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THE PERIODIC INTEGER ORBITS OF POLYNOMIAL RECURSIONS
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Dedicated to Mustafa Kulenović on the occasion of his 70th birthday

ABSTRACT. We show that polynomial recursions xn+1 = xm
n − k where k,m are

integers and m is positive have no nontrivial periodic integer orbits for m ≥ 3.

If m = 2 then we show that the recursion has integer two-cycles for infinitely

many values of k but no higher period orbits. We further show that these state-

ments are true for all quadratic recursions and comment on possible higher order

extensions.

1. INTRODUCTION

The quadratic recursion

xn+1 = x2
n − c (1.1)

and its topological conjugate, the discrete logistic equation are well-known ex-

amples of nonlinear dynamical systems in the sets of real numbers and complex

numbers. Starting with an initial value x0 with n = 0 in (1.1) we may calculate

the values of x1, x2, etc recursively and generate a sequence xn that is known as a

(forward) orbit or solution of (1.1).

If the parameter c is a real or complex number, then (1.1) can have a wide variety

of bounded orbits. For example, if c = 2 then (1.1) has real periodic orbits (or

cycles) of all possible periods in the interval [−2,2] depending on the initial value

x0 as well as certain bounded, oscillating but non-periodic orbits that are called

chaotic; see, e.g. [1], [3].

In this paper, we consider the integer orbits of the more general equation

xn+1 = xm
n − k (1.2)

Note that if k is an integer then each initial value x0 in Z generates an orbit in

Z. Some numerical experimentation shows that such integer orbits are typically

unbounded. So the question arises as to whether all integer orbits are unbounded

(except for possible integer fixed points).

We prove that the answer is yes if m > 2. But if m = 2 then we show that

periodic integer orbits with period 2 exist for infinitely many values of k in Z. Our
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results are based on elementary arguments and do no require specialized algebraic

methods or concepts.

In addition, we extend the results for m = 2 to the general quadratic recursion

xn+1 = ax2
n +bxn + c,

where a,b,c are integers (a 6= 0) and determine the equations for the fixed points

and the two-cycles in terms of the coefficients a,b,c. We show that the solutions

for the general case are qualitatively the same as those for the special case due to

topolotical conjugacy. We also determine the cycles of the general case in terms

of the given parameters a,b,c to complete the study of the integer solutions of the

quadratic recursion.

We close the paper with remarks about extending the results on the quadratic

equation to higher order cases as a potential topic for further research.

2. NON-EXISTENCE OF NONTRIVIAL PERIODIC ORBITS IF m > 2

We begin by recalling a few basic concepts and identifying some exceptional

and/or trivial cases. The recursion in (1.2) can be written as

xn+1 = f (xn), f (x) = xm − k.

A fixed point of the function f (x), i.e. a solution of the equation

f (x) = x

is also called a constant solution or a fixed point of the recursion (1.2). We also call

it a trivial orbit.

A periodic orbit or cycle of (1.2) is a sequence r0,r1,r2, . . . where there is a positive

integer p such that

rn+p = rn for all n. (2.1)

If p is the smallest positive integer for which (2.1) is true then p is the period of

rn; we also call a cycle of period p a p-cycle for short. Finally, a bounded orbit of

(1.2) is a bounded sequence r0,r1,r2, . . . that satisfies (1.2).

Note that if m = 1 then the recursion

xn+1 = xn − k (2.2)

has the general solution

xn = x0 −nk.

From this, we conclude that every solution of (2.2) diverges to ∞ if k < 0 and to

−∞ if k > 0. If k = 0 then every solution of (2.2) is constant (every initial value is

fixed). So in the rest of the paper we assume that m ≥ 2.

If k = 0 then (1.2) has two integer fixed points 0 and 1 if m is even and three integer

fixed points 0, ±1 if m is odd.
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If k 6= 0 and m is odd then using Descartes rule of signs and the intermediate value

theorem we see that (1.2) has only one real fixed point γ that is positive if k > 0

(i.e. k ≥ 1) and negative if k < 0 (i.e. k ≤ −1). Further, it is easy to see that all

(real) orbits of (1.2) diverge to ∞ if x0 > γ and to −∞ if x0 < γ. In particular, (1.2)

has no nontrivial, bounded integer orbits if m is odd.

What about possible integer fixed points? An integer j satisfies x = xm−k if and

only if

k = jm − j = j( jm−1 −1).

It follows that for every integer j the equation

xn+1 = xm
n − j( jm−1 −1)

has a fixed point at j. In particular, (1.2) has integer fixed points for infinitely many

values of k.

For example, if m = 3 and k is the (even) number

k = j( j2 −1) = j( j−1)( j+1),

then (1.2) has a fixed point at x = j. Similarly, if m = 4 and

k = j( j3 −1) = j( j−1)( j2 + j+1), (2.3)

then (1.2) has a fixed point at x = j.

If k= 1 then we may check that (1.2) has an integer cycle of period 2: −1,0,−1,0, . . .
for every even value of m. Further, the initial value x0 = 1 leads to this cycle in one

step. On the other hand, if |x0| ≥ 2 then for all m ≥ 2

x1 ≥ 2m −1 ≥ 3,

x2 ≥ 3m −1 ≥ 8,

...

which is an increasing sequence of integers that rapidly diverges to ∞. It follows

that all orbits with x0 6=−1,0,1 are unbounded when k = 1.

We now consider the remaining cases.

The function f (x) = xm − k has a minimum at 0 and two (real) fixed points α
and β where

α < 0 < β,

and

αm = α+ k, βm = β+ k. (2.4)

Note that k > 0 if and only if β > 1 by the right hand side equation above. Further,

k = βm −β = β(βm−1 −1),

so k > β if β > 21/(m−1). In particular, if β ≥ 2 then k > β.
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The next result shows that it is only necessary to consider orbits of (1.2) that

start in [−β,β] even though this interval is usually not invariant.

Lemma 2.1. For each m ≥ 2, if |x0| > β > 1, then the orbit generated by (1.2) is

unbounded, eventually increasing to ∞.

Proof. First, note that f (x)> x for all x > β so that if |x0|> β then

x1 = f (x0)> x0.

Further,

x1 = xm
0 − k > βm − k = β,

x2 = xm
1 − k > βm − k = β,

...

so by induction, xn > β for every n ≥ 1. Now,

xn − xn−1 = xm
n−1 − xm

n−2

= (xn−1 − xn−2)
m

∑
i=1

xm−i
n−1xi−1

n−2

> (xn−1 − xn−2)
m

∑
i=1

βm−iβi−1

= mβm−1(xn−1 − xn−2).

Doing the same calculation for xn−1 − xn−2, then for xn−2 − xn−3 and so on, we

obtain by induction

xn − xn−1 > (mβm−1)n−1(x1 − x0).

Therefore,

xn = x0 +
n

∑
i=1

(xi − xi−1)

> x0 +
n

∑
i=1

(mβm−1)i−1(x1 − x0)

= x0 +(x1 − x0)
(mβm−1)n −1

mβm−1 −1
.

Due to the occurrence of the n-th power of mβm−1 >m in the last quantity it follows

that xn → ∞ (exponentially fast) as n → ∞ if x0 6∈ [−β,β]. �

It is worth to mention that mβm−1 = f ′(β) is the slope of the tangent line to the

graph of f (x) at x = β. We could use this tangent line for an alternative proof but

that was not necessary here.
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Also notice that the number β is considerably smaller than k; for instance, for

β ≤ 2 the right hand side equation in (2.4) gives

k = β(βm−1 −1)≤ 2(2m−1 −1) = 2m −2.

Next, if m = 4 and k = 2 then by (2.3) and the intermediate value theorem α =−1

and 1 < β < 2. So k > β and the interval [−β,β] ⊂ [−2,2] contains the 3 integers

0, ±1. A quick calculation shows that if x0 = ±1 then x1 = −1 which is the fixed

point, and further, if x0 = 0 then x1 =−2 <−β so xn → ∞ as n → ∞. So with k = 2

the only periodic integer orbit of (1.2) is the trivial one xn = −1 for all n. There

is one more bounded integer orbit, namely the one that starts at x0 = 1. Quick

calculations show that (1.2) has precisely one integer periodic orbit if k = 1, and

two fixed points if k = 0. Further, (1.2) has no bounded solutions (integer or not)

if k < 0 (i.e. k ≤−1) because

xm − k ≥ xm +1 > x

for all even integers m and all real values of x. We discuss the integer values k ≥ 3

in the sequel.

Considering orbits that start in [−β,β], due to the y-axis symmetry we need only

check the integers in the interval [0,β]. If x0 ∈ [0,β] then

|x1|= |xm
0 − k| ≤ β

if and only if

−β+ k ≤ xm
0 ≤ β+ k = βm.

Only the left hand side inequality poses a new restriction, namely,

x0 ≥ (k−β)1/m.

Let

γ = (k−β)1/m,

and note that

x0 ∈ [γ,β] =⇒ x1 ∈ [−β,β]

x0 ∈ [0,γ) =⇒ x1 <−β.

Thus it is necessary that the interval [γ,β] contain an integer. In this regard, the

next lemma is important.

Lemma 2.2. If m is even and larger than 2, then the length of the interval [γ,β] is

less than 1. Further, β− γ → 0 for each such value of m as k → ∞.

Proof. Observe that

βm − γm = k+β− (k−β) = 2β,

which yields

β− γ =
2β

∑m
i=1 βm−iγi−1

<
2

βm−2
.
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Recall that β > k1/m so

β− γ <
2

k(m−2)/m
. (2.5)

With m > 2 the right hand side of the above inequality is less than 1 if

k > 2m/(m−2).

The largest value of m/(m−2) = 1+2/(m−2) occurs at the smallest value of m,

i.e. m = 4. Thus

21+2/(m−2) ≤ 4 for m = 4,6,8, . . . .

So if k ≥ 4 then the right hand side of (2.5) is less than 1 for all m = 4,6,8, . . . and

we obtain

β− γ < 1.

Further, for each fixed value of m (2.5) implies that β− γ → 0 as k → ∞. �

The above lemma in particular implies that [γ,β] contains at most one integer.

Theorem 2.1. The equation in (1.2) has no nontrivial integer periodic orbits for

m ≥ 3.

Proof. We discussed the non-existence for all odd values of m earlier, so now as-

sume that m is even and also for this theorem, m ≥ 4.

We first show that if x0 ∈ (γ,β) then a non-constant periodic orbit may exist only

if x1 ∈ (−β,−γ)∪ (γ,β).
Note that since the x-intercept of f (x) = xm − k is k1/m ∈ [γ,β] and f is increasing

for x > 0 it follows that f maps [k1/m,β] one-to-one onto [0,β] with f (k1/m) = 0.

Similarly, f maps the interval [γ,k1/m] onto [−β,0] with f (γ) = −β. Since x0 ∈
(γ,β) it follows that x1 ∈ (−β,β).

In order that x0 and x1 be part of a periodic orbit it is necessary that x2 = f (x1)∈
(−β,β) also. This is possible only if x1 ∈ (−β,−γ)∪ (γ,β) in which case |x1| ∈
(γ,β).

Notice that an integer orbit of (1.2) cannot have a period greater than 2 because

the set (−β,−γ)∪ (γ,β) contains at most two integers.

If x0, x1 form an integer orbit of period 2 for (1.2) with x0 ∈ (γ,β), then x1 must

be in the interval (−β,−γ). It follows that

x1 =−x0. (2.6)

We also require that x2 = x0 to close the cycle. Therefore,

x0 = x2 = xm
1 − k = (−x0)

m − k = x1, (2.7)

where the last equality holds since m is even. The equalities (2.6) and (2.7) hold

simultaneously if and only if x0 = 0 which contradicts our assumption about where

x0 is. Therefore, there can be no orbits of period 2 for (1.2).
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We have shown that if k ≥ 4 then the only possible integer cycles of (1.2) are

the fixed points. We still need to examine the values of k < 4, i.e., k ≤ 3. We have

already checked the solutions of (1.2) for k ≤ 2. Now, if k = 3 then β < 2 since k

is an increasing function of β for β ≥ 1 and at β = 2

k = 2m −2 ≥ 24 −2 = 14.

With β < 2 the only integers in [−β,β] are 0 and ±1. With k = 3, if x0 = 0,±1

then x1 ≤ −2 < −β so xn → ∞ as n → ∞. Further, the fixed points of xm − 3 are

the zeros of xm−x−3 which by the intermediate value theorem are in the intervals

(−2,−1) and (1,2) for all m = 2,4,6, . . . Since these fixed points are not integers

it follows that (1.2) has no periodic integer orbits with k = 3. This completes the

proof of the theorem. �

If m = 2 then some of the steps in the above argument are invalid; in fact, for

m = 2 it is the case that β− γ ≥ 1 for all k. This opens the way for the existence of

2-cycles.

3. PERIODIC ORBITS OF THE QUADRATIC RECURSION

Many of the results of the previous section hold when m = 2 but as the next

lemma shows, it is no longer the case that β− γ < 1. In the case m = 2 the fixed

points can be determined explicitly by solving the fixed point equation f (x) = x.

This is the quadratic equation x2 − x− k = 0 whose positive solution is

β =
1+

√
1+4k

2
. (3.1)

This in turn gives an explicit formula for γ=
√

k−β; note that β is an increasing

function of k and a simple calculation shows the same to be true for γ. Further, if β
is an integer then so is the other fixed point α = 1−β. So, unlike the higher degree

cases, integer fixed points always occur in pairs when m = 2.

Lemma 3.1. For all k ≥ 2
1 < β− γ ≤ 2. (3.2)

Further, the difference β−γ is decreasing as a function of k with limk→∞(β−γ) = 1.

Proof. Note that β− γ ≤ 2 if and only if γ ≥ β−2 and this inequality is true if and

only if
k−β = γ2 ≥ (β−2)2 = β2 −4β+4.

Since β is a fixed point, β2 = k+β so the above inequality is true if and only if

−β ≥−3β+4

which is true if and only if β ≥ 2. By (3.1) this is the case if k ≥ 2.

Similarly, 1 < β− γ if and only if

k−β = γ2 < (β−1)2 = β2 −2β+1 = k−β+1,

which is obviously true.
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The decreasing nature of β−γ as a function of k may be using derivatives. Next,

we take the limit:

lim
k→∞

(β− γ) = lim
k→∞





1+
√

4k+1

2
−

√

k− 1+
√

4k+1

2





=
1

2
+ lim

k→∞

(

√

k+1/4−
√

k−1/2−
√

k+1/4

)

.

To calculate the limit of the indeterminate form we multiply and divide by its con-

jugate to get:

lim
k→∞

(β− γ) =
1

2
+ lim

k→∞

3/4+
√

k+1/4
√

k+1/4+
√

k−1/2−
√

k+1/4

.

The limit may now be determined as follows:

lim
k→∞

(β− γ) =
1

2
+ lim

k→∞

3/[4
√

k+1/4]+1

1+
√

(k−1/2)/(k+1/4)−
√

k+1/4/(k+1/4)

=
1

2
+

1

1+
√

1−0
= 1.

This concludes the proof. �

It is also useful to write (3.2) as follows:

β−2 ≤ γ < β−1. (3.3)

Because the length of [γ,β] is larger than 1 it contains at least one integer for every

k ≥ 2.

We now show that for certain values of k the interval [γ,β] contains two distinct

integers. For the exceptional value k = 2 we have γ = 0 and β = 2 so [γ,β] = [0,2]
contains three distinct integers.

Lemma 3.2. Assume that k ≥ 2 (so that γ is real).

(a) If k = j( j+1) or k = j( j+1)+1 for some positive integer j, then

j, j+1 ∈ [γ,β]. (3.4)

(b) If k 6= j( j + 1), j( j + 1)+ 1 for all positive integers j, then [γ,β] contains

exactly one positive integer that is different from both γ and β.

Proof. (a) Note that if k = j( j+1) for some integer j then

β =
1+

√

1+4 j( j+1)

2
=

1+2 j+1

2
= j+1,

and

γ =
√

k−β =
√

j2 −1 < j,
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so (3.4) is true for k = j( j+1). Next, for k = j( j+1)+1 = j2 + j+1

β =
1+

√

1+4 j2 +4 j+4

2
=

1+
√

(1+2 j)2 +4

2
> j+1,

so

γ =
√

j2 + j+1−β <
√

j2 + j+1− ( j+1) = j.

It follows that (3.4) is true for k = j( j+1)+1 also and the proof of (a) is complete.

(b) Let βk be the fixed point of f (x) = x2 − k and define γk =
√

k−βk. For all

non-negative j define

k j = j( j+1).

Note that the sequence of (even) integers k j is increasing as a function of j and

k j+1 = ( j+1)( j+2) = k j +2 j+2.

Therefore, for each fixed value of j

k j < j( j+1)+ i < k j+1, i = 1,2, . . . ,2 j+1.

By Part (a) we know that [γk j+1,βk j+1] contains both j and j+1. Further, since βk

increases with k and the smallest value of k where βk = j+2 is k j+1 = ( j+1)( j+
2), it follows that j+2 6∈ [γk j+i,βk j+i] for i = 1,2, . . . ,2 j+1.

Now, we show that if i ≥ 2 then [γk j+i,βk j+i] contains only one integer j+1.

To prove this claim, first note that j+1 < βk j+i for all i because βk is an increasing

function of k. Similarly, γk increases with k and γk j+2 j+1 < j + 1 for i = 2 j + 1

because after squaring it we obtain

k j +2 j+1− 1+
√

1+4(k j +2 j+1)

2
< ( j+1)2.

Substituting for k j and doing a little algebra we see that this inequality holds if and

only if

2 j−1 <
√

(2 j+1)2 +8 j+4,

which is obviously true. So j+1 ∈ [γk j+i,βk j+i] for i = 2, . . . ,2 j+1. On the other

hand, for i = 2 we have γk j+2 > j if and only if

k j +2− 1+
√

1+4(k j +2)

2
> j2,

and this inequality holds if and only if

2 j+3 >
√

(2 j+3)2 −8 j.

Since the last inequality is true for j ≥ 1 our claim is justified. Further, γk increases

with k which implies that j 6∈ [γk j+i,βk j+i] for i = 2, . . . ,2 j + 1 and the proof is

complete. �
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Figure 1 illustrates the above lemma. The upper curve is βk and the lower is γk.

The dashed curve shows βk −1. The special values of k where the interval [ck,bk]
contains two points are highlighted by dots and by numbers in larger font.

FIGURE 1. Bounding curves for integer solutions

Theorem 3.1. Every sequence rn of integers that is an orbit of (1.2) for m = 2 must

satisfy one of the following conditions:

(a) If k = j( j+1) for some integer j, then rn is one of two constant sequences,

rn = j+1 or rn =− j;

(b) If k = j( j+ 1)+ 1 for some integer j, then rn is the 2-cycle −( j+ 1), j for

n ≥ 1;

(c) If the value of k is not as given in (a) or (b), then rn diverges to infinity. In

particular, there are no integer p-cycles for p > 2.

Proof. (a) This was established in Lemma 3.2.

(b) This follows from Lemma 3.2(a) and the observation that

f (± j) = j2 − [ j( j+1)+1] =− j−1 =−( j+1),

f (±( j+1)) = ( j+1)2 − [ j( j+1)+1] = j.

Notice that the orbit j →−( j+1)→ j →−( j+1)→ ··· is the 2-cycle and each

of the remaining two points in the set [−βk+1,−γk+1]∪ [γk+1,βk+1] is mapped to

either j or −( j+1) with k = j( j+1).
(c) If the value of k is not as given in (a) or (b) above, i.e. if k 6= j( j+1), j( j+

1)+1 then by Lemma 3.2(b) the set [−βk,−γk]∪ [γk,βk] contains only two points,

say, j ∈ [γk,βk] and thus − j ∈ [−βk,−γk] with j 6= γk,βk (therefore, j is not a fixed

point of f ). Further, f ( j) = j2 − k = − j if and only if k = j( j + 1) which is

ruled out by assumption. Thus f ( j) 6= − j which means that f ( j) is not in the set

[−βk,−γk]∪ [γk,βk]. Thus, by Lemma 2.1 there are no bounded solutions in this

case and therefore, no cycles either. �
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4. EXTENSION TO THE GENERAL QUADRATIC MAP

In this section, we discuss how to extend the results of the previous section to

the general quadratic function

Q(x) = ax2 +bx+ c a,b,c ∈ Z a 6= 0.

In this case Q : Z→ Z is a mapping of the integers and the recursion

xn+1 = Q(xn) = ax2
n +bxn + c, x0 ∈ Z (4.1)

generates integer sequences.

The key observation about Q is that unlike polynomials of degree 3 or greater,

the general quadratic function Q is conjugate to the special case

f (x) = x2 −q,

where q is a rational number. The only difference between this mapping and the

one we studied in the previous section is that q is not an integer if b is odd. Many

of the results of the previous section apply to rational q as well so we simply need

to point out how to make the connection. We start with the following lemma.

Lemma 4.1. Let ai,bi,ci for i = 1,2 be fixed real numbers. If a1,a2 6= 0 and

a1(b1 + c1) = a2(b2 + c2), (4.2)

then the mappings fi(x) = ai(x+bi)
2+ci, i= 1,2 are topologically conjugate; that

is, there is a homeomorphism h such that

h◦ f1 = f2 ◦h. (4.3)

In fact,

h(x) =
a1

a2

x+
a1b1 −a2b2

a2

. (4.4)

Proof. Consider the function h(x) = αx+β which is a homeomorphism of the set

of real numbers if α 6= 0. The equality in (4.3) holds if and only if

αa1(x+b1)
2 +αc1 +β = a2(αx+β+b2)

2 + c2,

i.e.,

αa1(x+b1)
2 +αc1 +β = a2α2

(

x+
b2 +β

α

)2

+ c2.

The last equality holds if α,β can be chosen so that

αa1 = a2α2, b1 =
b2 +β

α
, αc1 +β = c2. (4.5)

The first two of the above equalities gives

α =
a1

a2

, β =
a1b1 −a2b2

a2

.
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Further, α,β must satisfiy the third equality in (4.5)

αc1 +β = c2,

i.e.,
a1c1 +a1b1 −a2b2 = a2c2.

The last equality is equivalent to (4.2). �

Next, observe that since

Q(x) = a

(

x2 +
b

a
x

)

+ c = a

(

x+
b

2a

)2

+ c− b2

4a

the following corollary of Lemma 4.1 is obtained by setting

a1 = a, b1 =
b

2a
, c1 = c− b2

4a
and a2 = 1, b2 = 0

in (4.2) and using the conjugate map h.

Lemma 4.2. The quadratic function Q(x) is topologically conjugate to the trans-

lation

f (x) = x2 −q, q =
b2

4
− b

2
−ac =

b(b−2)

4
−ac. (4.6)

Every orbit rn of (4.6) uniquely corresponds via the homeomorphism h to an orbit

sn of (4.1) as follows

rn = asn +
b

2
.

Equivalently,

sn =
rn

a
− b

2a
. (4.7)

The main issue now is to show that there are rational orbits rn of

xn+1 = x2
n −q (4.8)

that yield all the integer orbits sn of (4.1) via (4.7).

We begin with the observation that if b is even, then q in (4.6) is an integer so we

may apply Theorem 3.1 directly to the quadratic function f (x) in (4.6) and obtain

the next corollary about the integer orbits of (4.1).

Corollary 4.1. Assume that b is an even integer in (4.1).

(a) There is at least one integer fixed point for (4.1) if

b(b−2)

4
−ac = j( j+1)

for some integer j. The integer fixed point is one of the following (both of them if

a =±1)
j

a
− b−2

2a
, − j

a
− b

2a
.
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(b) There is an integer 2-cycle for (4.1) if

b(b−2)

4
−ac = j( j+1)+1

for some integer j. This 2-cycle is

j

a
− b

2a
, − j

a
− b+2

2a
.

(c) If ac is not as given in (a) or (b), then every integer orbit of (4.1) increases to

∞ if a > 0 or decreases to −∞ if a < 0. In particular, (4.1) has no integer p-cycles

if p ≥ 3.

Note that in the special case where a = 1 and b = 0 the above corollary reduces

to Theorem 3.1 (with k =−c).

To illustrate Corollary 4.1 with an example let l be any positive integer and

consider

xn+1 = x2
n +2xn − l, (4.9)

where a = 1, b = 2 and c = −l. The recursion in (4.9) has a pair of integer fixed

points j and − j− 1 if l = j( j + 1) and it has an integer 2-cycle j− 1, − j− 2 if

l = j( j+1)+1. There are no other cycles of (4.9) for any value of l.

For the equation

xn+1 =−2x2
n +2xn +1

we have a =−2, b = 2 and c = 1. With ac =−2, Part (a) of Corollary 4.1 holds if

j = 1; of the two fixed points

j

a
− b−2

2a
=−1

2
, − j

a
− b

2a
= 1

only one is an integer. There are no proper cycles in this case.

If b is odd then Theorem 3.1 is not applicable but a modified form of Corollary

4.1 holds. The key observation is the following:

If a,b,c have integer values in (4.6) then 4q is an integer.

In fact,

4q = b2 −2b−4ac = (b−1)2 −1−4ac.

From this equality we obtain

1+4q = (b−1)2 −4ac,

which is the discriminant of the fixed point equations for both Q and its conjugate

f . Indeed, the fixed points of Q are the solutions of Q(x) = x, i.e.,

ax2 +(b−1)x+ c = 0,

which yields

−(b−1)±
√

(b−1)2 −4ac

2a
(4.10)
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while from f (x) = x, i.e.,

x2 − x−q = 0

we obtain
1±√

1+4q

2
. (4.11)

In order that the numbers in (4.10) and (4.11) be rational it is necessary that under

the square roots we have perfect squares.

Now, suppose that b is odd. Then from (4.10) we obtain integers if and only if

(b−1)2 −4ac is the square of an even integer, i.e.,

(b−1)2 −4ac = (2m)2.

The last equation may be written as

ac =

(

b−1

2

)2

−m2. (4.12)

Thus, when b is odd Q(x) has integer fixed points if the product ac is a number of

the above type for some integer m. This is how (4.12) modifies Part (a) of Corollary

4.1 when b is odd. For example, the quadratic recursion

xn+1 = x2
n + xn −1, (4.13)

with a = b = 1 and c =−1 gives

(

b−1

2

)2

−1 =−1 = ac,

so m = 1. Indeed, (4.13) has a pair of integer fixed points ±1.

To extend these observations to cycles with lengths larger than 1 we consider

f (x) = x2 −q and the fixed points in (4.11). Using notation analogous to what we

previsously discussed for the case of integer q, define

Bq =
1+

√
1+4q

2
, Cq =

√

q−Bq.

These are the same as the earlier parameters bk and ck. In fact, if we think of k (or

q) as real numbers then they are indeed the same functions but now we check their

values for rational q. Notice that

q =
b2

4
− b

2
+

1

4
−ac− 1

4
=

(

b−1

2

)2

−ac− 1

4
.

Looking back at Figure 1, when b is odd, we check the region between the two

curves at integer values less 1/4 on the horizontal axis; that is, at k− 1/4 rather

than at integers k.
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With this in mind, if we set q = k−1/4 (or 1+4q = k) in the square root in Bq,

then we obtain
√

1+4q =

√

1+4

(

k− 1

4

)

= 2
√

k,

which is rational (in fact, integer) if and only if k = j2 is a perfect square. This

gives

Bq =
1+2

√
k

2
=

1

2
+ j.

Therefore, if q = j2 − 1/4 where j is an integer, then the fixed point Bq has an

integer value plus 1/2. Figure 2 illustrates this relationship.

FIGURE 2. Bounding curves, odd b

In Figure 2 we see that for the “consecutive” values j2 −1/4 and j2 −1/4+1 a

square of side 1 fits in the region between the curves Bq and Cq just like the earlier

case where q was integer. The second fixed point of Q(x) is

Aq =
1

2
− j,

since AqBq = −q. Note that Aq is in the mirror image of [Cq,Bq], i.e. the interval

[−Bq,Cq]. Its negative −Aq = j− 1/2 is in [Cq,Bq] and this is the other point that

we see directly below Bq in Figure 2.

Earlier, in Figure 1 we saw that the 2-cycles occurred at the value of k next to

the one that produced the fixed points. A similar situation appears in Figure 2; the

values q = j2 − 1/4 + 1 for q = 19/4 ( j = 2) and q = 39/4 ( j = 3) are shown.

These are the 2-cycle candidates and we need only verify this.

Note that the top points at the numbers q = j2 −1/4+1 are α = j+1/2. If we

set β = f (α), then

β =

(

j+
1

2

)2

−
(

j2 +
3

4

)

= j− 1

2
,
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and

f (β) =

(

j− 1

2

)2

−
(

j2 +
3

4

)

=−
(

j+
1

2

)

=−α.

Since f (α) = f (−α) = β and f (β) = f (−β) =−α we see that −α,β,−α,β, . . . is

indeed a 2-cycle in the set

[−Bq,Cq]∪ [Cq,Bq]. (4.14)

This gives us the proper modification of Part (b) Corollary 4.1 when b is odd.

Finally, the occurrence of p-cycles for p ≥ 3 is prohibited because it is impossible

to fit enough “integer plus half” points in the set in (4.14) for each value of q.

We summarize these facts in the following.

Corollary 4.2. Assume that b is an odd integer in (4.1).

(a) There is at least one integer fixed point for (4.1) if
(

b−1

2

)2

−ac = j2

for some integer j. The integer fixed point is one of the following (both if

a =±1)
j

a
− b−1

2a
, − j

a
− b−1

2a
.

(b) There is an integer 2-cycle for (4.1) if
(

b−1

2

)2

−ac = j2 +1

for some integer j. This 2-cycle is

− j

a
− b+1

2a
,

j

a
− b+1

2a
.

(c) If ac is not as given in (a) or (b), then every integer orbit of (4.1) increases

to ∞ if a > 0 or decreases to −∞ if a < 0. In particular, (4.1) has no integer

p-cycles if p ≥ 3.

For instance, consider the quadratic equation

xn+1 = x2
n + xn −2, (4.15)

with a = b= 1 and c=−2 satisfies the conditions of the above corollary with j = 1

since
(

b−1

2

)2

−ac = 2 = j2 +1.

So there is a 2-cycle whose points are

− j

a
− b+1

2a
=−1−1 =−2,

j

a
− b+1

2a
= 1−1 = 0.

The periodic integer solution of (4.15) is −2,0,−2,0, . . . which can be easily veri-

fied by direct substitution into (4.15).
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5. REMARKS ON THE HIGHER ORDER QUADRATIC RECURSIONS

The results in the preceding two sections determine the solutions or orbits of

the first-order quadratic recursion. A natural question at this stage is what can be

expected of the integer solutions when delays are present in the recursion, i.e. when

the quadratic equation has order greater than 1.

The behavior of the integer solutions of higher order quadratic recursion are

unsurprisinly more complex and display a greater variety of cases. The proper

investigation of these solutions may be the subject of another paper.

In this section, we comment on some of the special cases as a way of alerting

the reader about the possiblities. While there seems to be no significant published

results on the integer solutions of higher order equations, the real solutions of qua-

dratic polynomial equations of higher order have been investigated in substantial

detail; see, e.g. [2].

First, consider the straightforward case of the basic higher order quadratic re-

cursion
xn+1 = x2

n−m − k, (5.1)

where m is a positive integer and the initial values x0,x1, . . . ,xm and k are integers

(note that the difference equation (5.1) has order m + 1). Theorem 3.1 can be

readily extended to this case.

If k = j( j + 1) for some positive integer j then by Theorem 3.1 the first order

recursion (1.2) has two fixed points or constant solutions: − j and j+ 1. Setting

some of the m+ 1 initial values equal to one of these and setting the remaining

initial values to the other we obtain a solution of period m+ 1 for (5.1), i.e. an

(m+1)-cycle.

Most of these cycles represent the same cycle that is shifted forward or back-

ward. For example, let j = 1. Then j( j + 1) = 2 and for m = 2 we obtain the

recursion of order 3

xn+1 = x2
n−2 −2. (5.2)

This equation has two integer fixed points − j =−1 and j+1 = 2 which also serve

as constant integer solutions. The selection

x0 = x1 =−1, x2 = 2

of initial values generates the 3-cycle

−1,−1,2,−1,−1,2,−1,−1,2, . . . ,

which is the same as the cycle

−1,2,−1,−1,2,−1,−1,2,−1, . . .

generated by the selection

x0 =−1, x1 = 2, x2 =−1

but shifted one step to the right.
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One the other hand, the selection

x0 =−1, x1 = x2 = 2

does generate a different 3-cycle

−1,2,2,−1,2,2, . . . .

If k = j( j+1)+1, then according to Theorem 3.1 the first-order equation has an

integer solution of period 2 that is given by the numbers −( j+1) and j. This cycle

generates corresponding cycles (not all distinct) for the higher order equations.

For example, with j = 1 the third-order equation

xn+1 = x2
n−2 −3 (5.3)

has solutions of period 6 such as

−2,−2,−2,1,1,1,−2,−2,−2,1,1,1,−2,−2,−2,1,1,1, . . . ,

corresponding to the selection

x0 = x1 = x2 =−2.

Some selections of initial values generate shorter cycles. For instance, the se-

lection

x0 = 1, x1 =−2, x2 = 1

generates the sequence

1,−2,1,−2,1,−2,1,−2,1,1,−2,1, . . .

that has period 2.

The general quadratic equation corresponds to many different higher order equa-

tions that may be expressed collectively as

xn+1 = ax2
n−m +bxn−k + c. (5.4)

In this form, the larger of m and k gives the order of (5.4), as either m+1 or k+1.

We have a complete description of solutions for the first-order case where m =
k = 0. These results may be readily extended to (5.4) if

m = k,

using Corollaries 4.1 and 4.2 similarly to the discussion above for the basic higher

order case.

If m 6= k, then new results are required for finding the periodic integer solutions

of (5.4) in Z
2.

Perhaps a good place to start is with the second-order equations where m+k = 1.

There is a greater variety of solutions in these cases than in the case m = k = 1. For

example, we may verify that the recursion

xn+1 = x2
n − xn−1 −1,
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with initial values x0 =−1 and x1 = 0 has a 3-cycle

−1,0,0,−1,0,0,−1,0,0, . . . ,

whereas the same equation with initial values x0 =−1 and x1 = 1 has a 4-cycle

−1,1,1,−1,−1,1,1,−1,−1,1,1,−1, . . . .

These cycles are different than the ones that we might get for the case m = k = 1

and suggest a greater level of complexity.
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