J. Math. 4 (2008), no. 1, 109-123.
[9] F. Schipp, W.R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990.
[10] N. Ya. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl. 28 (1963), no. 2, 1-35.
(Received: October 07, 2021)
(Revised: October 20, 2022)

Amil Pečenković
University of Sarajevo
Department of Mathematics
71000 Sarajevo, Zmaja od Bosne 33-35, BA
e-mail: amil.pecenkovic@gmail.com

