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ABSTRACT. In this paper we present a local dynamics and investigate the global
behavior of the following system of difference equations{

xn+1 = ax3
n +by3

n
yn+1 = Ax3

n +By3
n

, n ∈ N0

with non-negative parameters and initial conditions x0 and y0 that are real num-
bers. We establish the relations for local stability of equilibriums and necessary
and sufficient conditions for the existence of period-two solution(s). We then
use this result to give global behavior results for special ranges of parameters
and determine the basins of attraction of all equilibrium points.

1. INTRODUCTION

In this paper we study the local and global stability character, the periodic nature
and the boundedness of solutions of the system of polynomial difference equations
with cubic terms {

xn+1 = ax3
n +by3

n
yn+1 = Ax3

n +By3
n

, n ∈ N0 (1.1)

where the parameters a,b,A,B are nonnegative numbers and initial conditions x0
and y0 are real numbers. In [2], the general second order difference equation
is completely investigated and described the regions of initial conditions in the
first quadrant for which all solutions tend to equilibrium points, period-two so-
lutions, or the point at infinity, except for the case of infinitely many period-
two solutions, are described. In [1], the case of infinitely many period-two so-
lutions is completely investigated and the q corresponding difference equation is
xn+1 = axnxn−1 +ax2

n−1 +bxn−1. In [3] we have extended our research to the gen-
eral cubic polynomial difference equation where we give a class of examples of
second order difference equations for which the Julia set can be found explicitly
and is represented by a planar curve. Otherwise, the Julia set is the union of the
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stable manifolds of some saddle equilibrium points or nonhyperbolic equilibrium
points and/or period-two points. Asymptotic formulas for these manifoldsin both
quadratic and cubic cases, were obtained in [4] and [5]. Furthermore , in [6] the
behavior of all solutions of the difference equation of type

xn+1 = x3
n + x3

n−1,

is described, where results are extended to hold in the whole real plane. All these
results lead us to cosider the system (1.1). Our principal tool is the theory of mono-
tone maps, and in particular cooperative maps, which guarantee the existence and
uniqueness of the stable and unstable manifolds for the fixed points and periodic
points. More precisely, we will use the results proved in [6] and [10] to describe
the behavior of all solutions of the system (1.1).

Let f1(x) = anxn + an−1xn−1 + ...+ a1x+ a0 and g1(x) = bmxm + bm−1xm−1 +
...+b1x+b0 be two polynomials of degrees n and m, respectively. Their resultant
(see [8, 9, 15]) Res( f1,g1) is the determinant of the (m+ n)× (m+ n) Sylvester
matrix given by

Syl( f1,g1) =



an an−1 · · · a1 a0 0 · · · 0
0 an an−1 · · · a1 a0 · · · 0
...
0 · · · an an−1 an−2 · · · a1 a0

bm bm−1 · · · b1 b0 0 · · · 0
0 bm bn−1 · · · b1 b0 · · · 0
...
0 0 · · · bm bm−1 bm−2 · · · b0


or

Res( f1,g1) = am
n bn

m

n

∏
i=1

m

∏
j=1

(αi −β j)

where αi, i = 1,2, . . . ,n and β j, j = 1,2, . . . ,m are the zeros of the polynomials
f1(x) and g1(x) respectively. In addition, for a polynomial f1(x) the most common
definition of the discriminant is

Dis( f1) = a2n−2
n

n

∏
i, j
i< j

(αi −α j)
2 ,

that is, if an = 1 then Dis( f1) is the product of the squares of the differences of
the polynomial roots αi. By using the resultant, discriminant and Theorems 17
and 18 in [3] the global dynamics of polynomial cubic second order difference
equation in the parametric regions where two distinct equilibrium points and a
finite number of period-two solutions exist is described. If g1(x)= f ′1(x)= 0 ·xn+n
anxn−1 +(n−1)an−1xn−2 + ...+ a1, then the 2n× 2n Sylvester matrix Syl( f1, f ′1)
is called the discrimination matrix.
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Let Dk denote the determinant of the submatrix of Syl( f1, f ′1) formed by the first
2k rows and the first 2k columns for k = 1,2, . . . ,n. The n−tuple {D1( f1),D2( f1),
. . . ,Dn( f1)} is the discriminant sequence of polynomial f1(x). The list
{sign(D1 ( f1)) ,sign(D2 ( f1)) , . . . ,sign(Dn ( f1))} is the sign list of the discrimi-
nant sequence {D1 ( f1) ,D2 ( f1) , . . . ,Dn ( f1)}.

A two-dimensional system of difference equations is of the form

xn+1 = f (xn,yn) ,

yn+1 = g(xn,yn) , n = 0,1, . . .

where f ,g:D→R, D⊆R2. A map T (x,y)=( f (x,y),g(x,y)) is called cooprative if
f and g are continuous functions defined on some subset of R2 with non-empty in-
terior such that f and g are non-decreasing in all of its arguments. The well-known
deMottoni-Schiaffino theorem (see [12,14]) claims that in this case for each (x,y)∈
D , the sequence {T n(x,y)} (resp.

{
T 2n(x,y)

}
) is eventually coordinate-wise mono-

tonic. Consequently, every bounded sequence {T n (x,y)} (resp.
{

T 2n(x,y)
}

) con-
verges to a fixed point of T or to a point on the boundary of D .

The next two results can be proved by using the techniques of proof of Theorems
3, 5, 6, 7, 8, 9 and 10 in [6] applied to cooperative maps.

Theorem 1.1. Let T be cooperative map on a rectangular region R ⊆ R2 and as-
sume that there is no minimal period-two solution of map T . Assume that E1(x1,y1)
and E2(x2,y2) are two consecutive equilibrium points in North-East ordering that
satisfy (x1,y1)⪯ne (x2,y2) and that E1 is a local attractor and E2 is a saddle point
or a non-hyperbolic point with second characteristic root in interval (−1,1). Then
the basin of attraction B(E1) of E1 is the region below the global stable manif-
old W s(E2) the graph of a strictly decreasing continuous function of the first
coordinate on an interval. More precisely B(E1)= {(x,y) :∃yu : y < yu, (x,yu) ∈
W s(E2)}.

The basin of attraction B(E2) = W s(E2) is exactly the global stable manifold
of E2. Any endpoints of the global stable manifold W s(E2) are exactly either fixed
points or minimal period-two points. The curve W u(E2) is an unstable set, passing
through the point E2, and it is the graph of a strictly increasing continuous function
of the first coordinate on an interval. Any endpoints of the global unstable manifold
W u(E2) are fixed points of T .

Theorem 1.2. Let T be a cooperative map on a rectangular region R ⊆R2 and as-
sume that there is no minimal period-two solution of map T . Assume that E1(x1,y1),
E2(x2,y2) and E3(x2,y2) are three consecutive equilibrium points in North-East or-
dering that satisfy (x1,y1) ⪯ne (x2,y2) ⪯ne (x3,y3) and that E2 is a local attractor
and E1,E3 are a saddle points. Then the basin of attraction B(E2) of E2 is the
region between the global stable manifolds W s(E1) and W s(E3), where W s(E1)
and W s(E3) are the graphs of a strictly decreasing continuous functions of the
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first coordinate on an interval. More precisely B(E1) = {(x,y) : ∃yu,yl : yl < y <
yu, (x,yl)∈W s(E1),(x,yu)∈W s(E3)}. The basins of attraction B(E1) =W s(E1)
and B(E2) = W s(E2) are exactly the global stable manifolds of E1 and E3.

The requirement that E1 and E3 are saddle points can be replaced by the re-
quirement that at least one of them is non-hyperbolic point with corresponding
conditions. Also, see [6], Theorem 1.2 can be extended to the case when map T
has a finite number of equilibrium points.

The next theorem follows from Theorem 1.1.1 in [13]

Theorem 1.3. Let T be the function defined by T (x,y) = ( f (x,y),g(x,y)) where
f ,g : R×R → R. Let JT (E) be the Jacobian matrix evaluated at an eqilibrium
point E of the function T . Set S = tr(JT (E)) and D = det(JT (E)) the trace and
determinant of JT (E) respectively. The following statements hold:

(i) if |S | < 1+D and D < 1 then E is locally asymptotically stable (sink) (or
(S −D −1)(S +D +1)< 0),

(ii) if |S |> |1+D| then E is a saddle point (or (S −D −1)(S +D +1)> 0),
(iii) if |S |< |1+D| and |D|> 1 then E is repeller,
(iv) if |S |= |1+D| (or (S −D −1)(S +D +1) = 0) or D = 1 and |S | ≤ 2 then

E is a nonhyperbolic point.

The following theorem is from [16]. Let Dk be determinant of the submatrix of
Discr(p) dicrimination matrix of polynomial p(x) formed by the first 2k rows and
the first 2k columns k = 1,2, . . . ,n.

Theorem 1.4. Let p(x) = a0xn + a1xn−1 + . . .+ an−1x+ an be a polynomial with
real coefficients. If the number of sign changes of the revised sign list of

{D1 (p) ,D2 (p) , . . . ,Dn (p)}
is v, the the number of pairs of distinct conjugate imaginary roots of p(x) equals
v. Furthermore, if the number of non-vanishing (non-zero) members of the revised
sign list is l, then the number of the distinct real roots of p(x) is l −2v.

In addition to Theorem 1.4 let

{s1,s2, . . . ,sn}= {sign(D1 (p)) ,sign(D2 (p)) , . . . ,sign(Dn (p))}
be the sign list of the discriminant sequence {D1 (p) ,D2 (p) , . . . ,Dn (p)} of the
polynomial p(x). If

{
si,si+1,si+2, . . . ,si+ j−1,si+ j

}
is a part of the given sign list

such that si ̸= 0, si+1 = si+2 = · · · = si+ j−1 = 0 and si+ j ̸= 0 then we construct

the revised sign list where the term si+r will be replaced with (−1)⌊
r+1

2 ⌋ si, r =
1,2, . . . , j−1. So, the section {si,0,0, . . . ,0,si+ j} will be replaced by {si,−,si,−si,
si,si,−si,−si, . . . ,si+ j}.

The following two well known theorems are very useful in determining the num-
ber of positive zeros of polynomial.
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Theorem 1.5. Let P(x) = a0xb0 +a1xb1 + . . .+anxbn where ai, i = 0,n are nonzero
real numbers and 0 ≤ b0 < b1 < .. . < bn are integers. Then P(x) = 0 has an even
number of positive zeros, counting multiplicities, if and only if a0an > 0.

Theorem 1.6. Let P(x) = a0xb0 +a1xb1 + . . .+anxbn where ai, i = 0,n are nonzero
real numbers and 0 ≤ b0 < b1 < .. . < bn are integers.The number of positive zeros
of P(x) = 0, counting multiplicities, is either equal to v(P) or less than that by
an even number, where v(P) denotes the number of sign changes in the sequence
a0,a1, . . . ,an.

In this paper, figures 7-12 are obtained by using Mathematica 9.0, with the
boundaries of the basins of attraction obtained by using the software package Dy-
namica (see [11]).

2. EQUILIBRIUM POINTS

The map T associated to system (1.1) is given by

T (x,y) = ( f (x,y),g(x,y)) =
(
ax3 +by3,Ax3 +By3) . (2.1)

The equilibrium points of the system (1.1) are the solutions of the system

ax3 +by3 = x

Ax3 +By3 = y. (2.2)

If (u,v) is solution of the system (2.2), where u ≥ 0 and v ≥ 0, then (−u,−v) is
solution of the system (2.2). Indeed,

a(−u)3 +b(−v)3 =−
(
au3 +bv3)=−u

A(−u)3 +B(−v)3 =−
(
Au3 +Bv3)=−v.

Similarly, if (−u,v) is solution of the system (2.2), where u ≥ 0 and v ≥ 0, then
(u,−v) is solution of the system (2.2)

a(−u)3 +bv3 =−au3 +bv3 =−u ⇔ au3 −bv3 = au3 +b(−v)3 = u

A(−u)3 +Bv3 =−Au3 +Bv3 = v ⇔ Au3 −Bv3 = Au3 +B(−v)3 =−v.

One can conclude that we have the symmetry of the first and third quadrant and
the second and fourth quadrant. Now, it is clear that it is enough to observe case
where x ∈ R and y ≥ 0. Clearly, the case when a = 0 (b = 0) reduces to the case
when A = 0 (B = 0) by replacing xn and yn, so it will be avoided.

2.1. case b = 0, a > 0, A > 0, B > 0

The system (2.2) is equivalent to

ax3 = x

Ax3 +By3 = y.
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Clearly, ax3 = x if and only if x(
√

ax−1)(
√

ax+1) = 0 which implies x1 = 0,
x2 =

√
a

a , x3 =−
√

a
a .

(i) If x1 = 0, then By3 = y if and only if y
(√

Bx−1
)(√

Bx+1
)
= 0 and It fol-

lows immediately that the solutions{
(0,0) ,

(
0,

√
B

B

)
,
(

0,−
√

B
B

)}
are equilibrium points of system (1.1).

(ii) If x2 =
√

a
a , then

By3 − y+
A
√

a
a2 = 0. (2.3)

Set h(y) = By3 − y+ A
√

a
a2 . Since h(0) = A

√
a

a2 > 0 and h(−∞) = −∞, then
Eq.(2.3) always has negative solution y. Furthermore, h′ (y) = 3By2 − 1.
Since B > 0 that implies h′ (y) = 0 if and only if
y1,2 = ± 1√

3B
where we set y1 < 0 < y2. Hence, h(y1)h(y2) =

A2

a3 − 4
27B ,

h(0) = A
√

a
a2 > 0 and we get the following:

FIGURE 1 FIGURE 2

FIGURE 3

- if h(y1)h(y2)> 0 if and only if 27A2B > 4a3, then y is unique negative so-
lution of Eq.(2.3) which implies

(√
a

a ,y
)

is equilibrium point of the system
(1.1) (see Figure 1).

- if h(y1)h(y2) < 0 if and only if 27A2B < 4a3, that implies there are three
different real solutions of Eq.(2.3) y1 = y, y2 ∈ (0,y2), y3 ∈ (y2,+∞) and
three equilibrium points of the system (1.1)

{(√
a

a ,y1

)
,
(√

a
a ,y2

)
,
(√

a
a ,y3

)}
(see Figure 2).
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- if h(y1)h(y2) = 0 if and only if 27A2B = 4a3, that implies there are two
different real solutions of Eq.(2.3). If h(y1) = 0, then y = y1 and that im-
plies h(0) < 0 which is impossible. Thus h(y2) = 0, so y, y2 are solutions
of Eq.(2.3) and points

{(√
a

a ,y
)
,
(√

a
a ,y2

)}
are equilibrium points of the

system (1.1) (see Figure 3).
(iii) If x2 =−

√
a

a , then

By3 − y− A
√

a
a2 = 0. (2.4)

Set g(y) = By3 − y− A
√

a
a2 . Since g(0) = −A

√
a

a2 < 0 and g(+∞) = +∞, then
Eq.(2.4) always has positive solution y+. Furthermore, g′ (y) = 3By2 − 1.
Since B > 0 that implies g′ (y) = 0 if and only if
y1,2 = ± 1√

3B
where we set y1 < 0 < y2. Hence, g(y1)g(y2) =

A2

a3 − 4
27B and

g(0) = −A
√

a
a2 < 0. By using the fact that we have the symmetry of the first

and third quadrant and the second and fourth quadrant that immediately leads
to the following statements:

FIGURE 4 FIGURE 5

FIGURE 6

- if g(y1)g(y2) > 0 if and only if 27A2B > 4a3, then y+ = −y (y is negative
solution of Eq.(2.3)) is unique positive solution of Eq.(2.4) which implies(
−

√
a

a ,y+
)

is equilibrium point of the system (1.1) (see Figure 4).

- if g(y1)g(y2) < 0 if and only if 27A2B < 4a3 that implies there are three
different real solutions of Eq.(2.4) y∗1 ∈ (−∞,y1), y∗2 ∈ (y1,0), y∗3 = y+ ∈
(y2,+∞) and three equilibrium points of the system (1.1)

{(
−

√
a

a ,y∗1
)
,(

−
√

a
a ,y∗2

)
,
(
−

√
a

a ,y∗3
)}

, where y∗1 =−y3, y∗2 =−y2 and y2,y3 are different
real solutions of Eq.(2.3) (see Figure 5).
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- if g(y1)g(y2) = 0 if and only if 27A2B = 4a3 that implies there are two dif-
ferent real solutions of Eq.(2.4). If g(y2) = 0, then y+ = y2 and that implies
g(0) > 0 which is impossible. Thus it must be g(y1) = 0 so y1, y+ are so-

lutions of Eq.(2.4) and points
{(

−
√

a
a ,y1

)
,
(
−

√
a

a ,y+
)}

are equilibrium
points of the system (1.1) (see Figure 6).

All this leads to the following theorem:

Theorem 2.1. Assume that b = 0, a > 0, A > 0, B > 0. Then

(i) the points
{

E0 (0,0) ,E1

(
0,

√
B

B

)
,E2

(
0,−

√
B

B

)}
are equilibrium points of

the system (1.1),
(ii) if 27A2B > 4a3 then E3

(√
a

a ,y
)

and E4

(
−

√
a

a ,−y
)

are equilibrium points of
the system (1.1), where y is unique negative solution of Eq.(2.3),

(iii) If 27A2B < 4a3, then E5

(√
a

a ,y1

)
, E6

(√
a

a ,y2

)
, E7

(√
a

a ,y3

)
,

E8

(
−

√
a

a ,−y3

)
, E9

(
−

√
a

a ,−y2

)
, E10

(
−

√
a

a ,−y1

)
are equilibrium points of

the system (1.1), where y1, y2 and y3 are three different real solutions of
Eq.(2.3),

(iv) if 27A2B = 4a3, then E11

(√
a

a ,y
)

, E12

(√
a

a , 1√
3B

)
, E13

(
−

√
a

a ,−y
)

,

E14

(
−

√
a

a ,− 1√
3B

)
are equilibrium points of the system (1.1), where y is the

negative solution of Eq.(2.3).

2.2. case a = 0, b > 0, A > 0, B > 0

The system (2.2) is equivalent to
by3 = x

Ax3 +By3 = y.

Hence, Ab3y9 +By3 = y if and only if y
(
Ab3y8 +By2 −1

)
= 0 which implies y1 =

0 or
Ab3y8 +By2 −1 = 0. (2.5)

Set y2 = t > 0. Then we get the following equation P(t) = Ab3t4 +Bt − 1 = 0.
Since P(0) = −1 and P(+∞) = +∞ one can see that the polynimial P(t) has at
least the one positive zero. Furthermore Ab3 · (−1)< 0, then by applying Theorem
1.5 the last equation has an odd number of positive zeros, counting multiplicities.
The number of sign changes in the sequence −1, B, Ab3 is v(P) = 1 and Theorem
1.6 implies the number of positive zeros of P(t) = 0, counting multiplicities, is
either equal to v(P) or less than that by an even number. All this leads that P(t)
has exactly the one positive zero. Hence, the equation Ab3y8+By2−1 = 0 has two
symmetric solutions. Let y− and y+ denote that solutions. Now,

1 = Ab3y8
++By2

+ ≥ 2
√

ABb3y10
+ = 2b

√
ABby5

+
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which implies

y+ ∈

(
0,

1
5
√

2b
√

ABb

]
and y− ∈

[
−1

5
√

2b
√

ABb
,0

)
.

It follows immediately that the solutions
{
(0,0) ,

(
by3

−,y−
)
,
(
by3

+,y+
)}

are equi-
librium points of the system (1.1).

Theorem 2.2. Assume that a = 0, b > 0, A > 0, B > 0. Then the points E0 (0,0),
E1
(
by3

−,y−
)
, E2

(
by3

+,y+
)

are equilibrium points of the system (1.1), where y−
and y+ denote symmetric solutions of Eq.(2.5).

2.3. case a > 0, b > 0, A > 0, B > 0 and aB = bA

From aB = bA we get a
A = b

B = k > 0. Now, the equilibrium points of the system
(1.1) are solutions of

Akx3 +Bky3 = x

Ax3 +By3 = y,

which yields x = ky and y((Ak3+B)y2−1) = 0 if and only if y1 = 0, y2 =− A√
a3+A2B

,

y3 =
A√

a3+A2B
. Hence, solutions{

(0,0),
(
− a√

a3 +A2B
,− A√

a3 +A2B

)
,

(
a√

a3 +A2B
,

A√
a3 +A2B

)}
are equilibrium points of the system (1.1).

Theorem 2.3. Assume that a > 0, b > 0, A > 0, B > 0 and aB = bA. Then the
points E0 (0,0), E1

(
− a√

a3+A2B
,− A√

a3+A2B

)
,

E2

(
a√

a3+A2B
, A√

a3+A2B

)
are equilibrium points of the system (1.1).

2.4. case a > 0, b > 0, A > 0, B > 0 and aB ̸= bA

In this case we have
aBx3 +bBy3 = Bx

bAx3 +bBy3 = by,

so by subtracting the last two lines and after some calculation we obtain

y =
B
b

x+
bA−aB

b
x3. (2.6)

This implies the following equation

x

(
ax2 +bx2

(
B
b
+

bA−aB
b

x2
)3

−1

)
= 0. (2.7)
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Obviously x1 = 0 and point (0,0) is equilibrium point of the system (1.1). Set x2 =

t > 0 and p(t) = at +bt
(B

b −
aB−bA

b t
)3 −1. Since p(0) =−1 and p

(1
a

)
= bA3

a4 > 0
thus p(t) has at least one positive zero at

(
0, 1

a

)
. One can show that the following

holds:

p(t) =−1+
1
b2

(
ab2 +B3) t +

3B2

b2 (bA−aB) t2+

+
3B
b2 (bA−aB)2 t3 +

1
b2 (bA−aB)3 t4.

(2.8)

and

p′ (t) =
1
b2

(
ab2 +B3)+ 6B2

b2 (bA−aB) t +
9B
b2 (bA−aB)2 t2+

+
4
b2 (bA−aB)3 t3.

We will consider two different cases:

(i) If bA−aB> 0, then by applying Theorems 1.5 and 1.6 to the polynomial p(t)
given by (2.8) we obtain that p(t) has exactly the one positive zero at

(
0, 1

a

)
.

More precisely, equation (2.7) has two symmetric zeros x− ∈
(
− 1√

a ,0
)

and

x+ ∈
(

0, 1√
a

)
which implies solutions

{
(0,0) ,(x−,y−) ,(x+,y+)

}
are equi-

librium points of the system (1.1) where y− and y+ are given by (2.6) with
corresponding x.

(ii) If bA− aB < 0, then by applying Theorems 1.5 and 1.6 on polynomial p(t)
given by (2.8) we obtain that p(t) has either two or four positive zeros. Let
Syl(p, p′) be the Sylvester matrix of p(t) and p′ (t)

(bA−aB)3

b2
3B(bA−aB)2

b2
3B2(bA−aB)

b2
ab2+B3

b2 −1 0 0 0

0 4(bA−aB)3

b2
9B(bA−aB)2

b2
6B2(bA−aB)

b2
ab2+B3

b2 0 0 0

0 (bA−aB)3

b2
3B(bA−aB)2

b2
3B2(bA−aB)

b2
ab2+B3

b2 −1 0 0

0 0 4(bA−aB)3

b2
9B(bA−aB)2

b2
6B2(bA−aB)

b2
ab2+B3

b2 0 0

0 0 (bA−aB)3

b2
3B(bA−aB)2

b2
3B2(bA−aB)

b2
ab2+B3

b2 −1 0

0 0 0 4(bA−aB)3

b2
9B(bA−aB)2

b2
6B2(bA−aB)

b2
ab2+B3

b2 0

0 0 0 (bA−aB)3

b2
3B(bA−aB)2

b2
3B2(bA−aB)

b2
ab2+B3

b2 −1

0 0 0 0 4(bA−aB)3

b2
9B(bA−aB)2

b2
6B2(bA−aB)

b2
ab2+B3

b2


Let Dk be determinant of the submatrix of Syl(p, p′) formed by the first 2k

rows and the first 2k columns k = 1,2,3,4. Hence,

D1 =
4
b4 (bA−aB)6 > 0,
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D2 =
3B2

b8 (bA−aB)10 > 0,

D3 =
6

b10 (bA−aB)12 (aB3 +2bAB2 −6a2b2) ,
D4 =

1
b10 (bA−aB)12 (−27a4b2 +192ab2A2B+6a2bAB2 +4a3B3

−256b3A3 −27A2B4)
and

{sign(D1) ,sign(D2) ,sign(D3) ,sign(D4)}=
{1,1,sign(D3) ,sign(D4)} .

(2.9)

Now, if sign(D3) =−1, then it follows that sign(D4) ∈ {0,−1}, otherwise if
sign(D4) = 1 Theorem 1.4 yields that the polynomial p(t) has no real roots
which is impossible. Hence, if aB3 + 2bAB2 − 6a2b2 < 0 then by applying
Theorem 1.4 the polynomial p(t) has exactly two real roots. If sign(D3) = 0
and sign(D4) ̸= 0 then the revised sign list has the form {1,1,−1,sign(D4)}
which yields that sign(D4) =−1, otherwise the polynomial p(t) has no real
roots which is impossible. Now, for sign(D4) = −1 by applying Theorem
1.4 the polynomial p(t) has exactly two real roots. Finally, if sign(D3) =
1 then the revised sign list has the form {1,1,1,sign(D4)}. Therefore, if
sign(D4) ∈ {0,1} then by applying Theorem 1.4 the polynomial p(t) has
exactly four real roots, otherwise the polynomial p(t) has exactly two real
roots. All this we present at the following table where we set p1 = bA−aB <
0, p2 = aB3 +2bAB2 −6a2b2 and p3 =−27a4b2 +192ab2A2B+6a2bAB2 +
4a3B3 −256b3A3 −27A2B4:

p1, p2, p3 number of real roots
of Eq.(2.8)

symmetric real zeros
of Eq.(2.7)

p1 < 0, p2 < 0 2 4
p1 < 0, p2 = 0, p3 ̸= 0 2 4
p1 < 0, p2 > 0, p3 < 0 2 4
p1 < 0, p2 > 0, p3 ≥ 0 4 8

TABLE 1
Therefore, Eq.(2.7) has four or eight symmetric zeros according to Table 1
which yields that the system (1.1) has four or eight equilibrium points.

Theorem 2.4. Assume that a > 0, b > 0, A > 0, B > 0 and aB ̸= bA. Then the point
E0 (0,0) is equilibrium point of the system (1.1) and

(i) if bA− aB > 0, then E1 (x−,y−), E2 (x+,y+) are equilibrium points of the
system (1.1) where x− and x+ are two symmetric zeros of Eq.(2.7) with cor-
responding y given by (2.6);

(ii) if bA−aB < 0, then the number of symmetric real zeros of Eq.(2.7) is given
by table (1).
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3. LOCAL STABILITY OF EQUILIBRIUM SOLUTIONS

The Jacobian matrix of the map T given by (2.1) evaluated in an equilibrium
point (x,y) is

JT (x,y) =


∂ f
∂x

(x,y)
∂ f
∂y

(x,y)

∂g
∂x

(x,y)
∂g
∂y

(x,y)

=

(
3ax2 3by2

3Ax2 3By2

)
. (3.1)

The determinant and trace of (3.1) are

det(JT (x,y)) = 9x2y2 (aB−bA) and

tr(JT (x,y)) = 3
(
ax2 +By2) .

(3.2)

The eigenvalues of (3.1) are

λ =
3
2

(
ax2 +By2 +

√(
ax2 +By2

)2
+4x2y2 (bA−aB)

)
µ =

3
2

(
ax2 +By2 −

√(
ax2 +By2

)2
+4x2y2 (bA−aB)

)
with corresponding eigenvectors

Eλ =

ax2 −By2 +

√(
ax2 +By2

)2
+4x2y2 (bA−aB)

2Ax2 ,1


Eµ =

ax2 −By2 −
√(

ax2 +By2
)2

+4x2y2 (bA−aB)

2Ax2 ,1

 .

Theorem 3.1. E0 (0,0) is locally asymptotically stable.

Proof. Since det(JT (E0))= 0 and tr(JT (E0))= 0 then |tr(JT (E0))|< 1+det(JT (E0))
and det(JT (E0)) < 1. By applying Theorem 1.3 the equilibrium E0 (0,0) of the
system (1.1) is locally asymptotically stable. □

Theorem 3.2. Let b = 0, a > 0, A > 0, B > 0. Then the equilibrium points of
system (1.1) satisfy the following statements:

(i) E0 (0,0) is locally asymptotically stable, E1

(
0,

√
B

B

)
and E2

(
0,−

√
B

B

)
are

the saddle points.
(ii) If 27A2B > 4a3, then E3

(√
a

a ,y
)

and E4

(
−

√
a

a ,−y
)

are the repellers, where
y is unique negative solution of Eq.(2.3).

(iii) If 27A2B < 4a3, then E5

(√
a

a ,y1

)
, E7

(√
a

a ,y3

)
, E8

(
−

√
a

a ,−y3

)
,

E10

(
−

√
a

a ,−y1

)
are the repellers and E6

(√
a

a ,y2

)
, E9

(
−

√
a

a ,−y2

)
are the
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saddle points, where y1, y2 and y3 are three different real solutions of Eq.(2.3)
y1 ∈

(
−∞,− 1√

3B

)
, y2 ∈

(
0, 1√

3B

)
, y3 ∈

(
1√
3B
,+∞

)
.

(iv) If 27A2B = 4a3 then E11

(√
a

a ,y
)

, E13

(
−

√
a

a ,−y
)

are the repellers and

E12

(√
a

a , 1√
3B

)
, E14

(
−

√
a

a ,− 1√
3B

)
are the nonhyperbolic points, where y is

the negative solution of Eq.(2.3).

Proof. Indeed,
(i) In view of Theorem 1.3 E0 (0,0) is locally asymptotically stable. Since

det(JT (E1,2)) = 0 and tr(JT (E1,2)) = 3 then |tr(JT (E1,2))|> |1+
det(JT (E1,2))| so equilibriums E1 and E2 are the saddle points.

(ii) Clearly, det(JT (E3,4)) = 9y2B and tr(JT (E3,4)) = 3
(
1+By2

)
then

tr(JT (E3,4))− det(JT (E3,4)) = 3
(
1−2By2

)
. Since y is the unique solu-

tion of Eq.(2.3) and |y| > 1√
3B

(see Figure 1) then 3
(
1−2By2

)
< 1. Now

|det(JT (E3,4))| > 1 and |tr(JT (E3,4))| < |1+det(JT (E3,4))|. By applying
Theorem 1.3 equilibriums E3 and E4 are the repellers.

(iii) Obviously, for all points Ei we obtaine det(JT (Ei)) = 9y2
i B and tr(JT (Ei)) =

3
(
1+By2

i
)
, where i = 5,10 and yi is real solution of Eq.(2.3). It is easy to

see that y coordinate of equilibrium points E5, E7, E8, E10 satisfies inequal-
ity
∣∣y j

∣∣ > 1√
3B

(see Figure 2), so according to (ii) we get
∣∣det(JT (E j))

∣∣ > 1

and
∣∣tr(JT (E j))

∣∣< ∣∣1+det(JT (E j))
∣∣ where j ∈ {5,7,8,10}. Thus, by using

Theorem 1.3 equilibriums E5, E7, E8, E10 are the repellers. On the other side,
y coordinate of equilibrium points E6 and E9 satisfies inequality |yk| < 1√

3B
,

yk ∈ {y6,y9}, where are tr(JT (E6,9))−det(JT (E6,9)) = 3
(
1−2By2

k

)
> 1 and

|tr(JT (E1,2))| > |1+det(JT (E1,2))|. Hence, by applying Theorem 1.3 equi-
libriums E6 and E9 are the saddle points.

(iv) In this case we have det(JT (E12,14)) = 3 and tr(JT (E12,14)) = 4 which im-
plies |tr(JT (E3,4))|= |det(JT (E3,4))+1| and from Theorem 1.3 yields equi-
libriums E12 and E14 are the nonhyperbolic points. For equilibriums E11 and
E13 we obtaine tr(JT (E11,13))− det(JT (E11,13)) = 3

(
1−2By2

)
. Since y is

the negative solution of Eq.(2.3) that satifies |y| > 1√
3B

(see Figure 3) then

3
(
1−2By2

)
< 1. That implies the following |tr(JT (E11,13))|< |1+

det(JT (E11,13))| and |det(JT (E11,13))| > 1. By applying Theorem 1.3 equi-
libriums E11 and E13 are the repellers. □

Theorem 3.3. Let a= 0, b> 0, A> 0, B> 0. Let y− and y+ are the symmetric solu-
tions of equation b3Ay8+By2 = 1. Then equilibrium points E0 (0,0), E1

(
by3

−,y−
)
,

E2
(
by3

+,y+
)

of the system (1.1) satisfy the following statements: E0 is locally
asymptotically stable and

(i) if 16Ab3 > 27B4, then E1 and E2 are repellers,



140 J. BEKTEŠEVIĆ, V. HADŽIABDIĆ, M. MEHULJIĆ, AND N. MUJIĆ

(ii) if 16Ab3 < 27B4, then E1 and E2 are the saddle points,
(iii) If 16b3A = 27B4, then E1 and E2 are the nonhyperbolic points.

Proof. By applying Theorem 1.3 the equilibrium E0 (0,0) of the system (1.1)
is locally asymptotically stable. One can find that det(JT (E1,2)) = −9b3Ay8 =
9
(
By2 −1

)
and tr(JT (E1,2)) = 3By2 where y ∈

{
y−,y+

}
. Furthermore Ab3y8 +

By2 = 1 implies By2 ∈ (0,1). Now

(i) If By2 ∈
(
0, 2

3

)
then |det(JT (E1,2))| = 9

(
1−By2

)
> 9

(
1− 2

3

)
= 3 > 1 and

|1+det(JT (E1,2))|= 8−9By2 = 12
(2

3 −By2
)
+3By2 > 3By2 = |tr(JT (E1,2))|.

Thus, by applying Theorem 1.3 equilibriums E1 and E2 are repellers. It is
remain to us to show By2 ∈

(
0, 2

3

)
if and only if 16Ab3 > 27B4. Indeed, if

By2 < 2
3 , then

1 = Ab3y8 +By2 =
Ab3

B4

(
By2)4

+By2 <
16Ab3

81B4 +
2
3
⇒ 16Ab3 > 27B4.

Now, if Ab3 > 27
16 B4, then

0 = Ab3y8 +By2 −1 >
27
16

B4y8 +By2 −1

=
27
16
(
By2)4

+By2 −1 =
1
16

(3z−2)
(
9z3 +6z2 +4z+8

)
,

which yields z ∈
(
0, 2

3

)
, where we set z = By2.

(ii) It easy to show that |1+det(JT (E1,2))|=
∣∣9By2 −8

∣∣< 3By2 = |tr(JT (E1,2))|
for all By2 ∈

(2
3 ,1
)
. Therefore by applying Theorem 1.3 equilibriums E1 and

E2 are the saddle points. By using the method shown in (i) one can prove that
By2 ∈

(2
3 ,1
)

if and only if 16Ab3 < 27B4.
(iii) If By2 = 2

3 then |1+det(JT (E1,2))| = 2 and |tr(JT (E1,2))| = 2 by applying
Theorem 1.3 equilibriums E1 and E2 are the nonhyperbolic points. Clearly,
By2 = 2

3 if and only if 16b3A = 27B4. □

Theorem 3.4. Let a > 0, b > 0, A > 0, B > 0 and aB = bA. The points E0 (0,0),
E1

(
− a√

a3+A2B
,− A√

a3+A2B

)
, E2

(
a√

a3+A2B
, A√

a3+A2B

)
are equilibrium points of the

system (1.1) and the following statement holds: E0 is locally asymptotically stable
and E1, E2 are the saddle points.

Proof. By applying Theorem 1.3 equilibrium E0 (0,0) of the system (1.1) is locally
asymptotically stable. Furthermore, det(JT (E1,2)) = 0, tr(JT (E1,2)) = 3 which im-
plies |tr(JT (E1,2))|> |1+det(JT (E1,2))| so equilibriums E1 and E2 are the saddle
points. □

Theorem 3.5. Let a > 0, b > 0, A > 0, B > 0 and aB ̸= bA. The equilibrium point
E0 (0,0) of the system (1.1) is locally asymptotically stable.
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(i) If bA−aB > 0, then the equilibrium points E1 (x−,y−) and E2 (x+,y+) of the
system (1.1), where x− and x+ are two symmetric solutions of equation (2.7)
satisfy the following:
(i1) if tr(JT (E1,2)) ∈ (0,2), then E1 and E2 are repellers,
(i2) if tr(JT (E1,2)) = 2, then E1 and E2 are nonhyperbolics,
(i3) if tr(JT (E1,2)) ∈ (2,3), then E1 and E2 are saddle points.

(ii) If bA−aB < 0, then number of equilibrium points E (x,y) of the system (1.1)
is given by the table (1). The following statements hold:
(ii1) E is not locally asymptotically stable,
(ii2) if tr(JT (E)) ∈ (4,+∞), then E is a repeller,
(ii3) if tr(JT (E)) = 4, then E is nonhyperbolic,
(ii4) if tr(JT (E)) ∈ (3,4) , then E is a saddle point.

Proof. By applying Theorem 1.3 the equilibrium E0 (0,0) of the system (1.1) is
locally asymptotically stable.

(i) Straightforward calculation implies det(JT (E1,2)) = −9x2y2 (bA−aB) < 0
and tr(JT (E1,2)) = 3

(
ax2 +By2

)
> 0, where (x,y) ∈ {E1,E2}. In this case

we have |x|< 1√
a and

ax3 +by3 = x ⇔ b
y3

x
= 1−ax2,

Ax3 +By3 = y ⇔ A
x3

y
= 1−By2.

By multiplying the last two relations after an easy calculation we have(
ax2 +By2)+(bA−aB)x2y2 = 1. (3.3)

Since bA − aB > 0 then ax2 + By2 ∈ (0,1) so we have 1 > ax2 + By2 ≥
2
√

aB |xy|. Hence, x2y2 < 1
4aB . Set d = det(JT (E1,2)) and t = tr(JT (E1,2)).

From (3.3) yields
d = 3t −9, t ∈ (0,3) . (3.4)

Theorem 1.3 and (3.4) immediately imply that equilibriums E1 and E2 are:
(i1) repellers if t < |3t −8|∧9−3t > 1 if and only if t ∈ (0,2).
(i2) nonhyperbolic points if t = |3t −8| if and only if t = 2∨ t = 4. From

d = 1 and |t| ≤ 2 we get t = 10
3 . From (3.4) yields t = 2.

(i3) saddle points if t > |3t −8| if and only if t ∈ (2,4), therefore t ∈ (2,3)
(ii) In this case we have d = det(JT (E))=−9x2y2 (bA−aB)> 0, t = tr(JT (E))=

3
(
ax2 +By2

)
> 0 and by applying (3.3) we get 0 > (bA−aB)x2y2 = 1−(

ax2 +By2
)
⇒ ax2 +By2 > 1 so

d = 3t −9 > 0, t ∈ (3,+∞) . (3.5)

From Theorem 1.3 and (3.5) we get that the equilibrium is:
(ii1) locally asymptotically stable if t < 3t −8∧3t −9 < 1 if and only if

t > 4∧ t < 10
3 , which is impossible,
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(ii2) repeller if t < 3t −8∧3t −9 > 1 if and only if t ∈ (4,+∞),
(ii3) nonhyperbolic point if t = 3t −8 if and only if t = 4.
(ii4) saddle point if t > 3t −8 if and only if t < 4, therefore t ∈ (3,4) . □

One can give a geometric interpretation of Theorem 3.5:

Theorem 3.6. Let a > 0, b > 0, A > 0, B > 0 and aB ̸= bA. Let ax3 +by3 = x and
Ax3 +By3 = y be curves and let the point E be an intersection point of the given
curves. Set r(x,y) = 3

(
ax2 +By2

)
(r(x,y) = k, k > 0, is an ellipse).

(i) If bA−aB > 0, then E is the equilibrium point of system (1.1).
(i1) If E ∈ {(x,y) : 0 < r (x,y)< 2}, then E is a repeller.
(i2) If E ∈ {(x,y) : r (x,y) = 2}, then E is nonhyperbolic.
(i3) If E ∈ {(x,y) : 2 < r (x,y)< 3}, then E is a saddle point.

(ii) If bA− aB < 0, then the number of equilibrium points E (x,y) of the system
(1.1) is given by the table (1). The following statements hold:
(ii1) E is not locally asymptotically stable,
(ii2) if E ∈ {(x,y) : r (x,y)> 4}, then E is a repeller,
(ii3) if E ∈ {(x,y) : r (x,y) = 4} then E is nonhyperbolic,
(ii4) if E ∈ {(x,y) : 3 < r (x,y)< 4} , then E is a saddle point.

4. EXISTENCE OF PRIME PERIOD-TWO SOLUTIONS

Let . . . ,Φ,Ψ,Φ,Ψ, . . . be a two cycle of the system (1.1). Let T be the function
defined by (2.1). Then (Φ,Ψ) is fixed point of T 2, the second iterete of T . Now

T 2(x,y) = T (T (x,y)) = T
(
ax3 +by3,Ax3 +By3)

=
(

a
(
ax3 +by3)3

+b
(
Ax3 +By3)3

,A
(
ax3 +by3)3

+B
(
Ax3 +By3)3

)
, (4.1)

and period-two solutions . . . ,Φ,Ψ,Φ,Ψ, . . . satisfies the system:

a
(
aΦ

3 +bΨ
3)3

+b
(
AΦ

3 +BΨ
3)3

= Φ,

A
(
aΦ

3 +bΨ
3)3

+B
(
AΦ

3 +BΨ
3)3

= Ψ. (4.2)

4.1. case b = 0, a > 0, A > 0, B > 0

In this case system (4.2) becomes
a4

Φ
9 = Φ,

A
(
aΦ

3)3
+B

(
AΦ

3 +BΨ
3)3

= Ψ.

Now, from a4Φ9 = Φ we have Φ(
√

aΦ−1)(
√

aΦ+1)
(
aΦ2 +1

)(
a2Φ4 +1

)
= 0

so Φ0 = 0, Φ1 =
1√
a and Φ2 =− 1√

a . For Φ0 = 0 we obtain B4Ψ9 = Ψ which im-

plies Ψ0 = 0, Ψ1 =
1√
B

and Ψ2 =− 1√
B

. Hence, (Φ,Ψ)∈
{
(0,0) ,

(
0, 1√

B

)
,
(

0, −1√
B

)}
and all these solutions are the equilibrium points of the system (1.1). For Φ1 =

1√
a
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we have A
a
√

a +B
(

A
a
√

a +BΨ3
)3

= Ψ and after straight forward calculation we ob-
tain(

A
a
√

a +BΨ3 −Ψ

)(
1+ A2B

a3 +
√

aAB
a2 Ψ+BΨ2 + 2

√
aAB2

a2 Ψ3 +B2Ψ4 +B3Ψ6
)

= 0. Since every solution of A
a
√

a +BΨ3−Ψ = 0 is a solution of Eq.(2.3), then any
period-two solution is a solution of equation

q(Ψ) = 1+
A2B
a3 +

√
aAB
a2 Ψ+BΨ

2 +
2
√

aAB2

a2 Ψ
3 +B2

Ψ
4 +B3

Ψ
6 = 0. (4.3)

Let q′ (Ψ) be the first derivative of q(Ψ) that is

q′ (x) =
√

aAB
a2 +2BΨ+

6
√

aAB2

a2 Ψ
2 +4B2

Ψ
3 +6B3

Ψ
5.

Theorem 4.1. Let q(Ψ) be the polynomial defined by (4.3). If a > 0, A > 0, B > 0
then q(Ψ)> 0 for all Ψ.

Proof. The Sylvester matrix Syl(q,q′) of q(Ψ) and q′ (Ψ) is the matrix of form

B3 0 B2 2
√

aAB2

a2 B
√

aAB
a2 1+ A2B

a3 0 0 0 0 0

0 6B3 0 4B2 6
√

aAB2

a2 2B
√

aAB
a2 0 0 0 0 0

0 B3 0 B2 2
√

aAB2

a2 B
√

aAB
a2 1+ A2B

a3 0 0 0 0

0 0 6B3 0 4B2 6
√

aAB2

a2 2B
√

aAB
a2 0 0 0 0

0 0 B3 0 B2 2
√

aAB2

a2 B
√

aAB
a2 1+ A2B

a3 0 0 0

0 0 0 6B3 0 4B2 6
√

aAB2

a2 2B
√

aAB
a2 0 0 0

0 0 0 B3 0 B2 2
√

aAB2

a2 B
√

aAB
a2 1+ A2B

a3 0 0

0 0 0 0 6B3 0 4B2 6
√

aAB2

a2 2B
√

aAB
a2 0 0

0 0 0 0 B3 0 B2 2
√

aAB2

a2 B
√

aAB
a2 1+ A2B

a3 0

0 0 0 0 0 6B3 0 4B2 6
√

aAB2

a2 2B
√

aAB
a2 0

0 0 0 0 0 B3 0 B2 2
√

aAB2

a2 B
√

aAB
a2 1+ A2B

a3

0 0 0 0 0 0 6B3 0 4B2 6
√

aAB2

a2 2B
√

aAB
a2


Let Dk be determinant of the submatrix of Syl(q,q′) formed by the first 2k rows
and the first 2k columns k = 1,2, . . . ,6. Hence,

D1 = 6B6 > 0,

D2 =−12B11 < 0,

D3 = 8
B15

a3

(
4a3 −27A2B

)
,

D4 = 972
A2B19

a3 > 0,
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D5 = 162
A2B21

a6

(
32a3 +27A2B

)
> 0,

D6 =−
B21
(
16a3 +27A2B

)(
32a3 +27A2B

)2

a9 < 0,

and
{sign(D1) ,sign(D2) ,sign(D3) ,sign(D4) ,sign(D5) ,sign(D6)}

= {1,−1,sign(D3) ,1,1,−1} .
(4.4)

Now, by applying Theorem 1.4 the polynomial q(Ψ) has no real roots if and only
if sign(D3) = 1 or sign(D3) =−1 which yields 4a3 −27A2B ̸= 0. If sign(D3) = 0
then (4.4) yields {1,−1,0,1,1,−1} and the revised sign list is {1,−1,1,1,1,−1}
so Theorem 1.4 implies the polynomial q(Ψ) has no real roots. □

In view of Theorem 4.1 it is clear that:

Theorem 4.2. If b = 0, a > 0, A > 0, B > 0, then the system (1.1) has no minimal
period-two solution.

4.2. case a = 0, b > 0, A > 0, B > 0

In this case system (4.2) becomes

b
(
AΦ

3 +BΨ
3)3

= Φ,

Ab3
Ψ

9 +B
(
AΦ

3 +BΨ
3)3

= Ψ.

If Ψ = 0, then Ab3Ψ9 +B
(
AΦ3 +BΨ3

)3
= Ψ if and only if A3BΦ9 = 0 ⇒ Φ = 0,

which is impossible. Since we have the symmetry of the first and third quadrant
and the second and fourth quadrant it is enough to observe case where Φ ∈ R and
Ψ > 0. Also, if Φ ≥ 0, then

(
AΦ3 +BΨ3

)
≥ 0 which implies Ab3Ψ9 ≤ Ψ ⇒

1−Ab3Ψ8 ≥ 0. Now after a quick calculation we have Ab3Ψ9 +B Φ

b = Ψ, hence

Φ =
b
B

Ψ
(
1−Ab3

Ψ
8) . (4.5)

From b
(
AΦ3 +BΨ3

)3
= Φ we get(

Ab3

B3 Ψ
3 (1−Ab3

Ψ
8)3

+BΨ
3
)3

=
Ψ
(
1−Ab3Ψ8

)
B

and (
Ab3

B3

(
1−Ab3

Ψ
8)3

+B
)3

=
1−Ab3Ψ8

BΨ8 .

If we set Ψ8 = t > 0, then(
Ab3

B3

(
1−Ab3t

)3
+B
)3

=
1−Ab3t

Bt
.
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Let u(t) be polynomial defined by

u(t) =
t

B8

(
Ab3 (1−Ab3t

)3
+B4

)3
+Ab3t −1. (4.6)

One can show that
u(t) =− 1

B8 v(t)w(t) ,

where
v(t) = 1−

(
4Ab3 +B4) t +6A2b6t2 −4A3b9t3 +A4b12t4, (4.7)

and
w(t) = B8 −

(
A3b9 +3A2b6B4) t +

(
5A4b12 +5A3b9B4) t2−

−
(
10A5b15 +2A4b12B4) t3 +10A6b18t4 −5A7b21t5 +A8b24t6.

(4.8)

Now, let Ψ be solution of Eq.(2.5), more precisely, b3AΨ8+BΨ2 = 1 if and only if
t = 1−B 4√t

Ab3 . After a straight forward calculation we get

v
(

1−B 4
√

t
Ab3

)
=

B4

Ab3

(
Ab3t +B 4

√
t −1

)
= 0. (4.9)

This yields the positive zero of polynomial v(t) implies equlibrium points E1 and
E2 (including symmetry) of the system (1.1), except point E0 (0,0). Let Dk be
determinant of the submatrix of Syl(v,v′t)8×8 formed by the first 2k rows and the
first 2k columns k = 1,2, . . . ,4. Clearly,

v′ (t) =−
(
4Ab3 +B4)+12A2b6t −12A3b9t2 +4A4b12t3,

and
Syl(v,v′t) =

A4b12 −4A3b9 6A2b6 −(4Ab3+B4) 1 0 0 0

0 4A4b12 −12A3b9 +12A2b6 −(4Ab3+B4) 0 0 0

0 A4b12 −4A3b9 6A2b6 −(4Ab3+B4) 1 0 0

0 0 4A4b12 −12A3b9 +12A2b6 −(4Ab3+B4) 0 0

0 0 A4b12 −4A3b9 6A2b6 −(4Ab3+B4) 1 0

0 0 0 4A4b12 −12A3b9 +12A2b6 −(4Ab3+B4) 0

0 0 0 A4b12 −4A3b9 6A2b6 −(4Ab3+B4) 1

0 0 0 0 4A4b12 −12A3b9 +12A2b6 −(4Ab3+B4)


After straight forward calculation we obtain

D1 = 4b24A8 > 0,
D2 = 0,

D3 =−36b48A16B8 < 0,

D4 =−b48A16B12 (256b3A+27B4)< 0.
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The sign list of the discriminant sequence Di of v(t) is {1,0,−1,−1} and the
revised sign list is {1,−1,−1,−1}. By applying Theorem 1.4 we get

sign changes v real zeros degv(t)−2v distinct real zeros l −2v
1 4−2×1 = 2 4−2×1 = 2

TABLE 2

In view of Table 2 and Theorems 1.5 and 1.6 we obtain that v(t) = 0 has ex-
actly two positive zeros. Since, one positive zero implies equlibrium points of the
system (1.1), except point E0 (0,0), then the other one implies period-two points
including symmetry. Furthemore, v(0) = 1, v

( 1
Ab3

)
=− B4

Ab3 < 0 and v(+∞) =+∞

this yields v(t) = 0 has two positive zeros in
(
0, 1

Ab3

)
and

( 1
Ab3 ,+∞

)
. From (4.5)

we have sgn(Φ) = sgn
( 1

Ab3 − t
)
, so if t ∈

( 1
Ab3 ,+∞

)
, then sgn(Φ) = −1 which

implies there exists period-two solution in second and fourth qudrant P1 ∈ Q2 (E0)
and P2 ∈ Q4 (E0) (including symmetry). Moreover, If 16Ab3 ≤ 27B4, then 1

Ab3 <
1

Ab3

(
1+ 2 3√2

3

)
= α and

v(α) =
2 3
√

2
(
16Ab3 −27B4

)
−81B4

81Ab3 < 0,

so t0 ∈ (α,+∞), otherwise if 16Ab3 > 27B4, then

v
(

3
Ab3

)
=

16Ab3 −3B4

Ab3 >
24B4

Ab3 > 0

which yields t0 ∈
( 1

Ab3 ,
3

Ab3

)
.

Let Ek be the determinant of the submatrix of Syl(w,w′
t)12×12 formed by the first

2k rows and the first 2k columns k = 1,2, . . . ,6. Since

w′ (t) =−
(
A3b9+3A2b6B4)+2

(
5A4b12+5A3b9B4) t−3

(
10A5b15+2A4b12B4) t2

+40A6b18t3−25A7b21t4+6A8b24t5,

then after straight forward calculation we obtain:

E1 = 6b48A12 > 0,

E2 = 5b90A30 > 0,

E3 = 8A40b120B4 (5Ab3 −27B4) ,
E4 =−180A50b150B8 < 0,

E5 = 80A56b168B12 (4Ab3 +27B4)> 0,

E6 = A58b174B20 (4Ab3 +27B4)2 (
16Ab3 −27B4) .

The sign list of the discriminant sequence of w(t) is {1,1,sign(E3),−1,1,sign(E6)}.
Obviously, sign(E3) does not affect the number of sign changes in the sign list of
the discriminant sequence of w(t):
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sign(E3)
discriminant sequence of

w(t)
revised sign list

sign changes v to
sign(E6)

−1 {1,1,−1,−1,1,sign(E6)} {1,1,−1,−1,1,sign(E6)} 2
0 {1,1,0,−1,1,sign(E6)} {1,1,−1,−1,1,sign(E6)} 2
1 {1,1,1,−1,1,sign(E6)} {1,1,1,−1,1,sign(E6)} 2

In view of Theorem 1.4 we get the following table:

sign(E6) sign changes v real zeros degw−2v distinct real zeros l −2v
−1 3 6−2×3 = 0 6−2×3 = 0
0 2 6−2×2 = 2 5−2×2 = 1
1 2 6−2×2 = 2 6−2×2 = 2

TABLE 3

Let us consider the case when sign(E6) = 0 if and only if 16Ab3 = 27B4. Then
polynomial w(t) becomes

w(t) =
B8
(
16−81B4t

)2 h(t)
4294967296

,

where
h(t) = 16777216−54079488B4t +105815808B8t2−

−110539728B12t3 +43046721B16t4.

In view of Table 3 if 16Ab3 = 27B4, then w(t) has one real zero so h(t) ̸= 0, for
all t ∈ R, which implies t = 16

81B4 is only zero of w(t). Since Ψ8 = t, then

Ab3
Ψ

8 +BΨ
2 =

27B4

16
16

81B4 +B 4

√
16

81B4 = 1.

By applying (2.5) and Theorem 3.3 (Φ,Ψ) is not period-two solution. From The-
orems 1.5 and 1.6 we obtain that w(t) = 0 has even number of positive zeros, so if
sign(E6) = 1 if and only if 16Ab3 > 27B4, then w(t) = 0 has exactly two positive
zeros which implies four period-two solutions (including symmetry). Furthemore,

w(0) = B8 > 0

w
(

1
3Ab3

)
=− 1

729
(
16Ab3 −27B4)(2Ab3 +27B4)< 0,

w
(

1
Ab3

)
= B8 > 0.

This yields that w(t) = 0 has two positive zeros in
(
0, 1

3Ab3

)
and

( 1
3Ab3 ,

1
Ab3

)
. From

(4.5) we have sgn(Φ) = sgn
( 1

Ab3 − t
)
, so if t ∈

(
0, 1

Ab3

)
, then sgn(Φ) = 1 which

implies there exists 2 period-two solution in first qudrant P3,P5 ∈ Q1 (E0) (P4,P6 ∈
Q3 (E0) including symmetry).
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All this leads to the following theorem:

Theorem 4.3. Assume that a = 0, b > 0, A > 0, B > 0.
(i) If 16Ab3 > 27B4, then the system (1.1) has six period-two solutions

{Pi (Φi,Ψi)}6
i=1 with P1 ∈ Q2 (E0), P2 ∈ Q4 (E0), P3,P5 ∈ Q1 (E0) and

P4,P6 ∈ Q3 (E0).
(ii) If 16Ab3 ≤ 27B4, then the system (1.1) has two period-two solutions

P1 ∈ Q2 (E0) and P2 ∈ Q4 (E0).

4.3. case a > 0, b > 0, A > 0, B > 0 and aB = bA

Let a
A = b

B = k > 0. The period-two solutions (Φ,Ψ) satisfy the system:

Ak
(
AkΦ

3 +BkΨ
3)3

+Bk
(
AΦ

3 +BΨ
3)3

= Φ,

A
(
AkΦ

3 +BkΨ
3)3

+B
(
AΦ

3 +BΨ
3)3

= Ψ.

By multiplying the second equation with k, after subtracting the equations we ob-
tain Φ = kΨ. Now, by substitution Φ = kΨ in the second equation of the system
given above, we have

Ψ

(
Ψ

√
Ak3 +B−1

)(
Ψ

√
Ak3 +B+1

)(
Ψ

√
Ak3 +B−1

)
·

·
(
Ψ

2 (Ak3 +B
)
+1
)(

Ψ
4 (Ak3 +B

)2
+1
)
= 0

and Ψ = 0 or Ψ = ±1√
Ak3+B

= ±A√
a3+A2B

. Clearly, the following theorem holds:

Theorem 4.4. If a > 0, b > 0, A > 0, B > 0 and aB = bA, then the system (1.1)
has no minimal period-two solution.

Since the case a = 0, b > 0, A > 0, B > 0 leads us to a very cumbersome calcu-
lation the case a > 0, b > 0, A > 0, B > 0 and aB ̸= bA will be omitted from our
consideration.

5. LOCAL STABILITY OF PRIME PERIOD-TWO SOLUTIONS

In view of Theorem 4.2 the system (1.1) has no minimal period-two solution,
thus we will consider only the case a = 0, b > 0, A > 0, B > 0. The Jacobian matrix
of map T 2, where T is given by (2.1) for a = 0, evaluated at point (Φ,Ψ) is

JT 2 (Φ,Ψ) =

(
9AbΦ2

(
AΦ3 +BΨ3

)2 9BbΨ2
(
AΦ3 +BΨ3

)2

9ABΦ2
(
AΦ3 +BΨ3

)2 9Ab3Ψ8 +9B2Ψ2
(
AΦ3 +BΨ3

)2

)
(5.1)

The determinant and trace of (5.1) are

D = det(JT 2 (Φ,Ψ)) = 81A2b4
Φ

2
Ψ

8 (AΦ
3 +BΨ

3)2
> 0,

and

S = tr(JT 2 (Φ,Ψ)) = 9Ab3
Ψ

8 +9
(
AbΦ

2 +B2
Ψ

2)(AΦ
3 +BΨ

3)2
> 0.
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By using the fact Φ = b
B Ψ
(
1−Ab3Ψ8

)
and seting Ψ8 = t > 0 we get

D (t) =
81A2b6

B8 t2 (1−Ab3t
)2
(

B4 +Ab3 (1−Ab3t
)3
)2

,

S (t) =
9t
B8

(
Ab3B8 +B4

(
B4 +Ab3 (1−Ab3t

)3
)2
)

+
9t
B8

(
Ab3 (1−Ab3t

)2
(

B4 +Ab3 (1−Ab3t
)3
)2
)
.

Moreover, from (4.6) if u(t) = 0, we have

u(t) =
t

B8

(
B4 +Ab3 (1−Ab3t

)3
)3

+Ab3t −1 = 0,

and
t

B8

(
B4 +Ab3 (1−Ab3t

)3
)2

=
1−Ab3t

B4 +Ab3 (1−Ab3t)3 ,

so

D (t) =
81A2b6t

(
1−Ab3t

)3

B4 +Ab3 (1−Ab3t)3 ,

S (t) = 9Ab3t +9
(
1−Ab3t

) B4 +Ab3
(
1−Ab3t

)2

B4 +Ab3 (1−Ab3t)3 ,

and

9(S (t)−D (t)−1) = 8(9−D (t)) . (5.2)

The following lemma holds:

Lemma 5.1. Let (Φ,Ψ) be a minimal period-two solution of the system (1.1), then
any period-two solution is hyperbolic, a repeler or a saddle point.

(a) If 16Ab3 > 27B4, then the system (1.1) has six period-two solutions
{Pi (Φi,Ψi)}6

i=1 with P1 ∈ Q2 (E0) and P2 ∈ Q4 (E0) are repellers, P3,P5 ∈
Q1 (E0) and P4,P6 ∈ Q3 (E0) are saddle points.

(b) If 16Ab3 ≤ 27B4, then the system (1.1) has two period-two solutions P1 ∈
Q2 (E0) and P2 ∈ Q4 (E0) and they are repellers.

Proof. Assume that t0 is a positive zero of u(t) which implies period-two solution.
In view of Theorem 4.3 the system (1.1) always has minimal period-two solution.
Let us consider the case when D (t0)≤ 1. If t0 ∈

(
0, 1

Ab3

)
if and only if 1−Ab3t0 ∈

(0,1), then
(
1−Ab3t0

)3
<
(
1−Ab3t0

)2 and
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S (t0) = 9Ab3t0 +9
(
1−Ab3t0

) B4 +Ab3
(
1−Ab3t0

)2

B4 +Ab3 (1−Ab3t0)
3

> 9Ab3t0 +9
(
1−Ab3t0

) B4 +Ab3
(
1−Ab3t0

)2

B4 +Ab3 (1−Ab3t0)
2

= 9Ab3t0 +9
(
1−Ab3t0

)
= 9.

Now, S (t0)> 9= 1+8> 1+D (t0) which implies if the period-two solution exists
it is a saddle point. We have seen that if 16Ab3 > 27B4, w(t0) = 0 and t0 ∈

(
0, 1

Ab3

)
,

where w(t) is defined by (4.8), then there exist 2 period-two solutions in first
qudrant P3,P5 ∈ Q1 (E0) (P4,P6 ∈ Q3 (E0) including symmetry). Hence, if exist,
period-two solutions P3,P5 ∈ Q1 (E0) are saddle points. Since D (t)> 0 for all t >
0, then sgn

(
1−Ab3t

)
= sgn

(
B4 +Ab3

(
1−Ab3t

)3
)

. If t0 > 1
Ab3 if and only if 1−

Ab3t0 < 0, then
B4 +Ab3 (1−Ab3t0

)3
< 0

and from D (t0)≤ 1 we get

B4 +Ab3 (1−Ab3t0
)3 ≤ 81A2b6t0

(
1−Ab3t0

)3
.

B4 ≤ 81A2b6t0
(
1−Ab3t0

)3 −Ab3 (1−Ab3t0
)3

0 < B4 ≤ Ab3 (1−Ab3t0
)3 (

81Ab3t0 −1
)
⇒

81Ab3t0 −1 < 0 ⇔ t0 <
1

81Ab3

Thus 1
Ab3 < t0 < 1

81Ab3 , which is impossible. Furthermore, we have obtained that
if v(t0) = 0 and t0 ∈

( 1
Ab3 ,+∞

)
, where v(t) is defined by (4.7), then there exist

period-two solution in the second and fourth qudrant P1 ∈Q2 (E0) and P2 ∈Q4 (E0).
Now, if t0 > 1

Ab3 if and only if 1−Ab3t0 < 0, then 9Ab3t0 −1 > 0 and

Ab3 (1−Ab3t0
)3 (

9Ab3t0 −1
)
< 0 < B4,

9A2b6t0
(
1−Ab3t0

)3
< B4 +Ab3 (1−Ab3t0

)3
.

Since sgn
(
1−Ab3t

)
= sgn

(
B4 +Ab3

(
1−Ab3t

)3
)

, so it holds

B4 +Ab3 (1−Ab3t0
)3

< 0.

Hence
9A2b6t0

(
1−Ab3t0

)3

B4 +Ab3 (1−Ab3t0)
3 > 1 ⇔ D (t0)> 9.

From (5.2) yields S (t0)−D (t0)− 1 < 0. By applying Theorem 1.3, the minimal
period-two solution {P1,P2} is repeller. □
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6. GLOBAL BEHAVIOR

6.1. case b = 0, a > 0, A > 0, B > 0

Lemma 6.1. Assume that b = 0, a > 0, A > 0, B > 0. Let T be the function defined
by (2.1). The following statements hold:

(i) The sets S =
{
(0,y) : y ∈

(
−

√
B

B ,
√

B
B

)}
, S u =

{
(0,y) : y >

√
B

B

}
,

S d =
{
(0,y) : y <−

√
B

B

}
are invariant sets under the function T .

(ii) If 27A2B > 4a3, then the sets S1 =
{(√

a
a ,y

)
: y ∈ R

}
and

S2 =
{(

−
√

a
a ,y

)
: y ∈ R

}
are invariant sets under function T ,

(iii) If 27A2B < 4a3, then the sets S+ =
{(√

a
a ,y

)
: y ∈ (y1,y3)

}
,

S u
+ =

{(√
a

a ,y
)

: y > y3

}
, S d

+ =
{(√

a
a ,y

)
: y < y1

}
are invariant sets under

the function T and y1 < y2 < y3 are three different real solutions of Eq.(2.3).
(iv) If 27A2B < 4a3, then the sets S− =

{(
−

√
a

a ,y
)

: y ∈ (y∗1,y
∗
3)
}

,

S u
− =

{(
−

√
a

a ,y
)

: y > y∗3
}

, S d
− =

{(
−

√
a

a ,y
)

: y < y∗1
}

are invariant sets un-
der function T and y∗1 < y∗2 < y∗3 are three different real solutions of Eq.(2.4).

(v) If 27A2B = 4a3, then the sets S+ =
{(√

a
a ,y

)
: y ∈

(
y, 1√

3B

)}
,

S u
+ =

{(√
a

a ,y
)

: y > 1√
3B

}
and S d

+ =
{(√

a
a ,y

)
: y < y

}
are invariant sets

under the function T and y is the only negative solution of Eq.(2.3).
(vi) If 27A2B = 4a3, then the sets S− =

{(
−

√
a

a ,y
)

: y ∈
(
− 1√

3B
,y∗
)}

,

S u
− =

{(
−

√
a

a ,y
)

: y > y∗
}

and S d
− =

{(
−

√
a

a ,y
)

: y <− 1√
3B

}
are invariant

sets under the function T and y∗ is the only positive solution of Eq.(2.4).

Proof. Indeed,

(i) If x = 0 then T (0,y) =
(
0,By3

)
. Obviously, By3 is increasing function and

−
√

B
B , 0 and

√
B

B are the fixed points of the function By3. Now, if y∈
(
−

√
B

B ,
√

B
B

)
then By3 ∈

(
−

√
B

B ,
√

B
B

)
and T (0,y) ∈ S . Similarly, if y >

√
B

B then By3 >
√

B
B

and T (0,y) ∈ S u. If y <−
√

B
B then By3 <−

√
B

B and T (0,y) ∈ S d .

(ii) If x =
√

a
a then T

(√
a

a ,y
)
=
(√

a
a , A

√
a

a2 +By3
)
∈ S1 and if x = −

√
a

a then

T
(
−

√
a

a ,y
)
=
(√

a
a , A

√
a

a2 +By3
)
∈ S2.

(iii) If 27A2B < 4a3, then Eq.(2.3) has three different real solutions of Eq.(2.3)
y1∈

(
−∞,− 1√

3B

)
, y2∈

(
0, 1√

3B

)
, y3∈

(
1√
3B
,+∞

)
. If x=

√
a

a and α∈(y1,y3),
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then T
(√

a
a ,α

)
=
(√

a
a , A

√
a

a2 +Bα3
)

. Set u(y) = By3 + A
√

a
a2 . Clearly, u(y)

is increasing function and y1, y2 and y3 are the fixed points of the function
u(y). If α ∈ (y1,y2), then u(α) = Bα3 + A

√
a

a2 ∈ (u(y1) ,u(y2)) = (y1,y2) ⊂
(y1,y3). If α ∈ (y2,y3), then u(α) = Bα3+ A

√
a

a2 ∈ (u(y2) ,u(y3)) = (y2,y3)⊂
(y1,y3). Hence, T

(√
a

a ,u(α)
)
∈ S+. If α ∈ (y3,+∞), then u(α) = Bα3 +

A
√

a
a2 > u(y3) = y3 and u(α) ∈ (y3,+∞). Hence, T

(√
a

a ,u(α)
)
∈ S u

+. If α ∈

(−∞,y1), then u(α) = Bα3+ A
√

a
a2 < u(y1) = y1 and u(α)∈ (−∞,y1). Hence,

T
(√

a
a ,u(α)

)
∈ S d

+.
(iv) This statement follows from the symmetry of the first and third quadrant and

the second and fourth quadrant and Lemma 6.1 (iii).
(v) If 27A2B= 4a3, then Eq.(2.3) has two different real solutions y∈

(
−∞,− 1√

3B

)
and y2=

1√
3B

. If x=
√

a
a and α∈

(
y, 1√

3B

)
, then T

(√
a

a ,α
)
=
(√

a
a , A

√
a

a2 +Bα3
)

.

Set u(y)=By3+A
√

a
a2 . Clearly, u(y) is increasing function and y and y2 are the

fixed points of the function u(y). If α ∈
(

y, 1√
3B

)
, then u(α) = Bα3 + A

√
a

a2 ∈(
u(y) ,u

(
1√
3B

))
=
(
y, 1√

3B

)
. Hence, T

(√
a

a ,u(α)
)
∈ S+. If α∈

(
1√
3B
,+∞

)
,

then u(α) = Bα3 + A
√

a
a2 > u

(
1√
3B

)
= 1√

3B
. Hence, T

(√
a

a ,u(α)
)
∈ S u

+. If

α∈ (−∞,y), then u(α) =Bα3+ A
√

a
a2 < u(y) = y. Hence, T

(√
a

a ,u(α)
)
∈ S d

+.
(vi) This statement is following from the symmetry of the first and third quadrant

and the second and fourth quadrant and Lemma 6.1 (v). □

Let B (E0) be the basin of attraction of E0 and B (∞,∞) be the basin of attraction
of (∞,∞). The following lemma is true.

Lemma 6.2. Let T be the function defined by (2.1). For the nonhyperbolic point
E12

(√
a

a , 1√
3B

)
the following statements hold:

(i) If Q1 (E12) =
{
(x,y) : x >

√
a

a ∧ y > 1√
3B

}
, then int (Q1 (E12))⊂ B (∞,∞) .

(ii) If Q3 (E12)=
{
(x,y) : 0<x<

√
a

a ∧0<y < 1√
3B

}
, then int(Q3(E12))⊂B(E0).

Since we have the symmetry of the first and third quadrant a similar statement
holds for nonhyperbolic point E14.

Proof. Assume that (x0,y0) ∈ int (Q3 (E12)). By Theorem 6 in [10] there exists
(x̃0, ỹ0)∈ int (Q3 (E12)) such that (x0,y0)≼ne (x̃0, ỹ0), E0 ≼ne (x̃0, ỹ0) and T (x̃0, ỹ0)
≼ne (x̃0, ỹ0). By monotonicity of T we obtain T i+1 (x̃0, ỹ0) ≼ne T i (x̃0, ỹ0) ≼ne E12
which implies T n (x̃0, ỹ0)→ E0 as n→∞. Similarly, one can prove int (Q1 (E12))⊂
B (∞,∞). □
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Also, one can show analogue statements for nonhyperbolic point E14.
The following theorem describes global behavior of the system (1.1) when

b = 0, a > 0, A > 0, B > 0.

Theorem 6.1. Assume that b = 0, a > 0, A > 0, B > 0. Then E0 (0,0) is locally
asymptotically stable, E1

(
0,

√
B

B

)
and E2

(
0,−

√
B

B

)
are the saddle points. In this

case there exist continuous curves W s (E1), W u(E1) and W s (E2), W u(E1), where
W s (E1) is passing trough the point E1 and W s (E2) is passing trough the point
E2 and they are the graphs of decreasing functions, W u(E1) =

{
(0,y) : y >

√
B

B

}
and W u(E2) =

{
(0,y) : y <−

√
B

B

}
. The basin of attraction of the point E1 is

B (E1) = W s (E1) and the point E2 is B (E2) = W s (E2).

(i) If 27A2B > 4a3 then there exist equilibrium points E3

(√
a

a ,y
)

and

E4

(
−

√
a

a ,−y
)

and they are the repellers, where y is the unique negative solu-

tion of Eq.(2.3). The points E3 and E4 are the endpoints of the curves W s (E1)
and W s (E2). The region between W s (E1) and W s (E2) is invariant and
the basin of attraction B (E0) is precisely the region between W s (E1) and
W s (E2). For every (x0,y0) where |x0|<

√
a

a such that point (x0,y0) is above

W s (E1) every solution is asymptotic to W u(E1) =
{
(0,y) : y ∈

(
0,

√
B

B

)}
∪

S u. For every (x0,y0) where |x0| <
√

a
a such that point (x0,y0) is below

W s (E2) every solution is asymptotic to W u(E2)=
{
(0,y) : y ∈

(
−

√
B

B ,0
)}

∪

S d . For every (x0,y0) where |x0| >
√

a
a every solution {(xn,yn)} goes to the

point at infinity. (see Figure 7)
(ii) If 27A2B < 4a3, the following holds for equilibrium points: E5

(√
a

a ,y1

)
E7

(√
a

a ,y3

)
, E8

(
−

√
a

a ,−y3

)
, E10

(
−

√
a

a ,−y1

)
are repellers and E6

(√
a

a ,y2

)
,

E9

(
−

√
a

a ,−y2

)
are saddle points, where y1, y2 and y3 are three different real

solutions of Eq.(2.3) y1 = y∈
(
−∞,− 1√

3B

)
, y2 ∈

(
0, 1√

3B

)
, y3 ∈

(
1√
3B
,+∞

)
.

In this case there exist continuous curves W s (E6), W u(E6) and W s (E9),
W u(E9), where W u (E6) is passing trough the point E6 and W u (E9) is pass-
ing trough the point E9 and they are the graphs of increasing functions which
starting at E0,

W s(E6) =

{(√
a

a
,y
)

: y ∈ (y1,y3)

}
,

W s(E9) =

{(
−
√

a
a

,y
)

: y ∈ (−y3,−y1)

}
.
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The region between W s (E1), W s (E2), W s (E6) and W s (E9) is invariant and
it is the basin of attraction B (E0). For every (x0,y0) where |x0| <

√
a

a such
that point (x0,y0) is above W s (E1) every solution is asymptotic to W u(E1).
For every (x0,y0) where |x0| <

√
a

a such that point (x0,y0) is below W s (E2)

every solution is asymptotic to W u(E2). For every (x0,y0) where |x0| >
√

a
a

every solution {(xn,yn)} goes to the point at infinity. (see Figure 8)

FIGURE 7 FIGURE 8

(iii) If 27A2B=4a3 then there exist equilibrium points E11

(√
a

a ,y
)

, E13

(
−

√
a

a ,−y
)

are the repellers and E12

(√
a

a , 1√
3B

)
, E14

(
−

√
a

a ,− 1√
3B

)
are the nonhyper-

bolic points, where y is the negative solution of Eq.(2.3). The points E12
and E13 are the endpoints of the curves W s (E1) and points E11 and E14
are the endpoints of the curves W s (E2). In this case there exist continu-
ous curves W u(E12), W s (E12) and W s (E14), W u(E14), where W u (E12) is
passing trough the point E12 and W u (E14) is passing trough the point E14
and they are the graphs of increasing functions which starting at E0,

W s(E12) =

{(√
a

a
,y
)

: y ∈
(

y,
1√
3B

)}
,

W s(E14) =

{(
−
√

a
a

,y
)

: y ∈
(
− 1√

3B
,−y

)}
.

The region between W s (E1), W s (E2), W s (E12) and W s (E14) is invariant
and it is the basin of attraction B (E0). For every (x0,y0) where |x0|<

√
a

a such
that point (x0,y0) is above W s (E1) every solution is asymptotic to W u(E1).
For every (x0,y0) where |x0| <

√
a

a such that point (x0,y0) is below W s (E2)

every solution is asymptotic to W u(E2). For every (x0,y0) where |x0| >
√

a
a

every solution {(xn,yn)} goes to the point at infinity. (see Figure 9)

Proof. Existence and local stability of all equilibrium points follows from Theo-
rems 2.1 and 3.2. In view of Theorem 4.2 system (1.1) has no minimal period-two
solution. All conditions of Theorem 1.2 are satisfied with respect to two saddle
equilibrium points (period-two solution clearly does not exist), which guarantee
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FIGURE 9

the existence of two stable manifolds W s (E1) and W s (E2) . The basin of attrac-
tion B(E0) of E0 is the region between the global stable manifolds W s(E1) and
W s(E2), where W s(E1) and W s(E3) are the graphs of a strictly decreasing con-
tinuous functions of the first coordinate on an interval. The basins of attraction
B(E1) = W s(E1) and B(E2) = W s(E2) are exactly the global stable manifolds of
E1 and E2. By applying Theorem 1.1 there exist two unstable manifolds W u (E1)
and W u (E2) passing trough the points E1 and E2, respectively. From Lemma
6.1 (i) the sets S , S u, S d are invariant sets under the function T , which implies
W u(E1)=

{
(0,y) : y∈

(
0,

√
B

B

)}
∪S u and W u(E2)=

{
(0,y) : y∈

(
−

√
B

B ,0
)}

∪S d .

(i) Let T be the function defined by (2.1), then corresponding function f and g
are increasing in both variables,which implies Q1 (E3), Q3 (E3), Q1 (E4) and
Q3 (E4) are invariant sets under function T . This yields B(E0) ⊂ Q4 (E3)∩
Q2 (E4) and set B(E0) is bounded. In view of Lemma 6.1 (ii) sets S1 ={(√

a
a ,y

)
: y ∈ R

}
and S2 =

{(
−

√
a

a ,y
)

: y ∈ R
}

are invariant sets under

function T . Since the global stable manifolds W s(E1) and W s(E2) are decre-
asing continuous functions and B(E0)= {(x,y) : ∃yu,yl : yl < y< yu, (x,yl)∈
W s

(E1),(x,yu) ∈ W s
(E2)}, then the points E3 and E4 are endpoints of the

global stable manifolds W s(E1) and W s(E2). The rest of the proof follows
from Theorems 1.1 and 1.2.

(ii) Similar to the previous case we obtain that the points E7, E10 are endpoints of
the global stable manifold W s(E1) and E5, E8 are endpoints of the global
stable manifold W s(E2). In view of Lemma 6.1 (iii) and (iv) sets S+ ={(√

a
a ,y

)
: y ∈ (y1,y3)

}
, S u

+ =
{(√

a
a ,y

)
: y > y3

}
, S d

+ =
{(√

a
a ,y

)
: y < y1

}
,

S−=
{(

−
√

a
a ,y

)
: y ∈ (y∗1,y

∗
3)
}

, S u
−=

{(
−

√
a

a ,y
)

: y > y∗3
}

, S d
−=

{(
−

√
a

a ,y
)

:

y < y∗1
}

are invariant sets under the function T , thus W s(E6) =
{(√

a
a ,y

)
:

y ∈ (y1,y3)
}

and W s(E9) =
{(

−
√

a
a ,y

)
: y ∈ (−y3,−y1)

}
. The rest of the

proof follows from Theorems 1.1 and 1.2.
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(iii) By using Lemma 6.2 the rest of the proof of this case is similar to the proof
of (i) and (ii) and will be omitted. □

6.2. case a = 0, b > 0, A > 0, B > 0

Let U1 denote the boundary of B (E0) considered as a subset of Q2 (E2) in the
first quadrant and U2 denote the boundary of B (E0) considered as a subset of
Q4 (E2) in the first quadrant. It is easy to see that E2 ∈ U1,U2. The proof of the
following lemma for a cooperative map is the same as the proof of Claims 1 and 2
in [7] for a competitive map, so we skip it.

Lemma 6.3. Assume that a = 0, b > 0, A > 0, B > 0. Let U1 and U2 be the sets
defined as above, then:
(a) If (x0,y0) ∈ B (E0), then (x1,y1) ∈ B (E0) for all (x1,y1)≼ne (x0,y0) .
(b) If (x0,y0) ∈ U1 ∪U2, then (x1,y1) ∈ int (B (E0)) for all (x1,y1)≼ne (x0,y0) .
(c) U1 ∩Q2 (E2) ̸= /0 and U2 ∩Q4 (E2) ̸= /0.
(d) T (U1 ∪U2)⊆ U1 ∪U2.
(e) (x1,y1) ,(x0,y0) ∈ U1 ∪U2 implies (x0,y0)≼se (x1,y1) or (x1,y1)≼se (x0,y0) .
(f) U1 ∪U2 is the graph of continuous strictly decreasing function.

Lemma 6.4. Assume that a = 0, b > 0, A > 0, B > 0 and 16Ab3 > 27B4. The
minimal period-two solution {P3,P5} is a saddle point, such that P3 ⪯se E2 ⪯se P5.

Proof. By applying Theorem 3.3 (i) equilibrium point E2 is a repeller and by
Lemma 5.1 all period-two solutions are hyperbolic and {P3,P5} is a saddle point.
In view of Lemma 6.3 we see that (U1 ∪U2,≼se) is a totally ordered set, which
is invariant under T . If (x0,y0) ∈ (U1 ∪U2)∖{E2}, then

{
T 2n (x0,y0)

}
is eventu-

ally componentwise monotone. Since U1 ∪U2 is the graph of continuous strictly
decreasing function, there exists a minimal period-two solution {(Φ,Ψ) ,(Ψ,Φ)}
such that T 2n (x0,y0) → (Φ,Ψ) as n → ∞, so {P3 (Φ,Ψ) ,P5 (Ψ,Φ)}. Since U1 ∪
U2 ⊂ ∂B (E0) is a closed set, we see that {(Φ,Ψ) ,(Ψ,Φ)} ∈ (U1 ∪U2)∖ {E2}.
Hence,

P3 ⪯se E2 ⪯se P5 and P6 ⪯se E1 ⪯se P4. □

Lemma 6.5. Assume that a = 0, b > 0, A > 0, B > 0. The minimal period-two
solution {P1,P2} is a repeller.
(a) If 16Ab3 ≤ 27B4, then P1 ⪯se E1 ⪯se P2, P1 ⪯se E2 ⪯se P2.
(b) If 16Ab3 > 27B4, then P1 ⪯se P3 ⪯se E2 ⪯se P5 ⪯se P2 and P1 ⪯se P6 ⪯se E1 ⪯se

P4 ⪯se P2.

Proof. In view of Lemma 5.1 the minimal period-two solution {P1,P2} is a repeller.
By applying Lemma 6.4 we we already have P3 ⪯se E2 ⪯se P5 and P6 ⪯se E1 ⪯se P4.

(a) Let T 2 be the function defined by (4.1), then corresponding function f and
g are increasing in both variables,which implies Q1 (P1), Q3 (P1), Q1 (P2) and
Q3 (P2) are invariant sets under function T 2. This yields B(E0) ⊂ Q4 (P1)∩
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Q2 (P2) and set B(E0) is bounded. The boundary of set B(E0) are the global
stable manifolds W s(E1) and W s(E2) and they are decreasing continuous
functions with
B(E0) = {(x,y) : ∃yu,yl : yl < y < yu, (x,yl) ∈ W s

(E1),(x,yu) ∈ W s
(E2)},

then the points P1 and P2 are endpoints of the global stable manifolds W s(E1)
and W s(E2), which yields P1 ⪯se E1 ⪯se P2 and P1 ⪯se E2 ⪯se P2.

(b) By Lemma 5.1, the period-two solutions {P3,P5} and {P3,P5} are saddle points.
Since B(E0) ⊂ Q4 (E3)∩Q2 (E4), then set B(E0) is bounded and the bound-
ary of set B(E0) is U1∪ U2 ∪ {E1,E2}, where are U1 = W s(P3)∪W s(P5)
and U2 = W s(P4) ∪ W s(P6) the global stable manifolds of points P1, P2,
P3 and P4. Clearly, U1 and U2 are decreasing continuous functions with
B(E0)= {(x,y) : ∃yu,yl : yl < y< yu, (x,yl)∈U1∪{E2} ,(x,yu)∈U2∪{E1}},
which implies then the points P1 and P2 are endpoints of the sets U1 and U2.
Hence,

P1 ⪯se P3 ⪯se E2 ⪯se P5 ⪯se P2,

P1 ⪯se P6 ⪯se E1 ⪯se P4 ⪯se P2. □

The following theorem describes the global behavior of the system (1.1) when
a = 0, b > 0, A > 0, B > 0.

Theorem 6.2. Assume that a = 0, a > 0, A > 0, B > 0. Then the system (1.1)
has exactly three equilibrium points E0 (0,0), E1

(
by3

−,y−
)

and E2
(
by3

+,y+
)

where
y− and y+ are symmetric solutions of Eq.(2.5).The equilibrium point E0 (0,0) is
locally asymptotically stable.

(i) If 16Ab3 > 27B4, then E1 and E2 are repellers and there exist six minimal
period-two solutions. The set int(Q2(E2))∪ int(Q4(E2)) contains even num-
ber minimal period-two solutions P1(Φ1,Ψ1), P2(Ψ1,Φ1), P3(Φ2,Ψ2) and
P5(Φ3,Ψ3) such that P1 ⪯se P3 ⪯se E2 ⪯se P5 ⪯se P2. The period-two points
P3 and P5 are the saddle points and the period-two points P1 and P2 are the
repellers. The global stable manifold W s (P3) trough the point P3 is the graph
of a continuous strictly decreasing function with endpoints at P1, E2 and the
global stable manifold W s (P5) trough the point P5 is the graph of a con-
tinuous strictly decreasing function with endpoints and E2,P2. Further, the
set int(Q2(E1))∪ int(Q4(E1)) contains even number minimal period-two so-
lutions P1(Φ1,Ψ1), P2(Ψ1,Φ1), P6(Ψ3,Φ3) and P4(Ψ2,Φ2) such that P1 ⪯se
P6 ⪯se E1 ⪯se P4 ⪯se P2. The period-two points P4 and P6 are the saddles.
The global stable manifold W s (P4) trough the point P4 is the graph of a con-
tinuous strictly decreasing function with endpoints at P1, E1 and the global
stable manifold W s (P6) trough the point P6 is the graph of a continuous
strictly decreasing function with endpoints and E1,P1. Also, B ((P3,P5)) =
W s (P3)∪ W s (P5) and B ((P4,P6)) = W s (P4)∪ W s (P6). The region be-
tween W s (P3)∪W s (P5) and W s (P4)∪W s (P6) is invariant and the basin
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of attraction B (E0) is precisely the region between W s (P3)∪W s (P5) and
W s (P4) ∪ W s (P6). The global unstable manifolds of {P3,P4,P5,P6} are
W u (P3), W u (P4), W u (P5), W u (P6), respectively, are the graphs of con-
tinuous strictly increasing functions with endpoints at E0 and the point at
infinity. (see Figure 10)

FIGURE 10

(ii) If 16Ab3 < 27B4, then E1 and E2 are the saddle points and there exist two
minimal period-two solutions of (1.1) P1 (Φ < 0,Ψ > 0) and P2 (Ψ,Φ) and
they are repellers. In this case there exist four continuous curves W s(E1),
W s(E2), W u(E1) and W u(E2). The graph of W s(E1) is passing through the
point E1 and the graph of W s(E2) is passing through the point E2 and they
are graphs of decreasing functions. The points P1 and P2 are the endpoints
of the curves W s (E1) and W s (E2).The curves W u(E1) and W u(E2) are the
graphs of increasing functions and are starting at E0 (0,0). The region be-
tween W s (E1) and W s (E2) is invariant and the basin of attraction B (E0) is
precisely the region between W s (E1) and W s (E2). Every solution {(xn,yn)}
which starts outside of W s(E1)∪W s(E2) converges to the point at infinity
(see Figure 11).

(iii) If 16b3A = 27B4, then E1 and E2 are the nonhyperbolic points and there exist
two minimal period-two solutions of the system (1.1) P1 (Φ < 0,Ψ > 0) and
P2 (Ψ,Φ) and they are repellers. In this case there exist two continuous curves
W s(E1), W s(E2). The graph of W s(E1) is passing through the point E1 and
the graph of W s(E2) is passing through the point E2 and they are graphs
of decreasing functions. The points P1 and P2 are the endpoints of the curves
W s (E1) and W s (E2). The region between W s (E1) and W s (E2) is invariant
and the basin of attraction B (E0) is precisely the region between W s (E1)
and W s (E2). Every solution {(xn,yn)} which starts outside of W s(E1)∪
W s(E2) converges to the point at infinity (see Figure 12).

Proof. The existence and local stability of all equilibrium points follows from The-
orems 2.1, 2.2, 3.2 and 3.3. The existence and local stability of all period-two so-
lution(s) follows from Theorems 4.2, 4.3 and Lemma 5.1. The theory of monotone
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FIGURE 11 FIGURE 12

maps, and in particular cooperative maps, guarantee the existence and uniqueness
of the stable and unstable manifolds for the saddle (nonhyperbolic) fixed points
and periodic points, more precisely, the existence of mentioned curves with the de-
scribed properties is guaranteed by Theorems 1 and 4 of [10] applied to the map T 2

given by (4.1). By applying Lemma 6.5 the set B(E0) is bounded and the points P1
and P2 are endpoints of the boundary of set B(E0) with respect to ⪯seorder for all
fixed points of T 2. The global result and the rest of the proof follow from Theorem
1.2. □
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