THE STEINHAUS-WEIL PROPERTY: IV. OTHER INTERIOR-POINT PROPERTIES

N. H. BINGHAM AND A. J. OSTASZEWSKI

In memory of Harry I. Miller (1939-2018)

Abstract

In this the final part of the four-part series [BinO3; 4,5,6] on theorems of Steinhaus-Weil type, as a companion piece to Part III, [BinO6], on Weil-type refinement topologies, we study from the perspective of refinement topologies the relation of the composite $A B^{-1}$ to the classical setting of the $A A^{-1}$ Steinhaus interior-point theorem.

1. The Steinhaus property $A A^{-1}$ versus the Steinhaus property $A B^{-1}$

We clarify below the relation between two versions of the Steinhaus interior points property: the simple (sometimes called 'classical') version concerning sets $A A^{-1}$ and the composite, more embracing one, concerning sets $A B^{-1}$, for sets from a given family \mathcal{H}. The latter is connected to a strong form of metric transitivity: Kominek [Kom] shows, for a general separable Baire topological group G equipped with an inner-regular measure μ defined on some σ-algebra \mathcal{M}, that $A B^{-1}$ has nonempty interior for all $A, B \in \mathcal{M}_{+}(\mu)$, the sets in \mathcal{M} of positive μ-measure, iff for each countable dense set D and each $E \in \mathcal{M}_{+}(\mu)$ the set $X \backslash D E \in \mathcal{M}_{0}(\mu)$, the sets in \mathcal{M} of μ-measure zero; this is recalled in Theorem K below. The composite property is thus related to the Smital property, for which see [BarFN]. Care is required when moving to the alternative property for $A B$, since the family \mathcal{H} need not be preserved under inversion.

In general the simple property does not imply the composite: Matoŭsková and Zelený [MatZ] show that in any non-locally compact abelian Polish group there are closed non-(left) Haar null sets A, B such that $A+B$ has empty interior. Jabłońska [Jab] has shown that likewise in any non-locally compact abelian Polish group there are closed non-Haar meager sets A, B such that $A+B$ has empty interior; see also [BanGJS]. Bartoszewicz and M. and T. Filipczak [BarFF, Ths. 1, 4] analyze the Bernoulli product measure on $\{0,1\}^{\mathbb{N}}$ with p the probability of the digit 1 ;

[^0]see [BinO3, §8.15]. The product space may be regarded as comprising canonical binary digit expansions of the additive reals modulo 1 (in which case the measure is not invariant). Here the (Borel) set A of binary expansions with asymptotic frequency p of the digit 1 has $[0,1)$ as its difference set iff $\frac{1}{4} \leq p \leq \frac{3}{4}$; however $A+A$ has empty interior unless $p=\frac{1}{2}$ (the base 2 simple-normal-numbers case).

Below we identify some conditions on a family of sets A with the simple $A A^{-1}$ property which do imply the $A B^{-1}$ property. What follows is a generalization to a group context of relevant observations from [BinO3] from the classical context of \mathbb{R}.

The motivation for the definition below is that its subject, the space H, is a subgroup of a topological group G from which it inherits a (necessarily) translationinvariant (either-sidedly) topology τ. Various notions of 'density at a point' give rise to 'density topologies' [BinO1], which are translation-invariant since they may be obtained via translation to a fixed reference point: early examples, which originate in spirit with Denjoy as interpreted by Haupt and Pauc [HauP], were studied intensively in [GofW], [GofNN], soon followed by [Mar1,2] and [Mue]; more recent examples include [FilW] and others investigated by the Wilczyński school, cf. [Wil].

Proposition 1 below embraces as an immediate corollary the case $H=G$ with G locally compact and σ the Haar density topology (see [BinO2]). Proposition 2 proves that Proposition 1 applies also to the ideal topology (in the sense of [LukMZ]) generated from the ideal of Haar null sets of an abelian Polish group.

We recall that a group H carries a left semi-topological structure τ if the topology τ is left invariant [ArhT] $(h U \in \tau$ iff $U \in \tau)$; the structure is semi-topological if it is also right invariant, i.e. briefly: τ is translation invariant. H is a quasi-topological group under τ if τ is both left and right invariant and inversion is τ-continuous.

Definition 1.1. For H a group with a translation-invariant topology τ, call a topology $\sigma \supseteq \tau$ a Steinhaus refinement if:
i) $\operatorname{int}_{\tau}\left(A A^{-1}\right) \neq \emptyset$ for each non-empty $A \in \sigma$, and
ii) σ is involutive-translation invariant: $h A^{-1} \in \sigma$ for all $A \in \sigma$ and all $h \in H$.

Property (ii) above (called simply 'invariance' in [BarFN]) apparently calls for only left invariance, but in fact, via double inversion, delivers translation invariance, since $U h=\left(h^{-1} U^{-1}\right)^{-1}$; then H under σ is a semi-topological group with a continuous inverse, so a quasi-topological group. We address the step from the simple property to the composite in
Proposition 1. If τ is translation-invariant, and $\sigma \supseteq \tau$ is a Steinhaus refinement topology, then $\operatorname{int}_{\tau}\left(A B^{-1}\right) \neq \emptyset$ for non-empty $A, B \in \sigma$. In particular, as σ is preserved under inversion, also $\operatorname{int}_{\tau}(A B) \neq \emptyset$ for $A, B \in \sigma$.
Proof. Suppose $A, B \in \sigma$ are non-empty; as $B^{-1} \in \sigma$, choose $a \in A$ and $b \in B$; then by (ii)

$$
1_{H} \in C:=a^{-1} A \cap b^{-1} B^{-1} \in \sigma .
$$

By (i), for some non-empty $W \in \tau$,

$$
W \subseteq C C^{-1}=\left(a^{-1} A \cap b^{-1} B\right) \cdot\left(A^{-1} a \cap B^{-1} b\right) \subseteq\left(a^{-1} A\right) \cdot\left(B^{-1} b\right) .
$$

As τ is translation invariant, $a W b^{-1} \in \tau$ and

$$
a W b^{-1} \subseteq A B^{-1}
$$

the latter since for each $w \in W$ there are $x \in A, y \in B^{-1}$ with

$$
w=a^{-1} x \cdot y b: \quad a w b^{-1}=x y \in A B^{-1} .
$$

So $\operatorname{int}_{\tau}\left(A B^{-1}\right) \neq 0$.
Corollary 1.1. In a locally compact group the Haar density topology is a Steinhaus refinement.

Proof. Property (i) follows from Weil's theorem since density-open sets are nonnull measurable; left translation invariance in (ii) follows from left invariance of Haar measure, while involutive invariance holds, as any measurable set of positive Haar measure has non-null inverse ([HewR, 15.14], cf. Part II [BinO5, §2 Lemma H]).

A weaker version, inspired by metric transitivity, comes from applying the following concept.

Definition 1.2. Say that a group H acts transitively on a family $\mathcal{H} \subseteq \wp(G)$ if for each $A, B \in \mathcal{H}$ there is $h \in H$ with $A \cap h B \in \mathcal{H}$.

Thus a locally compact topological group acts transitively on its non-null Haar measurable subsets (in fact, either-sidedly); this follows from Fubini's Theorem [$\mathrm{Hal}, 36 \mathrm{C}$], via the average theorem [Hal, 59.F]:

$$
\int_{G}\left|g^{-1} A \cap B\right| d g=|A| \cdot\left|B^{-1}\right| \quad(A, B \in \mathcal{M})
$$

($g=a b^{-1}$ iff $g^{-1} a=b$) - cf. [TomW, $\S 11.3$ after Th. 11.17].
[MatZ] show that in any non-locally compact abelian Polish group G there exist two non-Haar null sets, $A, B \notin \mathcal{H} \mathcal{N}$, such that $A \cap h B \in \mathcal{H} \mathcal{N}$ for all h; that is, G there does not act transitively on the non-Haar null sets.

Definition 1.3. (cf. [BarFN]). In a quasi-topological group (H, τ) say that a proper σ-ideal \mathcal{H} has the Simple Steinhaus Property $A A^{-1}$ if $A A^{-1}$ has interior points for universally measurable subsets $A \notin \mathcal{H}$.

Proposition 1' (cf. [Kha, Th. 1]). In a group (H, τ) with τ translation-invariant, if H acts transitively on a family of subsets \mathcal{H} with the simple Steinhaus property, then \mathcal{H} has the (composite) Steinhaus property:

$$
\operatorname{int}_{\tau}\left(A B^{-1}\right) \neq \emptyset \text { for } A, B \in \mathcal{H} .
$$

Furthermore, if \mathcal{H} is preserved under inversion, then also

$$
\operatorname{int}_{\tau}(A B) \neq \emptyset \text { for } A, B \in \mathcal{H}
$$

Proof. For $A, B \in \mathcal{H}$ choose h with $C:=A \cap h B \in \mathcal{H}$; then

$$
C C^{-1} h=(A \cap h B)\left(A^{-1} \cap B^{-1} h^{-1}\right) \subseteq A B^{-1}
$$

Proposition 2. If (H, τ) is a quasi-topological group (i.e. τ is invariant with continuous inversion) carrying a left invariant σ-ideal \mathcal{H} with the Steinhaus property and $\tau \cap \mathcal{H}=\{\emptyset\}$, then the ideal-topology σ with basis

$$
\mathcal{B}:=\{U \backslash N: U \in \tau, N \in \mathcal{H}\}
$$

is a Steinhaus refinement of τ.
In particular, for (H, τ) an abelian Polish group, the ideal topology generated by its σ-ideal of Haar null subsets is a Steinhaus refinement.
Proof. If $U, V \in \mathcal{B}$ and $w \in U \cap V$, choose $M, N \in \mathcal{H}$ and $W_{M}, W_{N} \in \tau$ such that $x \in\left(W_{M} \backslash M\right) \subseteq U$ and $x \in\left(W_{N} \backslash N\right) \subseteq V$. Then as $M \cup N \in \mathcal{H}$,

$$
x \in\left(W_{M} \cap W_{N}\right) \backslash(M \cup N) \in \mathcal{B} .
$$

So \mathcal{B} generates a topology σ refining τ. With the same notation, $h U=h W_{M} \backslash h M \in$ σ, as $h M \in H$, and $U^{-1}=W_{M}^{-1} \backslash M^{-1}$. Finally, $U U^{-1}$ has non-empty τ-interior, as $U \notin \mathcal{H}$ and is non-empty.

As for the final assertion concerned with an abelian Polish group context, note that if N is Haar null $(N \in \mathcal{H} \mathcal{N})$, then $\mu(h N)=0$ for some $\mu \in \mathscr{P}(G)$ and all $h \in H$, so $h N \in \mathcal{H} \mathcal{N}$ for all $h \in H$. Furthermore, if $A \notin \mathcal{H} \mathcal{N}$, then $A^{-1} \notin \mathcal{H} \mathcal{N}$: for otherwise, $\mu\left(h A^{-1}\right)=0$ for some $\mu \in \mathcal{P}(G)$ and all $h \in H$; then, taking $\tilde{\mu}(B)=$ $\mu\left(B^{-1}\right)$ for Borel B, we have $\tilde{\mu}(A)=0$ and $\tilde{\mu}(h A)=\mu\left(A^{-1} h^{-1}\right)=0$ for all $h \in H$, a contradiction.

Remark. A left Haar null set need not be right Haar null: for one example see [ShiT], and for more general non-coincidence see Solecki [Sol1, Cor. 6]. So the argument in Prop. 2 does not extend to the family of left Haar null sets $\mathcal{H} \mathcal{N}$ of a non-commutative Polish group. Indeed, Solecki [Sol2, Th. 1.4] shows in the context of a countable product of countable groups that the simpler Steinhaus property holds for $\mathcal{H} \mathcal{N}_{\mathrm{amb}}$ (involving simultaneous left- and right-sided translation - see Part III §1) iff $\mathcal{H} \mathcal{N}_{\text {amb }}=\mathcal{H} \mathcal{N}$.

Next, we reproduce a result from [Kom]. Recall that μ is quasi-invariant if μ-nullity is translation invariant. The transitivity assumption (of co-nullity) is motivated by Smítal's lemma, which refers to a countable dense set - see [KucS].

Theorem K ([Kom, Th. 5]). If $\mu \in \mathcal{P}(G)$ is quasi-invariant and there exists a countable subset $H \subseteq G$ with $H M$ co-null for all $M \in \mathcal{M}_{+}(\mu)$, then $\operatorname{int}\left(A B^{-1}\right) \neq \emptyset$ for all $A, B \in \mathcal{M}_{+}(\mu)$.

Proof. By regularity, we may assume $A, B \in \mathcal{M}_{+}(\mu)$ are compact, so $A B^{-1}$ is compact. Fix $g \in G$; then by quasi-invariance $\mu(g B)>0$. So by the transitivity assumption, both $G \backslash H g B$ and $G \backslash H A$ are null, and so $H A \cap H g B \neq \emptyset$. Say $h_{1} a=h_{2} g b$, for some $a \in A, b \in B, h_{1}, h_{2} \in H$; then $g=h_{2}^{-1} h_{1} a b^{-1}$. As g was arbitrary,

$$
G=\bigcup_{h \in H} h_{2}^{-1} h_{1} A B^{-1} .
$$

By Baire's Theorem, as H is countable, $\operatorname{int}\left(A B^{-1}\right) \neq \emptyset$.

2. BORELL'S INTERIOR-POINT PROPERTY

For completeness of this overview of the Steinhaus-Weil interior-point property, we offer in brief here the context and statement of a (by now) classical Steinhauslike result in probability theory; this differs in that the Polish group now specializes to an infinite-dimensional topological vector space and the reference measure is Gaussian, so no longer invariant. We refer to the related paper [BinO2] for further details and background literature, and to our generalizations to Polish groups and other reference measures.

For X a locally convex topological vector space, γ a probability measure on the σ-algebra of the cylinder sets generated by the dual space X^{*} (equivalently, for X separable Fréchet, e.g. separable Banach, the Borel sets), with $X^{*} \subseteq L^{2}(\gamma)$: then γ is called Gaussian on X ('gamma for Gaussian', following [Bog]) iff $\gamma \circ \ell^{-1}$ defined by

$$
\gamma \circ \ell^{-1}(B)=\gamma\left(\ell^{-1}(B)\right) \quad(\text { Borel } B \subseteq \mathbb{R})
$$

is Gaussian (normal) on \mathbb{R} for every $\ell \in X^{*} \subseteq L^{2}(\gamma)$. For a monograph treatment of Gaussianity in a Hilbert-space setting, see Janson [Jan]. Write $\gamma_{h}(K):=\gamma(K+h)$ for the translate by h. Relative quasi-invariance of γ_{h} and γ, that for all compact K

$$
\gamma_{h}(K)>0 \text { iff } \gamma(K)>0,
$$

holds relative to a set of vectors $h \in X$ (the admissible directions) forming a vector subspace known as the Cameron-Martin space, $H(\gamma)$. Then γ_{h} and γ are equivalent, $\gamma \sim \gamma_{h}$, iff $h \in H(\gamma)$. Indeed, if $\gamma \sim \gamma_{h}$ fails, then the two measures are mutually singular, $\gamma_{h} \perp \gamma$ (the Hajek-Feldman Theorem - cf. [Bog, Th. 2.4.5, 2.7.2]).

Continuing with the assumption above on X^{*}, as $X \subseteq X^{* *} \subseteq L^{2}(\gamma)$, one can equip $H=H(\gamma)$ with a norm derived from that on $L^{2}(\gamma)$. In brief, this is done with reference to a natural covariance under γ obtained by regarding $f \in X^{*}$ as a random variable and working with its zero-mean version $f-\gamma(f)$; then, for $h \in H, \delta_{h}^{\gamma}$, the (shifted) evaluation map defined by $\delta_{h}^{\gamma}(f):=f(h)-\gamma(f)$ for $f \in X^{*}$, is represented as $\langle f-\gamma(f), \hat{h}\rangle_{L^{2}(\gamma)}$ for some $\hat{h} \in L^{2}(\gamma)$. (Here for γ symmetric $\gamma(f)=0$, so $\delta_{h}^{\gamma}=\delta_{h}$ is the Dirac measure at h.) This is followed by identifying h with \hat{h} (for $h \in H$), and $|h|_{H}:=\|\hat{h}\|_{L^{2}(\gamma)}$ is a norm on H arising from the inner product

$$
(h, k)_{H}:=\int_{X} \hat{h}(x) \hat{k}(x) d \gamma(x) .
$$

Formally, the construction first requires an extension of the domain of δ_{h}^{γ} to X_{γ}^{*}, the closed span of $\left\{x^{*}-\gamma\left(x^{*}\right): x^{*} \in X^{*}\right\}$ in $L^{2}(\gamma)$, a Hilbert subspace in which to apply the Riesz Representation Theorem.

We may now state the Steinhaus-like property due, essentially in this form, to Christer Borell. ([LeP, Prop. 1] offers a weaker, 'one-dimensional-section' form with the origin an interior point of the difference set relative to each line of H passing through it; we may call it the H-radial form by analogy with the \mathbb{Q}-radial form [Kuc, §10.1] of Euclidean spaces: the rational points are indeed an additive subgroup. The alternative term 'algebraic interior point' is also in use, e.g. in the literature of functional equations - cf. [Brz].)

Theorem B (Borell's Interior-point Theorem, [Bor, Cor. 4.1] - see [Bog, p. 64]). For γ a Gaussian measure on a locally convex topological space X with $X^{*} \subseteq L^{2}(\gamma)$, and A any non-null γ-measurable subset A of X, the difference set $A-A$ contains $a|\cdot|_{H}$-open nhd (neighbourhood) of 0 in the Cameron Martin space $H=H(\gamma)$, i.e. $(A-A) \cap H$ contains a H-open nhd of 0 .

This follows from the continuity in h of the density of γ_{h} wrt γ ([Bog, Cor. 2.4.3]), as given in the Cameron-Martin-Girsanov formula:

$$
\begin{equation*}
\exp \left(\hat{h}(x)-\frac{1}{2}\|\hat{h}\|_{L^{2}(\gamma)}^{2}\right) \tag{CM}
\end{equation*}
$$

(where \hat{h} 'Riesz-represents' h, i.e. $x^{*}(h)=\left\langle x^{*}, \hat{h}\right\rangle$, for $x^{*} \in X^{*}$, as above). Thus here a modified Steinhaus Theorem holds: the relative-interior-point theorem.

References

[ArhT] A. Arhangelskii, M. Tkachenko, Topological groups and related structures. World Scientific, 2008.
[BanGJS] T. Banakh, S. Głąb, E. Jabłońska, J. Swaczyna, Haar-I sets: looking at small sets in Polish groups through compact glasses. arXiv: 1803.06712.
[BarFF] A. Bartoszewicz, M. Filipczak, T. Filipczak, On supports of probability Bernoulli-like measures. J. Math. Anal. Appl. 462 (2018), 26-35.
[BarFN] A. Bartoszewicz, M. Filipczak, T. Natkaniec, On Smítal properties. Topology Appl. 158 (2011), 2066-2075.
[BinO1] N. H. Bingham and A. J. Ostaszewski, Beyond Lebesgue and Baire IV: Density topologies and a converse Steinhaus-Weil theorem. Topology and its Applications 239 (2018), 274-292 (arXiv:1607.00031).
[BinO2] N. H. Bingham and A. J. Ostaszewski, Beyond Haar and Cameron-Martin: the Steinhaus support. Topology Appl. 260 (2019), 23-56 (arXiv:1805.02325v2).
[BinO3] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property and its converse: subcontinuity and amenability. arXiv:1607.00049.
[BinO4] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: I. Subcontinuity and amenability. Preprint.
[BinO5] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: II. The SimmonsMospan converse. Preprint.
[BinO6] N. H. Bingham and A. J. Ostaszewski, The Steinhaus-Weil property: III. Weil topologies. Preprint.
[Bog] V. I. Bogachev, Gaussian Measures, Math. Surveys \& Monographs 62, Amer Math Soc., 1998.
[Bor] C. Borell, Gaussian Radon measures on locally convex spaces, Math. Scand. 36 (1976), 265284.
[Brz] J. Brzdęk, Subgroups of the group \mathbb{Z}_{n} and a generalization of the Gołab-Schinzel functional equation. Aequat. Math. 43 (1992), 59-71.
[FilW] M. Filipczak, W. Wilczyński, Strict density topology on the plane. Measure case. Rend. Circ. Mat. Palermo (2) 60 (2011),113-124.
[GofNN] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505.
[GofW] C. Goffman, D. Waterman, Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), 116-121.
[Hal] P. R. Halmos, Measure theory, Grad. Texts in Math. 18, Springer 1974 (1 $1^{\text {st }}$ ed. Van Nostrand, 1950).
[HauP] O. Haupt, C. Pauc, La topologie approximative de Denjoy envisagée comme vraie topologie. C. R. Acad. Sci. Paris 234 (1952), 390-392.
[HewR] E. Hewitt, K. A. Ross, Abstract harmonic analysis, Vol. I, Grundl. math. Wiss. 115, Springer 1963 [Vol. II, Grundl. 152, 1970].
[Jab] E. Jabłońska, A theorem of Piccard’s type in abelian Polish groups. Anal. Math. 42 (2016), 159-164.
[Jan] S. Janson, Gaussian Hilbert spaces. Cambridge Tracts in Mathematics 129. Cambridge University Press, 1997.
[Kha] A. Kharazishvili, Some remarks on the Steinhaus property for invariant extensions of the Lebesgue measure, Eur. J. Math. 5 (2019), 81-90.
[Kom] Z. Kominek, On an equivalent form of a Steinhaus theorem, Math. (Cluj) 30 (53)(1988), 25-27.
[Kuc] M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequalit. 2nd ed., Birkhäuser, 2009 (1st ed. PWN, Warszawa, 1985).
[KucS] M. Kuczma, J. Smítal, On measures connected with the Cauchy equation. Aequationes Math. 14 (1976), no. 3, 421-428.
[LeP] R. D. LePage, Subgroups of paths and reproducing kernels, Ann. Prob. 1 (1973), 345-347.
[LukMZ] J. Lukeš, Jaroslav, J. Malý, L. Zajíček, Fine topology methods in real analysis and potential theory. Lecture Notes in Math. 1189, Springer, 1986.
[Mar1] N. F. G. Martin, A topology for certain measure spaces, Trans. Amer. Math. Soc. 112 (1964), 1-18.
[Mar2] N. F. G. Martin, Generalized condensation points, Duke Math. J., 28 (1961), 507-514.
[MatZ] E. Matoŭsková, M. Zelený, A note on intersections of non-Haar null sets, Colloq. Math. 96 (2003), 1-4.
[Mue] B. J. Mueller, Three results for locally compact groups connected with the Haar measure density theorem. Proc. Amer. Math. Soc. 16 (6) (1965), 1414-1416.
[ShiT] H. Shi, B. S. Thomson, Haar null sets in the space of automorphisms on [0,1]. Real Anal. Exchange 24 (1998/99), 337-350.
[Sol1] S. Solecki, Size of subsets of groups and Haar null sets. Geom. Funct. Anal. 15 (2005), 246273.
[Sol2] S. Solecki, Amenability, free subgroups, and Haar null sets in non-locally compact groups. Proc. London Math. Soc. (3) 93 (2006), 693-722.
[TomW] G. Tomkowicz, S. Wagon, The Banach-Tarski paradox. Cambridge University Press, 2016 (1 ${ }^{\text {st }}$ ed. 1985).
[Wil] W. Wilczyński, Density topologies, Handbook of measure theory, Vol. I, II, 675-702, NorthHolland, 2002.
(Received: October 10, 2020)
(Revised: January 28, 2022)

Nicholas H. Bingham
Mathematics Department
Imperial College
London SW7 2AZ
e-mail: n.bingham@ic.ac.uk and
Adam J. Ostaszewski
Mathematics Department
London School of Economics
Houghton Street
London WC2A 2AE
e-mail: a.j.ostasz.ewski@lse.ac.uk

[^0]: 2010 Mathematics Subject Classification. Primary 22A10, 43A05; Secondary 28C10.
 Key words and phrases. Steinhaus-Weil property, Cameron-Martin space, Borell's theorem, refinement topology, Haar density topology, quasi-invariance.

