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ON THE VALUE SHARING OF q-c-SHIFT AND q-SHIFT MONOMIALS

OF MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES

ABHIJIT BANERJEE AND TANIA BISWAS

ABSTRACT. In this paper, we employ the notion of weighted sharing to study

the uniqueness problems of q-c-shift and q-shift monomials of transcendental

meromorphic functions of zero order sharing 1-points. The results in this paper

extend some previous results.

1. INTRODUCTION AND RESULTS

We use the standard notation and fundamental results of Nevanlinna theory

(see [7, 13, 18]) and by meromorphic functions we will always mean meromor-

phic functions in the complex plane. For a non-constant meromorphic function

f , we denote by T (r, f ) the Nevanlinna characteristic function of f . We define

α(z) 6≡ 0,∞ as a small function with respect to f (z), if T (r,α) = S(r, f ), where

S(r, f ) denotes any quantity satisfying S(r, f ) = o{T (r, f )} as r → ∞ possibly out-

side a set of finite linear measure. The order of f is defined by

ρ( f ) = limsup
r→∞

logT (r, f )

logr
.

Let f (z) and g(z) be two non-constant meromorphic functions and a be any

complex constant. We say that f (z) and g(z) share the value a CM (counting mul-

tiplicities) if f (z)−a and g(z)−a have the same zeros with the same multiplicities

and f (z), g(z) share a IM (ignoring multiplicities) if only the locations of zeros are

considered.

Around 2001, I. Lahiri introduced the concept of weighted sharing in the litera-

ture [11, 12]. It indicates the gradual change of shared values from CM to IM. We

recall the definition below.

Definition 1.1. [12] Let k ∈N∪{0}∪{∞} and a∈C∪{∞}. We denote by Ek(a; f )
the set of all a-points of f where an a-point of multiplicity m is counted m times if

m ≤ k and k+1 times if m > k. If Ek(a; f ) = Ek(a;g), we say that f , g share the

value a with weight k.
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Clearly if f , g share (a,k) then f , g share (a, p) for any integer p, 0 ≤ p < k.

Also we note that f , g share a value a IM or CM if and only if f , g share (a,0) or

(a,∞) respectively.

In 2006, Halburd-Korhonen [6] obtained the difference analogue of the loga-

rithmic derivative lemma for a finite order meromorphic function. In the next year,

the same type of result corresponding to f (qz) for zero-order meromorphic func-

tion was discovered in [4]. These two results induced great interest among the

researchers to investigate the uniqueness problem of entire or meromorphic func-

tions and their shift or difference operator.

For q ∈ C\{0,1}, shift, q-c-shift and q-shift operators of a non-constant mero-

morphic function are defined by f (z+ c), f (qz+ c) and f (qz) respectively.

In this paper, by P(z) we mean the polynomial: P(z) = anzn +an−1zn−1 + · · ·+
a1z + a0, where a0,a1, . . . ,an 6= 0 are complex constants and n(≥ 1) is an inte-

ger. For a meromorphic function h and a finite complex constant c, we define

P(h)(z)h(qz+c) and P(h)(z)h(qz) as q-c-shift and q-shift monomials respectively.

For the sake of convenience, let Γ0 = m1 +m2 and Γ1 = m1 + 2m2, where m1, m2

respectively is the number of simple and multiple zeros of P(z).
In 2013, the first theorem on the q-c-shift operator was presented by Lui-Cao-

Qi-Yi [15] as follows:

Theorem A. [15] Let f (z) and g(z) be two transcendental meromorphic functions

of zero order. Suppose that q and c are two non-zero complex constants and n ∈ N

is such that f n(z) f (qz+ c) and gn(z)g(qz+ c) share (1, l).

(i) If l = ∞ and n ≥ 14 or

(ii) if l = 0 and n ≥ 26,

then f (z)≡ tg(z) or f (z)g(z) ≡ t for some constants t that satisfy tn+1 = 1.

In the same year, Huang [10] studied the analogous result considering q-shift op-

erator for CM sharing while Qi-Yang [16] supplemented the same for IM sharing.

Theorem B. [10,16] Let f (z) and g(z) be two transcendental meromorphic func-

tions of zero order. Suppose that q is a non-zero complex constant and n ∈ N is

such that f n(z) f (qz) and gn(z)g(qz) share (1, l).

(i) If l = ∞ and n ≥ 14 or

(ii) if l = 0 and n ≥ 26,

then f (z)≡ tg(z) or f (z)g(z) ≡ t for some constants t that satisfy tn+1 = 1.

In addition, Qi-Yang [16] studied a different form of q shift monomial as follows:

Theorem C. [16] Let f (z), g(z) be two transcendental meromorphic functions of

zero order. Suppose that q is a non-zero complex constant such that |q| 6= 1 and r is

a positive integer satisfying r≥30 such that f (z)r( f (z)−1) f (qz) and g(z)r(g(z)−
1)g(qz) share (1,0), f (z) and g(z) share (∞,0), then f (z)r( f (z)−1) f (qz) = g(z)r

(g(z)−1)g(qz).
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In 2015, Zhao-Zhang [21] considered the derivative counterpart of Theorem A in

the following manner.

Theorem D. [21] Let f (z) and g(z) be two transcendental entire functions of zero

order. Suppose that q, c are two non-zero complex constants and n ∈N is such that

( f n(z) f (qz+ c))(k) and (gn(z)g(qz+ c))(k) share (1, l).

(i) If l = ∞ and n > 2k+5 or

(ii) if l = 0 and n > 5k+11,

then f (z)≡ tg(z) or f (z)g(z) ≡ t for some constants t that satisfy tn+1 = 1.

As far as our knowledge is concerned, no such attempt has yet been made to

employ the notion of weighted sharing in the field of q-c-shift and q-shift operators.

Since the lower bound of n or r in the above theorems can not further be reduced

in case of CM sharing, the only possibility for improvement is to relax the sharing

constrains. So, we have manipulated the notion of weight sharing to relax the

CM sharing results keeping the lower bound of n or r the same. Actually the

purpose of the present paper is to improve all the Theorems A-D in terms of the

most generalized form of the monomials. The following theorem is an extension

of Theorems A and B.

Theorem 1.1. Let f (z), g(z) be two transcendental meromorphic functions of zero

order, c ∈ C. Suppose that F = P( f )(z) f (qz+ c) and G = P(g)(z)g(qz+ c) share

(1, l). Now

(i) if l ≥ 2 and n > 2Γ1 +9 or

(ii) if l = 1 and n > 2Γ1 +
1
2
Γ0 +

21
2

or

(iii) if l = 0 and n > 2Γ1 +3Γ0 +18,

then either

P( f )(z) f (qz+ c).P(g)(z)g(qz+ c) ≡ 1
or

P( f )(z) f (qz+ c) ≡ P(g)(z)g(qz+ c).

In particular, for any integer n ≥ 1, we consider P( f ) = f n and

(i) if l ≥ 2 and n ≥ 14 or

(ii) if l = 1 and n ≥ 16 or

(iii) if l = 0 and n ≥ 26,

then either f ≡ tg or f g ≡ t, for some constant t such that tn+1 = 1.

Remark 1.1. Conclusions (i) and (iii) under P( f ) = f n in Theorem 1.1, yield The-

orems A and B for the case c 6= 0 and c = 0, respectively. Therefore, Theorem 1.1

is a huge extension of Theorem A and B, in the direction of the general polynomial

P( f ) as well as the relaxation of sharings.

In the next theorems we shall show that when c = 0, the conclusion of Theorem

1.1, becomes more precise. However, the same is possible for a particular form of

P( f ) namely P( f ) = f r(z)( f m(z)−1)p, where r, m, p be any positive integers.
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At first we deal the case when p(≥ 2) is any positive integer and the following

theorem is an improvement of Theorem C.

Theorem 1.2. Let f (z), g(z) be two transcendental meromorphic functions of zero

order and q be a non-zero complex constant such that |q| 6= 1. Suppose r is an

integer such that f r(z)( f m(z)− 1)p f (qz) and gr(z)(gm(z)− 1)pg(qz) share (1, l),
f (z) and g(z) share (∞,0). Now

(i) if l ≥ 2 and r > 4m−mp+13 or

(ii) if l = 1 and r > 9
2
m−mp+15 or

(iii) if l = 0 and r > 7m−mp+25,

then f r(z)( f m(z)−1)p f (qz) = gr(z)(gm(z)−1)pg(qz).

In Theorem 1.2, putting m = 1, we can easily derive the following corollary.

Corollary 1.1. Let f (z), g(z) be two transcendental meromorphic functions of zero

order and q be a non-zero complex constant such that |q| 6= 1. Suppose r is an

integer such that f r(z)( f (z)−1)p f (qz) and gr(z)(g(z)−1)pg(qz) share (1, l), f (z)
and g(z) share (∞,0). Now

(i) if l ≥ 2 and r > 17− p or

(ii) if l = 1 and r > 39
2
− p or

(iii) if l = 0 and r > 32− p,

then f r(z)( f (z)−1)p f (qz) = gr(z)(g(z)−1)pg(qz).

The next example shows that one cannot get f (z) ≡ g(z) from f r(z)( f (z)−
1)p f (qz)≡ gr(z)(g(z)−1)pg(qz) for p ≥ 1 if f (z) and g(z) are non-constant mero-

morphic functions, even if f (z) and g(z) share (∞,∞).

Example 1.1. Let q be a constant (|q| 6= 0,1), n be a positive integer. Suppose that

f (z) =
Hr+p(z)H(qz)−H p(z)

Hr+p(z)H(qz)−1
,

g(z) =
Hr(z)H(qz)−1

Hr+p(z)H(qz)−1
,

where H(z) is a non-constant entire function (can be a non-constant polynomial) of

zero-order. Clearly, f r(z)( f (z)−1)p f (qz) and gr(z)(g(z)−1)pg(qz) share (1,∞)
and f (z) and g(z) share (∞,∞). Moreover, f r(z)( f (z)− 1)p f (qz) ≡ gr(z)(g(z)−
1)pg(qz), but f (z) 6≡ g(z).

Next we turn our attention to the case p = 1. Thus we get a counterpart of

Theorem 1.2, which improves Theorem C.

Theorem 1.3. Let f (z), g(z) be two transcendental meromorphic functions of zero

order and q be a non-zero complex constant such that |q| 6= 1. Suppose r is an

integer such that f r(z)( f m(z)−1) f (qz) and gr(z)(gm(z)−1)g(qz) share (1, l), f (z)
and g(z) share (∞,0). Now
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(i) if l ≥ 2 and r > m+13 or

(ii) if l = 1 and r > 3
2
m+15 or

(iii) if l = 0 and r > 4m+25,

then f r(z)( f m(z)−1) f (qz) = gr(z)(gm(z)−1)g(qz).

From Theorem 1.3, taking m = 1, we can easily deduce the following corollary.

Corollary 1.2. Let f (z), g(z) be two transcendental meromorphic functions of zero

order and q be a non-zero complex constant such that |q| 6= 1. Suppose r is an

integer such that f r(z)( f (z)− 1) f (qz) and gr(z)(g(z)− 1)g(qz) share (1, l), f (z)
and g(z) share (∞,0). Now

(i) if l ≥ 2 and r ≥ 15 or

(ii) if l = 1 and r ≥ 18 or

(iii) if l = 0 and r ≥ 30,

then f r(z)( f (z)−1) f (qz) = gr(z)(g(z)−1)g(qz).

Remark 1.2. Note that from (iii) of Corollary 1.2, we get Theorem C again. Hence,

in view of the generalized polynomial P( f ), and relaxation of sharings, Theorems

1.2, 1.3 and Corollaries 1.1, 1.2 are great extensions of Theorem C.

The next theorem is an extension of Theorem D for meromorphic functions.

Theorem 1.4. Let f (z) and g(z) be transcendental meromorphic functions of zero

order. Suppose q is a non-zero complex constant and c ∈C and n is an integer such

that (P( f ) f (qz+ c))(k) and (P(g)g(qz+ c))(k) share (1, l); l = 0,1,2. Now

(i) if l ≥ 2 and n > 2(m2 +1)k+2Γ1 +9 or

(ii) if l = 1 and n >

(

5

2
m2 +3

)

k+2Γ1 +
1

2
Γ0 +

21

2
or

(iii) if l = 0 and n > (5m2 +8)k+2Γ1 +3Γ0 +18,

then one of the following results hold:

(1) (P( f ) f (qz+ c))(k).(P(g)g(qz+ c))(k) = 1 or

(2) f (z) ≡ tg(z) for a constant t such that tλ = 1, where λ is the GCD of the

elements of J, J = {k+1 ∈ I : ak 6= 0} and I = {1,2, . . . ,n+1}. In particular

P(z) = anzn, f ≡ tg for a constant t such that tn+1 = 1 or

(3) f and g satisfy algebraic equation R( f (z),g(z)) = 0, where

R(w1,w2) = P(w1)w1(qz+ c)−P(w2)w2(qz+ c).

Corollary 1.3. Under the same assumptions as in Theorem 1.4, if f (z) and g(z)
are transcendental entire functions of zero order and

(i) if l ≥ 2 and n > 2Γ1 +2km2 +1 or

(ii) if l = 1 and n > 2Γ1 +
1

2
Γ0 +

5

2
km2 +

3

2
or

(iii) if l = 0 and n > 2Γ1 +3Γ0 +5km2 +4,

then one of the following results holds:
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(1) f (z) ≡ tg(z) for a constant t such that tλ = 1, where λ is the GCD of the

elements of J, J = {k+1 ∈ I : ak 6= 0} and I = {1,2, . . . ,n+1}. In particular

P(z) = anzn, f ≡ tg for a constant t such that tn+1 = 1 or

(2) f and g satisfy algebraic equation R( f (z),g(z)) = 0, where

R(w1,w2) = P(w1)w1(qz+ c)−P(w2)w2(qz+ c).

Remark 1.3. If we put, P( f ) = f n, Γ1 = 2, Γ0 = 1 and m2 = 1 in Corollary 1.3,

then from (i) and (iii), we have Theorem D. So, Corollary 1.3 is an improvement

as well as an extension of Theorem D.

2. AUXILIARY DEFINITIONS

Throughout the paper we have used the following definitions and notations.

Definition 2.1. [8] Let a ∈ C∪{∞}. We denote by N(r,a; f |= 1) the counting

function of simple a points of f . For p∈N we denote by N(r,a; f |≤ p) the counting

function of those a-points of f (counted with multiplicities) whose multiplicities

are not greater than p. By N(r,a; f |≤ p) we denote the corresponding reduced

counting function.

In an analogous manner we can define N(r,a; f |≥ p) and N(r,a; f |≥ p).

Definition 2.2. [12] Let p ∈ N∪ {∞}. We denote by Np(r,a; f ) the counting

function of a-points of f , where an a-point of multiplicity m is counted m times

if m ≤ p and p times if m > p. Then Np(r,a; f ) = N(r,a; f )+N(r,a; f |≥ 2)+ ...+
N(r,a; f |≥ p). Clearly N1(r,a; f ) = N(r,a; f ).

Definition 2.3. [19] Let f and g be two non-constant meromorphic functions such

that f and g share (a,0). Let z0 be an a-point of f with multiplicity p, an a-point

of g with multiplicity q. We denote by NL(r,a; f ) the reduced counting function of

those a-points of f and g where p> q, by N
1)
E (r,a; f ) the counting function of those

a-points of f and g where p = q = 1, by N
(2
E (r,a; f ) the reduced counting function

of those a-points of f and g where p = q ≥ 2. In the same way we can define

NL(r,a;g), N
1)
E (r,a;g), N

(2
E (r,a;g). In a similar manner we can define NL(r,a; f )

and NL(r,a;g) for a ∈C∪{∞}.

When f and g share (a,m), m ≥ 1, then N
1)
E (r,a; f ) = N(r,a; f |= 1).

Definition 2.4. [11, 12] Let f , g share a value (a,0). We denote by N∗(r,a; f ,g)
the reduced counting function of those a-points of f whose multiplicities differ from

the multiplicities of the corresponding a-points of g.

Clearly N∗(r,a; f ,g)≡ N∗(r,a;g, f ) and N∗(r,a; f ,g) = NL(r,a; f )+NL(r,a;g).

3. LEMMAS

For two non-constant meromorphic functions F and G, in what follows H rep-

resents the following function.
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H =

(

F
′′

F
′ −

2F
′

F −1

)

−

(

G
′′

G
′ −

2G
′

G−1

)

. (3.1)

Lemma 3.1. [17] Let f be a zero order meromorphic function and q ∈ C\{0},

c ∈ C. Then

m

(

r,
f (z)

f (qz+ c)

)

= S(r, f )

and

T (r, f (qz+ c)) = T (r, f )+S(r, f ).

Lemma 3.2. [5] If T : R+ → R
+ is an increasing function such that

lim sup
r→∞

logT (r)

log r
= 0,

then the set

E = {r | T (C1r)≥C2T (r)}

has logarithmic density 0 for all C1 > 1 and C2 > 1.

Lemma 3.3. [9, Theorems 6 and 7] Let f (z) be a meromorphic function of finite

order and let c 6= 0 be fixed. Then

N(r,0; f (z+ c)) ≤ N(r,0; f (z))+S(r, f ),

N(r,∞; f (z+ c))≤ N(r,∞; f )+S(r, f ),

N(r,0; f (z+ c)) ≤ N(r,0; f (z))+S(r, f ),

N(r,∞; f (z+ c)) ≤ N(r,∞; f )+S(r, f ).

Lemma 3.4. Let f be a non-constant meromorphic function of finite order and

q ∈ C\{0}, c ∈ C. Then

N(r,0; f (qz+ c)) ≤ N(r,0; f (z))+S(r, f ),

N(r,∞; f (qz+ c)) ≤ N(r,∞; f )+S(r, f ),

N(r,0; f (qz+ c)) ≤ N(r,0; f (z))+S(r, f ),

N(r,∞; f (qz+ c)) ≤ N(r,∞; f )+S(r, f ).

Proof. First we consider the case |q| ≥ 1. By a simple geometric observation, we

obtain

N(r,0; f (qz+ c)) ≤ N(|q|r,0; f (z+(c/q))). (3.2)

Since f is of order 0, then from Lemma 3.2, we have

N(|q|r,0; f (z+(c/q))) ≤ N(r,0; f (z+(c/q)))+S(r, f )

≤ N(|q|r,0; f (z+(c/q)))+S(r, f )

=⇒ N(|q|r,0; f (z+(c/q))) = N(r,0; f (z+(c/q)))+S(r, f ) (3.3)

on a set of logarithmic density 1.
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From (3.2) and (3.3), we have

N(r,0; f (qz+ c)) ≤ N(r,0; f (z+(c/q)))+S(r, f ).

For c = 0, the first inequality is obvious. Next for c 6= 0, using the first inequality

of Lemma 3.3, we have

N(r,0; f (qz+ c)) ≤ N(r,0; f (z+(c/q)))+S(r, f )

≤ N(r,0; f (z))+S(r, f ).

Next for the case |q| ≤ 1, in a similar way, we can prove this.

Similarly, adopting the same method we can prove the other three inequalities. �

Lemma 3.5. [20] Let F, G be two non-constant meromorphic functions sharing

(1,0) and H 6≡ 0. Then

N
1)
E (r,1;F) = N

1)
E (r,1;G) ≤ N(r,H)+S(r,F)+S(r,G).

Lemma 3.6. If two non-constant meromorphic functions F and G share (1,0) and

H 6≡ 0, then

N(r,∞;H)≤ N(r,0;F |≥ 2)+N(r,0;G |≥ 2)+N(r,∞;F |≥ 2)

+N(r,∞;G |≥ 2)+N∗(r,1;F,G)+N0(r,0;F
′
)+N0(r,0;G

′
),

where by N0(r,0;F
′
) we mean the reduced counting function of those zeros of F

′

which are not the zeros of F(F −1) and N0(r,0;G
′
) is similarly defined.

Proof. The proof can be carried out in the line of the proof of [12, Lemma 2]. One

can easily verify that possible poles of H occur at (i) multiple zeros of f and g, (ii)

multiple poles of f and g, (iii) those 1-points of f and g whose multiplicities are

distinct from the multiplicities of the corresponding 1-points of g and f , respec-

tively, (iv) zeros of f ′ which are not the zeros of f ( f −1) and (v) zeros of g′ which

are not zeros of g(g−1). Since H has only simple poles, the lemma follows from

the above. This proves the lemma. �

Lemma 3.7. [3] Let f , g be two non-constant meromorphic functions sharing

(1, l), where 0 ≤ l < ∞. Then

N(r,1; f )+N(r,1;g)−N
1)
E (r,1; f )+

(

l−
1

2

)

N∗(r,1; f ,g)

≤
1

2
[N(r,1; f )+N(r,1;g)].

Lemma 3.8. Let f and g be any two meromorphic function and suppose they share

(1, l). Then

N∗(r,1; f ,g)≤
1

l+1

[

N(r,0; f )+N(r,∞; f )+N(r,0;g)+N(r,∞;g)
]

+S(r, f )+S(r,g).

Proof. In view of Definition 2.4, using Lemma 2.14 [1], we proceed as follows:
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N∗(r,a; f ,g) = NL(r,a; f )+NL(r,a;g)

≤
1

l+1

[

N(r,0; f )+N(r,∞; f )+N(r,0;g)+N(r,∞;g)

− N⊗(r,0; f ′)−N⊗(r,0;g′)
]

+S(r, f )+S(r,g)

≤
1

l+1

[

N(r,0; f )+N(r,∞; f )+N(r,0;g)+N(r,∞;g)
]

+S(r, f )+S(r,g),

where N⊗(r,0; f ′) = N(r,0; f ′| f 6= 0,ω1, . . . ,ωn) such that ω1, . . . ,ωn are the dis-

tinct roots of the equation zn +azn−1 +b = 0. �

Lemma 3.9. [12] Let f , g be two non-constant meromorphic functions sharing

(1,2). Then one of the following cases holds:

(i) T (r, f )≤ N2(r,0; f )+N2(r,0;g)+N2(r,∞; f )+N2(r,∞;g)+S(r, f )+S(r,g),
the same inequality holds for T(r, g);

(ii) f = g;

(iii) f ·g = 1.

Lemma 3.10. [2] Let f , g be two transcendental meromorphic functions sharing

(1,1) and H 6≡ 0, then

T (r, f ) ≤ N2(r,0; f )+N2(r,0;g)+N2(r,∞; f )+N2(r,∞;g)

+
1

2
N(r,0; f )+

1

2
N(r,∞; f )+S(r, f )+S(r,g).

Lemma 3.11. [2] Let f , g be two transcendental meromorphic functions sharing

(1,1) and H 6≡ 0, then

T (r, f ) ≤ N2(r,0; f )+N2(r,0;g)+N2(r,∞; f )+N2(r,∞;g)+2N(r,0; f )

+2N(r,∞; f )+2N(r,0;g)+2N(r,∞;g)+S(r, f )+S(r,g).

Lemma 3.12. [14] Let f be a non-constant meromorphic function and let p and

k be two positive integers. Then

Np

(

r,
1

f (k)

)

≤ T (r, f (k))−T(r, f )+Np+k

(

r,
1

f

)

+S(r, f );

Np

(

r,
1

f (k)

)

≤ kN(r, f )+Np+k

(

r,
1

f

)

+S(r, f ).

Lemma 3.13. Let f (z) be a transcendental meromorphic function of finite order.

Then for n > 1 we have

(n−1) T (r, f )≤ T (r,P( f )(z) f (qz+ c))+S(r, f ).

Proof. By Lemma 3.1, we get

nT (r, f ) = T (r,P( f )(z))+O(1)

= T

(

r,P( f )(z) f (qz+ c)
1

f (qz+ c)

)

+O(1)
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≤ T (r,P( f )(z) f (qz+ c))+T

(

r,
1

f (qz+ c)

)

+O(1)

= T (r,P( f )(z) f (qz+ c))+T (r, f )+S(r, f ).

So,
(n−1)T (r, f ) ≤ T (r,P( f )(z) f (qz+ c))+S(r, f ).

This completes the proof of the lemma. �

Lemma 3.14. Let f (z) be a transcendental entire function of finite order. Then for

n > 1 we have

T (r,P( f )(z) f (qz+ c)) = (n+1)T (r, f )+S(r, f ).

Proof. By Lemma 3.1, we get

T (r,P( f )(z) f (qz+ c)) ≤ T (r,P( f ))+T (r, f (qz+ c))+O(1)

≤ (n+1)T (r, f )+S(r, f )

and

(n+1)T (r, f ) ≤ T (r,P( f )(z) f (z))+O(1)

= m(r,P( f )(z) f (z))+O(1)

≤ m(r,P( f )(z) f (qz+ c))+m

(

r,
f (z)

f (qz+ c)

)

+O(1)

≤ m(r,P( f )(z) f (qz+ c))+S(r, f )

= T (r,P( f )(z) f (qz+ c))+S(r, f ).

This completes the proof of the lemma. �

4. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. The proof of the theorem is based on the ideas in [Theo-

rems 1, 2; [15]]. Here we consider F(z) = P( f )(z) f (qz+ c) and G(z) = P(g)(z)
g(qz+ c). Then F and G share (1, l).
Case-1 Let H 6≡ 0. Using Lemmas 3.5 and 3.6, we have

N
1)
E (r,1;F)≤ N(r,H)+S(r,F)+S(r,G)

≤ N(r,0;F |≥ 2)+N(r,0;G |≥ 2)+N(r,∞;F |≥ 2)+N(r,∞;G |≥ 2)

+N0(r,0;F
′
)+N0(r,0;G

′
)+N∗(r,1;F,G). (4.1)

By the second fundamental theorem, we get

T (r,F)≤ N(r,0;F)+N(r,∞;F)+N(r,1;F)−N0(r,0;F
′
)+S(r, f ) (4.2)

and

T (r,G)≤ N(r,0;G)+N(r,∞;G)+N(r,1;G)−N0(r,0;G
′
)+S(r,g). (4.3)

Combining (4.1), (4.2) and (4.3) with the help of Lemmas 3.7 and 3.8, we have
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[T (r,F)+T(r,G)]

≤ [N(r,0;F)+N(r,0;G)]+N(r,∞;F)+N(r,∞;G)]

+ [N(r,1;F)+N(r,1;G)]− [N0(r,0;F
′
)+N0(r,0;G

′
)]+S(r, f )+S(r,g)

≤ N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)

+ [N(r,1;F)+N(r,1;G)−N
1)
E (r,1;F)]+N∗(r,1;F,G)+S(r, f )+S(r,g)

≤ N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)

+
1

2
[T (r,F)+T (r,G)]−

(

l −
3

2

)

N∗(r,1;F,G)+S(r, f )+S(r,g)

≤
1

2
[T (r,F)+T(r,G)]+N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)

+N2(r,∞;G)+
(3−2l)

2(l +1)
[N(r,0;F)+N(r,∞;F)+N(r,0;G)

+N(r,∞;G)]+S(r, f )+S(r,g) (4.4)

=⇒ [T (r,F)+T(r,G)]

≤ 2
[

N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)
]

+
(3−2l)

(l +1)

[

N(r,0;F)

+N(r,∞;F)+N(r,0;G)+N(r,∞;G)
]

+S(r, f )+S(r,g). (4.5)

Subcase 1.1. While l ≥ 2, in view of Lemmas 3.4 and 3.13, from (4.5) we get

(n−1)[T (r, f )+T (r,g)]

≤ 2[(m1 +2m2)T (r, f )+N(r,0; f (qz+ c))+ (m1 +2m2)T (r,g)

+N(r,0;g(qz+ c))+2N(r,∞; f )+N(r,∞; f (qz+ c))+2N(r,∞;g)

+N(r,∞;g(qz+ c))]+S(r, f )+S(r,g)

≤ 2 [m1 +2m2 +4]{T (r, f )+T (r,g)}+S(r, f )+S(r,g). (4.6)

From (4.6) it follows that

(n−1)[T (r, f )+T (r,g)]

≤ [2Γ1 +8]{T (r, f )+T (r,g)}+S(r, f )+S(r,g),

which is a contradiction for n > 2Γ1 +9.

Subcase 1.2. While l = 1, using Lemmas 3.4 and 3.13, from (4.5) we get

(n−1)[T (r, f )+T (r,g)]

≤ 2[(m1+2m2)T (r, f )+N(r,0; f (qz+c))+(m1+2m2)T (r,g)

+N(r,0;g(qz+c))+2N(r,∞; f )+N(r,∞; f (qz+c))+2N(r,∞;g)
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+N(r,∞;g(qz+c))]+

(

1

2

)

[(m1+m2)T (r, f )+N(r,0; f (z+c j))

+2N(r,∞; f )+(m1+m2)T (r,g)+N(r,0;g(z+c j))+2N(r,∞;g)]+S(r, f )+S(r,g)

≤
[

2(m1+2m2+4)+
1

2
(m1+m2+3)

]

{T (r, f )+T (r,g)}+S(r, f )+S(r,g). (4.7)

From (4.7), it follows that

(n−1)[T (r, f )+T (r,g)]

≤
[

2Γ1 +8+
1

2
(Γ0 +3)

]

{T (r, f )+T (r,g)}+S(r, f )+S(r,g),

which is a contradiction for n > 2Γ1 +
1
2
Γ0 +

21
2

.

Subcase 1.3. Next let l = 0. Again using Lemmas 3.4 and 3.13, from (4.5) we get

(n−1)[T (r, f )+T (r,g)]

≤ [2(m1+2m2+4)+3(m1+m2+3)]{T (r, f )+T (r,g)}+S(r, f )+S(r,g). (4.8)

From (4.8), we get

(n−1)[T (r, f )+T (r,g)]

≤ [2Γ1 +8+3(Γ0 +3)]{T (r, f )+T (r,g)}+S(r, f )+S(r,g),

which is a contradiction for n > 2Γ1 +3Γ0 +18.

Case-2 Let H ≡ 0, integrating (3.1) we get

1

F −1
≡

bG+a−b

G−1
, (4.9)

where a(6= 0), b are constants. From (4.9) it is clear that F and G share (1,∞).
Now we consider the following cases:

Case 1. Let b 6= 0 and a 6= b. If b =−1, from (4.9) we have

F ≡
−a

G−a−1
.

From Lemma 3.4, we see that

N(r,a+1;G) = N(r,∞;F)≤ 2N(r,∞; f ).

So, in view of Lemmas3.4 and 3.13, using the second fundamental theorem, we get

(n−1) T (r,g) ≤ N(r,0;G)+N(r,∞;G)+N(r,a+1;G)+S(r,g)

≤ (m1 +m2)T (r,g)+N(r,0;g(z+ c j))+2(N(r,∞;g)

+N(r,∞; f ))+S(r,g)

≤ (m1 +m2 +3)T (r,g)+2T (r, f )+S(r,g).

In a similar manner, we can get

(n−1) T (r, f )≤ (m1 +m2 +3)T (r, f )+2T (r,g)+S(r, f ).

Combining the above two equations, we can get
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(n−1){T (r, f )+T (r,g)} ≤ (Γ0 +5){T (r, f )+T (r,g)}+S(r, f )+S(r,g),

a contradiction for n > 2Γ1 +9.

If b 6=−1, from (4.9) we get

F −

(

1+
1

b

)

≡
−a

b2[G+ a−b
b
]
.

So,

N

(

r,
(b−a)

b
;G

)

= N(r,∞;F).

Using Lemmas 3.4, 3.13 and with the same argument as used in the case for b=−1,

we can get a contradiction.

Case 2. Let b 6= 0 and a = b. If b =−1, then from (4.9) we have

FG ≡ 1,
i.e.,

P( f )(z) f (qz+ c)P(g)(z)g(qz+ c) ≡ 1.

In particular, when P( f ) = f n, take M(z) = f (z)g(z). When M(z) is non-constant,

we have from above

Mn(z)≡
1

M(qz+ c)
.

So, using the first fundamental theorem and Lemma 3.1, we have

nT (r,M) = T (r,M(qz+ c))+O(1) = T (r,M)+S(r,M),

a contradiction. So, M(z) must be a constant and M(z)n+1 ≡ 1, which implies

f g ≡ t, where tn+1 = 1.

If b 6=−1, from (4.9) we have

1

F
≡

bG

(1+b)G−1
.

Therefore,

N

(

r,
1

1+b
;G

)

= N(r,0;F).

So, in view of Lemmas 3.4 and 3.13, using the second fundamental theorem, we

have

(n−1) T (r,g) ≤ N(r,0;G)+N(r,∞;G)+N

(

r,
1

1+b
;G

)

+S(r,g)

≤ (m1 +m2 +3)T (r,g)+ (m1 +m2 +1)T (r, f )+S(r,g).

In a similar manner, we can get

(n−1) T (r, f ) ≤ (m1 +m2 +3)T (r, f )+ (m1 +m2 +1)T (r,g)+S(r, f ).

Combining the above two equations, we can get

(n−1){T (r, f )+T (r,g)} ≤ (2Γ0 +4){T (r, f )+T (r,g)}+S(r, f )+S(r,g),

a contradiction for n > 2Γ1 +9.
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Case 3. Let b = 0. From (4.9), we obtain

F ≡
G+a−1

a
. (4.10)

If a 6= 1 then from (4.10) we obtain

N(r,1−a;G) = N(r,0;F).

Now using a similar process as done in Case 2, for b 6= −1, we can deduce a

contradiction. Therefore a = 1 and from (4.10) we obtain F ≡ G, i.e.,

P( f )(z) f (qz+ c) ≡ P(g)(z)g(qz+ c).

In particular, when P( f )= f n, let H(z)= f (z)
g(z) . Next proceeding in the same manner

when b = −1, in Case 2, we can show that H(z) must be a constant and f ≡ tg,

where tn+1 = 1. This proves the theorem. �

Proof of Theorem 1.2. In both cases H 6≡ 0 and H ≡ 0, we put Γ0 = m+1, Γ1 =
2(m+1) and proceed in the same manner as done in Theorem 1.1 to get

f r(z)( f m(z)−1)p f (qz) ≡ gr(z)(gm(z)−1)pg(qz)
or

f r(z)( f m(z)−1)p f (qz).gr(z)(gm(z)−1)pg(qz) ≡ 1. (4.11)

Next we adopt the idea of Theorem 3.4 in [16] and prove that f r(z)( f m(z)−
1)p f (qz).gr(z)(gm(z)− 1)pg(qz) ≡ 1 does not occur. Let h(z) = f (z)g(z), then

rewriting (4.11) we have

h(z)r(h(z)m − ( f (z)m +g(z)m)+1)ph(qz) = 1. (4.12)

Case 1. Suppose h(z) is not a constant. Suppose that there exists a point z0 such

that h(z0) = 0, which implies f (z0)g(z0) = 0. Since f and g share (∞,0), we get

f (z0) 6= ∞ and g(z0) 6= ∞. Then by (4.12), we conclude that h(qz0) = ∞. So,

h(z) = 0 =⇒ h(qz) = ∞. (4.13)

Now suppose that there is a point z1 such that h(qz1) = 0, from (4.12), we have

h(z1) = ∞, or else, if h(z1) 6= ∞, then f (z1) 6= ∞ and g(z1) 6= ∞, from which we get

a contradiction by (4.12). Hence

h(qz) = 0 =⇒ h(z) = ∞. (4.14)

Next assume that there is a point z2 such that h(z2) = ∞ and z2 is a pole of f with

multiplicity s and a pole of g with multiplicity t. Then z2 is a pole of h(z)r with

multiplicity r(s+ t) < (r+m)(s+ t), a pole of h(z)m with multiplicity m(s+ t)<
(r+m)(s+ t), a pole of f (z)m +g(z)m with multiplicity mmax(s, t) < (r+m)(s+
t). So, z2 is a pole of h(z)r(h(z)m − ( f (z)m +g(z)m)+1)p with multiplicity at most

p(r+m)2(s+ t)2. Hence h(qz2) = 0, which implies that

h(z) = ∞ =⇒ h(qz) = 0. (4.15)
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If possible let h(qz) = ∞ =⇒ h(z) 6= 0, then from (4.13) and (4.15),

h(qz) = ∞ =⇒ h(q2z) = 0 =⇒ h(q3z) = ∞ =⇒ h(q2z) 6= 0,

which is impossible. Therefore,

h(qz) = ∞ =⇒ h(z) = 0. (4.16)

If |q|< 1, then from (4.13) and (4.15) we have

h(z) = 0 =⇒ h(qz) = ∞ =⇒ h(q2z) = 0 =⇒ ···

=⇒ h(q2kz) = 0 =⇒ h(q2k+1z) = ∞ · · · ,

where k is a positive integer. So, we get

0 = lim
z→0

h(z) = ∞,

a contradiction.

If |q|> 1, then from (4.14) and (4.16) we get

h(qz) = 0 =⇒ h(z) = ∞ =⇒ h

(

z

q

)

= 0 =⇒ ···

=⇒ h

(

z

q2k

)

= ∞ =⇒ h

(

z

q2k+1

)

= 0 · · · ,

where k is a positive integer. So in a similar way we get a contradiction.

Case 2. Let h(z) is non-zero constant, say t, i.e., f (z)g(z) = t. Since f and g share

(∞,0), we can easily get f (z) and g(z) have no zeros and no poles. That means the

orders of f and g are not less than 1 but we assumed that f (z) and g(z) are of zero

order.

Hence, f r(z)( f m(z)− 1)p f (qz).gr(z)(gm(z)− 1)pg(qz) ≡ 1 is not possible, which

means f r(z)( f m(z)−1)p f (qz)≡ gr(z)(gm(z)−1)pg(qz). This completes the proof

of the theorem. �

Proof of Theorem 1.3. Here we put p= 1, Γ0 =m+1 and Γ1 =m+2 and proceed

similarly as in Theorem 1.2, we have the conclusion. �

Proof of Theorem 1.4. We follow the method of Theorem 1.5 in [21] and prove

the theorem in the following manner. Let φ = (F(z))(k) = (P( f )(z) f (qz + c))(k)

and ψ = (G(z))(k) = (P(g)(z)g(qz+ c))(k) . Then φ and ψ share (1, l). Applying

Lemmas 3.1, 3.4 and 3.12, we have

N2(r,0;φ) = N2(r,0;F (k))

≤ kN(r,∞;F)+Nk+2(r,0;F)+S(r, f )

≤ N(r,∞;P( f ))+ kN(r,∞; f (qz+ c))

+Nk+2(r,0;P( f ))+Nk+2(r,0; f (qz+ c))+S(r, f )
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≤ 2kT (r, f )+ (m1 +(k+2)m2)T (r, f )+T (r, f )+S(r, f )

≤ 2kT (r, f )+ (m1 +(k+2)m2 +1)T (r, f )+S(r, f )

≤ ((m2 +2)k+Γ1 +1)T (r, f )+S(r, f ), (4.17)

N2(r,∞;φ) = N2(r,∞;F (k))+S(r, f )

≤ N2(r,∞;F)+S(r, f )

≤ N2(r,∞;P( f ))+N2(r,∞; f (qz+ c))+S(r, f )

≤ 2T (r, f )+T (r, f )+S(r, f ) = 3T (r, f )+S(r, f ), (4.18)

N(r,0;φ) = N(r,0;F (k))+S(r, f )

≤ kN(r,∞;F)+Nk+1(r,0;F)+S(r, f )

≤ kN(r,∞;P( f ))+ kN(r,∞; f (qz+ c))

+Nk+1(r,0;P( f ))+Nk+1(r,0; f (qz+ c))+S(r, f )

≤ 2kT (r, f )+ (m1 +(k+1)m2)T (r, f )+T (r, f )+S(r, f )

≤ 2kT (r, f )+ (m1 +(k+1)m2 +1)T (r, f )+S(r, f )

≤ ((m2 +2)k+Γ0 +1)T (r, f )+S(r, f ) (4.19)

and

N(r,∞;φ) = N(r,∞;F (k))+S(r, f )

≤ N(r,∞;F)+S(r, f )

≤ N(r,∞;P( f ))+N(r,∞; f (qz+ c))+S(r, f )

≤ 2T (r, f )+S(r, f ). (4.20)

Here two cases arise.

Case-1. Let H 6≡ 0.

Now, applying Lemma 3.12, we have

N2(r,0;φ) ≤ N2(r,0;F (k))+S(r, f )

≤ T (r,F (k))−T(r,F)+Nk+2(r,0;F)+S(r, f )

≤ T (r,φ)−T (r,F)+Nk+2(r,0;F)+S(r, f )

i.e.,

T (r,F)≤ T (r,φ)−N2(r,0;φ)+Nk+2(r,0;F)+S(r, f ). (4.21)

Combining Lemma 3.13 and (4.21), we have

(n−1)T (r, f )≤ T (r,F)

≤ T (r,φ)−N2(r,0;φ)+Nk+2(r,0;F)+S(r, f ). (4.22)

Subcase 1.1. While l ≥ 2, in view of case (i) of Lemma 3.9, using (4.17), (4.18)

and (4.22) we have

(n−1)T (r, f ) ≤ N2(r,0;ψ)+N2(r,∞;φ)+N2(r,∞;ψ)+Nk+2(r,0;F)

+S(r, f )+S(r,g)
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≤ ((m2 +2)k+Γ1 +1)T (r,g)+ (km2 +Γ1 +1)T (r, f )

+3T (r, f )+3T (r,g)+S(r, f )+S(r,g)

≤ (km2 +Γ1 +4)T (r, f )+ ((m2 +2)k+Γ1 +4)T (r,g)

+S(r, f )+S(r,g).

Similarly,

(n−1)T (r,g)≤ ((m2 +2)k+Γ1 +4)T (r, f )+ (km2 +Γ1 +4)T (r,g)

+S(r, f )+S(r,g).

Combining the above two equations, we have

(n−1)[T (r, f )+T (r,g)] ≤ (2(m2 +1)k+2Γ1 +8)[T (r, f )+T (r,g)]

+S(r, f )+S(r,g),

which is a contradiction for n > 2(m2 +1)k+2Γ1 +9.

Subcase 1.2. While l = 1, in view of Lemma 3.10, using (4.17), (4.18), (4.19),

(4.20) and (4.22), we have

(n−1)T (r, f )

≤ N2(r,0;ψ)+N2(r,∞;φ)+N2(r,∞;ψ)+Nk+2(r,0;F)+
1

2
N(r,0;φ)

+
1

2
N(r,∞;φ)+S(r, f )+S(r,g)

≤ ((m2 +2)k+Γ1 +1)T (r,g)+ (km2 +Γ1 +1)T (r, f )+3T (r, f )

+3T (r,g)+
1

2
((m2 +2)k+Γ0 +1)T (r, f )+T (r, f )+S(r, f )+S(r,g)

≤

[(

3

2
m2 +1

)

k+Γ1 +
1

2
Γ0 +

11

2

]

T (r, f )

+ [(m2 +2)k+Γ1 +4]T (r,g)+S(r, f )+S(r,g).

Similarly,

(n−1)T (r,g) ≤ ((m2 +2)k+Γ1 +4)T (r, f )

+

[(

3

2
m2 +1

)

k+Γ1 +
1

2
Γ0 +

11

2

]

T (r,g)+S(r, f )+S(r,g).

Combining the above two equations, we have

(n−1)[T (r, f )+T (r,g)]

≤

[(

5

2
m2 +3

)

k+2Γ1 +
1

2
Γ0 +

19

2

]

[T (r, f )+T (r,g)]+S(r, f )+S(r,g),

which is a contradiction for n >

(

5

2
m2 +3

)

k+2Γ1 +
1

2
Γ0 +

21

2
.

Subcase 1.3. While l = 0, in view of Lemma 3.11, using (4.17), (4.18), (4.19),

(4.20) and (4.22) we have
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(n−1)T (r, f )

≤ N2(r,0;ψ)+N2(r,∞;φ)+N2(r,∞;ψ)+Nk+2(r,0;F)

+2N(r,0;φ)+2N(r,∞;φ)+N(r,0;ψ)+N(r,∞;ψ)+S(r, f )+S(r,g)

≤ ((m2 +2)k+Γ1 +1)T (r,g)+ (km2 +Γ1 +1)T (r, f )

+3T (r, f )+3T (r,g)+2((m2 +2)k+Γ0 +1)T (r, f )

+ ((m+2)k+Γ0 +1)T (r,g)+4T (r, f )+2T (r,g)+S(r, f )+S(r,g)

≤ ((3m2 +4)k+2Γ0 +Γ1 +10)T (r, f )

+ (2(m2 +2)k+Γ1 +Γ0 +7)T (r,g)+S(r, f )+S(r,g).

Similarly,

(n−1)T (r,g) ≤ (2(m2 +2)k+Γ1 +Γ0 +7)T (r, f )

+ ((3m2 +4)k+2Γ0 +Γ1 +10)T (r,g)+S(r, f )+S(r,g).

Combining the above two equations, we have

(n−1)[T (r, f )+T (r,g)]

≤ ((5m2 +8)k+2Γ1 +3Γ0 +17)[T (r, f )+T (r,g)]+S(r, f )+S(r,g),

which is a contradiction for n > (5m2 +8)k+2Γ1 +3Γ0 +18.

Case-2. Let H ≡ 0. By integration, we get

1

φ−1
≡

bψ+a−b

ψ−1
, (4.23)

where a(6= 0), b are constants. From (4.23), it is clear that φ and ψ share (1,∞).
We consider the following cases:

Subcase 2.1. Let b 6= 0 and a 6= b. If b =−1, then from (4.23) we have

φ ≡
−a

ψ−a−1
.

From Lemma 3.4 and (4.20), we see that

N(r,a+1;ψ) = N(r,∞;φ) ≤ 2N(r,∞; f ).

So, using the second fundamental theorem, we get

T (r,ψ) ≤ N(r,0;ψ)+N(r,∞;ψ)+N(r,a+1;ψ)+S(r,g)

≤ N(r,0;ψ)+N(r,∞;ψ)+N(r,∞;φ)+S(r, f )+S(r,g).

By Lemma 3.12, we see

N(r,0;ψ) ≤ T (r,ψ)−T (r,G)+Nk+1(r,0;G)+S(r,g).

These two inequalities imply

T (r,G)≤ N(r,∞;ψ)+N(r,∞;φ)+Nk+1(r,0;G)+S(r, f )+S(r,g).

From the above equation, using (4.20) and Lemmas 3.4, 3.13, we have
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(n−1)T (r,g) ≤ N(r,∞;ψ)+N(r,∞;φ)+Nk+1(r,0;G)+S(r, f )+S(r,g)

≤ 2T (r, f )+2T (r,g)+ (m1 +(k+1)m2 +1)T (r,g)+S(r, f )+S(r,g)

≤ 2T (r, f )+ (Γ1 + km2 +3)T (r,g)+S(r, f )+S(r,g).

As φ and ψ are interchangeable, in a similar manner we can get

(n−1) T (r, f ) ≤ (Γ1 + km2 +3)T (r, f )+2T (r,g)+S(r, f ).

Combining the above two, we can get

(n−1){T (r, f )+T (r,g)} ≤ (Γ1 + km2 +5){T (r, f )+T (r,g)}+S(r, f )+S(r,g),

a contradiction for n > 2(m2 +1)k+2Γ1 +9.

If b 6=−1, from (4.23) we obtain that

φ−

(

1+
1

b

)

≡
−a

b2[ψ+ a−b
b
]
.

So,

N

(

r,
(b−a)

b
;ψ

)

= N(r,∞;φ).

Using Lemmas 3.4, 3.12, 3.13 and with the same argument as used in the case for

b =−1, we can get a contradiction.

Subcase 2.2. Let b 6= 0 and a = b. If b =−1, then from (4.23) we have

φψ ≡ 1,

i.e.,
(P( f )(z) f (qz+ c))(k)(P(g)(z)g(qz+ c))(k) ≡ 1.

If b 6=−1, from (4.23) we have

1

φ
≡

bψ

(1+b)ψ−1
.

Therefore,

N

(

r,
1

1+b
;ψ

)

= N(r,0;φ).

So, using the second fundamental theorem, we get

T (r,ψ) ≤ N(r,0;ψ)+N(r,∞;ψ)+N

(

r,
1

1+b
;ψ

)

+S(r,g)

≤ N(r,0;ψ)+N(r,∞;ψ)+N(r,0;φ)+S(r, f )+S(r,g).

By Lemma 3.12, we see

N(r,0;ψ) ≤ T (r,ψ)−T (r,G)+Nk+1(r,0;G)+S(r,g).

These two equations imply

T (r,G)≤ N(r,∞;ψ)+N(r,0;φ)+Nk+1(r,0;G)+S(r, f )+S(r,g).

From the above equation, using (4.19), (4.20) and Lemmas 3.4, 3.13, we have
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(n−1)T (r,g)

≤ N(r,∞;ψ)+N(r,0;φ)+Nk+1(r,0;G)+S(r, f )+S(r,g)

≤ ((m2 +2)k+Γ0 +1)T (r, f )+2T (r,g)

+ (km2 +Γ1 +1)T (r,g)+S(r, f )+S(r,g)

≤ ((m2 +2)k+Γ0 +1)T (r, f )+ (km2 +Γ1 +3)T (r,g)+S(r, f )+S(r,g).

As φ and ψ are symmetric, in a similar manner, we can get

(n−1) T (r, f ) ≤ (km2 +Γ1 +3)T (r, f )+ ((m2 +2)k+Γ0 +1)T (r,g)+S(r, f ).

Combining the above two, we can get

(n−1){T (r, f )+T (r,g)}

≤ (2(m2 +1)k+Γ1 +Γ0 +4){T (r, f )+T (r,g)}+S(r, f )+S(r,g),

a contradiction for n > 2(m2 +1)k+2Γ1 +9.

Subcase 2.3. Let b = 0. From (4.23), we obtain

φ ≡
ψ+a−1

a
. (4.24)

If a 6= 1, then from (4.24), we obtain

N(r,1−a;ψ) = N(r,0;φ).

So, using the same argument as done in Case 2, for b 6= −1, we can similarly

deduce a contradiction. Therefore a = 1 and from (4.24) we obtain φ ≡ ψ, i.e.,

(P( f )(z) f (qz+ c))(k) ≡ (P(g)(z)g(qz+ c))(k).

Integrating we have P( f )(z) f (qz+ c) = P(g)(z)g(qz+ c)+ p(z), where p(z) is a

polynomial of degree at most k−1.

If p(z) 6≡ 0, then from the second main theorem for the small function and Lemma

3.13, we get

(n−1)T (r, f ) ≤ T (r,F)+S(r, f )

≤ N(r,F)+N

(

r,
1

F

)

+N

(

r,
1

G

)

+S(r, f )

≤ (Γ0 +3)T (r, f )+ (Γ0 +1)T (r,g)+S(r, f ).

Similarly,

(n−1)T (r,g) ≤ (Γ0 +3)T (r,g)+ (Γ0 +1)T (r, f )+S(r,g).

Therefore,

(n−1)[T (r, f )+T (r,g)] ≤ (2Γ0 +4)[T (r, f )+T (r,g)]+S(r, f )+S(r,g),

which by n > 2(m2 + 1)k+ 2Γ1 + 9 gives a contradiction. Thus p(z) ≡ 0, which

implies
P( f )(z) f (qz+ c) = P(g)(z)g(qz+ c). (4.25)

Let h(z) = f (z)g(z). Then the following two cases hold.
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Case A. Suppose that h(z)≡ constant, say h. Substituting f (z) = hg(z) into (4.25),

we obtain

g(qz+ c)[ang(z)n(hn+1 −1)+an−1g(z)n−1(hn −1)+ · · ·

+a1g(z)(h2 −1)+a0(h−1)]≡ 0.

Since g(z) is a non-constant meromorphic function, we have g(qz+c) 6≡ 0. Hence,

we get

ang(z)n(hn+1 −1)+an−1g(z)n−1(hn −1)+ · · ·

+a1g(z)(h2 −1)+a0(h−1)≡ 0. (4.26)

We shall prove that hλ = 1, where λ is the GCD of the elements of J, J = {k+1 ∈
I : ak 6= 0} and I = {1,2, . . . ,n+1}. In particular, if P(z) = anzn, then from above

we get hn+1 = 1. Thus f ≡ tg for a constant t such that tn+1 = 1. Suppose there

exists at least one non-zero coefficient ak, k 6= n. Then if hλ 6= 1, from (4.26)

we get T (r,g) = S(r,g), a contradiction to the fact that g is transcendental. So

hλ = 1, where λ is the GCD of the elements of J, J = {k + 1 ∈ I : ak 6= 0} and

I = {1,2, . . . ,n+1}.

Case B. Suppose that h(z) is not a constant. we deduce from (4.25) that f (z) and

g(z) satisfy the algebraic equation R( f (z),g(z)) = 0, where

R(w1,w2) = P(w1)w1(qz+ c)−P(w2)w2(qz+ c). This completes the proof. �

Proof of Corollary 1.3. The corollary can be proved in the line of the proof of

Theorem 1.4 with necessary changes. For example, one has to use Lemma 3.14

instead of Lemma 3.13. So we omit the details. �
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