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ABSTRACT. Let (Am)m∈Z be a sequence of bounded linear operators acting on

an arbitrary Banach space X and admitting an exponential dichotomy. Further-

more, let fm : X → X , m ∈ Z be a sequence of Lipschitz maps. Provided that the

Lipschitz constants of fm are uniformly small, we show that a nonlinear differ-

ence equation
xm+1 = Amxm + fm(xm), m ∈ Z,

exhibits various types of the weighted Hyers-Ulam stability property.

1. INTRODUCTION

Let X = (X ,‖ ·‖) be an arbitrary Banach space, (An)n∈Z a sequence of bounded

linear operators on X and ( fn)n∈Z a sequence of Lipschitz maps fn : X → X , n ∈
Z. We consider the corresponding nonlinear nonautonomous difference equation

given by
xn+1 = Anxn + fn(xn), n ∈ Z, (1.1)

as well as the associated linear equation

xn+1 = Anxn, n ∈ Z. (1.2)

We recall that (1.1) is said to be Hyers-Ulam stable if there exists L > 0 with the

property that for each δ > 0 and a sequence (yn)n∈Z ⊂ X such that

sup
n∈Z

‖yn −An−1yn−1 − fn−1(yn−1)‖ ≤ δ, (1.3)

there exists a solution (xn)n∈Z of (1.1) such that

sup
n∈Z

‖xn − yn‖ ≤ Lδ. (1.4)

Hence, if (1.1) is Hyers-Ulam stable, in a vicinity of each approximate solution

of (1.1) we can construct its exact solution.

We emphasize that it follows from [2, Theorem 3] that (1.1) is Hyers-Ulam

stable provided that the following conditions hold:
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• (1.2) admits an exponential dichotomy;

• the Lipschitz constants of fn are uniformly small.

This result unified and extended several previously available results dealing with

Hyers-Ulam stability of (1.2) in the case when (An)n∈Z is either a constant or a

periodic sequence (see [5–8, 22] and references therein). Moreover, the arguments

and results developed in [2] inspired several other relevant contributions to the

shadowing theory for nonautonomous difference and differential equations (see [1,

3, 4, 11–14]).

In addition, in [2] the authors dealt with a more general concept of the Hyers-

Ulam stability, in which the size of an approximate solution as well as its deviation

from an exact solution are not necessarily measured with respect to the l∞-norm

(as in (1.3) and (1.4)). Indeed, these quantities can be measured with respect to a

wide collection of norms on sequence spaces.

In the present paper we study the weighted Hyers-Ulam stability of (1.1). This

concept is motivated by the related notions of weighted shadowing property intro-

duced in the context of smooth dynamical systems [10, 21]. The principal mo-

tivation for considering such notions are situations when the expression ‖yn −
An−1yn−1− fn−1(yn−1)‖ in (1.3) cannot be well-controlled for every n∈Z, or when

it exhibits certain asymptotic behaviour when |n| → ∞.

Our main result (see Theorem 3.1) implies that (1.1) has the weighted Hyers-

Ulam stability property if the following conditions hold:

• (1.2) admits an exponential dichotomy;

• the Lipschitz constants of fn are uniformly small;

• the sequence of weights exhibits the subexponential growth property (see

Proposition 2.2).

We note that our arguments follow closely the approach developed in [2], by com-

bining it with techniques from [10].

2. PRELIMINARIES

2.1. Banach sequence spaces

Let S denote the set of all sequences s = (sn)n∈Z of real numbers. We say that a

linear subspace B ⊂ S is a normed sequence space if there exists a norm ‖·‖B : B→
R
+
0 on B such that if s′ ∈ B and |sn| ≤ |s′n| for n ∈ I, then s ∈ B and ‖s‖B ≤ ‖s′‖B.

If in addition (B,‖·‖B) is complete, we say that B is a Banach sequence space.

Let B be a Banach sequence space. We say that B is admissible if:

1. χ{n} ∈B and ‖χ{n}‖B > 0 for n∈Z, where χA denotes the characteristic function

of the set A ⊂ Z;

2. for each s = (sn)n∈Z ∈ B and m ∈ Z, the sequence sm = (sm
n )n∈Z defined by

sm
n = sn+m belongs to B and ‖sm‖B = ‖s‖B for s ∈ B and m ∈ Z.
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Example 2.1. The set l∞ = {s ∈ S : supn∈Z|sn|<+∞} is a Banach sequence space

when equipped with the norm ‖s‖= supn∈Z|sn|.

Example 2.2. For each p ∈ [1,∞), the set lp = {s ∈ S : ∑n∈Z|sn|
p < +∞} is a

Banach sequence space when equipped with the norm ‖s‖= (∑n∈Z|sn|
p)1/p.

Example 2.3 (Orlicz sequence spaces). Let φ : (0,+∞) → (0,+∞] be a nonde-

creasing nonconstant left-continuous function. We set ψ(t) =
∫ t

0 φ(s)ds for t ≥ 0.

Moreover, for each s ∈ S , let Mφ(s) = ∑n∈Z ψ(|sn|). Then

B =
{

s ∈ S : Mφ(cs)<+∞ for some c > 0
}

is a Banach sequence space when equipped with the norm

‖s‖ = inf
{

c > 0 : Mφ(s/c) ≤ 1
}

.

Some important properties of admissible Banach sequence spaces are given in

the following result (see [10, Proposition 1]).

Proposition 2.1. Let B be an admissible Banach sequence space.

1. If s1 =(s1
n)n∈Z and s2 =(s2

n)n∈Z are sequences in S and s1
n = s2

n for all but finitely

many n ∈ Z, then s1 ∈ B if and only if s2 ∈ B.

2. If sn → s in B when n → ∞, then sn
m → sm when n → ∞, for m ∈ Z.

3. For each s ∈ B and λ ∈ (0,1), the sequences s1 and s2 defined by

s1
n = ∑

m≥0

e−λmsn−m and s2
n = ∑

m≥1

e−λmsn+m

are in B, and

‖s1‖B ≤
1

1− e−λ
‖s‖B and ‖s2‖B ≤

e−λ

1− e−λ
‖s‖B. (2.1)

Remark 2.1. For more information on admissible Banach sequence spaces (and

their continuous time counterparts) and their role in the qualitative theory of nonau-

tonomous systems, we refer to [16–20] and references therein.

2.2. Weights

We now introduce a class of weights introduced in [10].

More precisely, throughout this paper w = (wk)k≥0 will be a sequence of real

numbers such that there exists t > 0 so that

wk ≥ t for every k ≥ 0, (2.2)

and with the property that for every λ > 0, there exist λ′,L > 0 such that:

e−λ(m−n) wn

wm

≤ Le−λ′(m−n) for every m ≥ n ≥ 0, (2.3)

and

e−λ(n−m) wn

wm

≤ Le−λ′(n−m) for every n ≥ m ≥ 0. (2.4)



100 DAVOR DRAGIČEVIĆ

It turns out that (2.3) and (2.4) can be stated in a more transparent manner

(see [10, Proposition 2]).

Proposition 2.2. The following statements are equivalent:

1. for every λ > 0, there exist λ′,L > 0 such that (2.3) and (2.4) hold;

2. for every ε > 0 there exists C > 0 such that

wn

wm

≤Ceε|n−m|, m,n ≥ 0. (2.5)

The following result established in [10, Proposition 3] gives a large class of

examples of sequences w = (wk)k≥0 satisfying the above properties.

Proposition 2.3. Assume that p is a polynomial with a positive leading coefficient

such that p(k)> 0 for k ≥ 0. Given w ≥ 0, we define

wk = p(k)w, k ≥ 0.

Then, the sequence w = (wk)k≥0 satisfies properties (2.2), (2.3) and (2.4).

2.3. Sequence spaces induced by weights

We now introduce a class of sequence spaces that will play a central role in our

paper.

Let X =(X ,‖·‖) be an arbitrary Banach space, B an admissible Banach sequence

space and w = (wk)k≥0 a sequence of weights satisfying (2.2), (2.3) and (2.4). Set

YX ,B,w =

{

(xk)k∈Z ⊂ X : (w|k|‖xk‖)k∈Z ∈ B

}

.

The following result can be established by arguing as in the proof of [10, Propo-

sition 4].

Proposition 2.4. YX ,B,w is a Banach space with respect to the norm

‖x‖X ,B,w = ‖(w|k|‖xk‖)k∈Z‖B.

2.4. Exponential dichotomy

Finally, we recall the notion of an exponential dichotomy (see [9, 15]). We con-

tinue to denote by X =(X ,‖·‖) an arbitrary Banach space. By B(X)we will denote

the space of all bounded linear operators on X , equipped with the operator norm

that we will also denote by ‖ · ‖. Moreover, Id will denote the identity operator on

X .

We say that a sequence (An)n∈Z ⊂ B(X) admits an exponential dichotomy if

there exist a sequence of projections Pn, n ∈ Z on X and constants C,λ > 0 such

that:

• for n ∈ Z,

Pn+1An = AnPn,

and An|Ker Pn
: KerPn → KerPn+1 is invertible;
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• for m ≥ n,

‖A(m,n)Pn‖ ≤Ce−λ(m−n), (2.6)

where

A(m,n) =

{

Am−1 · · ·An m > n;

Id m = n;

• for m ≤ n,

‖A(m,n)(Id−Pn)‖ ≤Ce−λ(n−m), (2.7)

where

A(m,n) :=

(

A(n,m)|KerPm

)−1

: KerPn → KerPm.

Example 2.4. Let A ∈ B(X) be a hyperbolic linear operator, i.e. the spectrum of A

is disjoint from the unit circle S
1 ⊂ C. Let c > 0 and assume that (An)n∈Z ⊂ B(X)

is a sequence such that

sup
n∈Z

‖A−An‖ ≤ c.

Provided that c is sufficiently small, it follows from [15, Theorem 7.6.7.] that the

sequence (An)n∈Z admits an exponential dichotomy.

3. MAIN RESULT

Let X = (X ,‖ · ‖) be an arbitrary Banach space, B an admissible Banach se-

quence space and w = (wk)k≥0 a sequence of weights satisfying properties (2.2),

(2.3) and (2.4).

Moreover, let (An)n∈Z ⊂ B(X) be an arbitrary sequence. We consider the asso-

ciated linear difference equation given by

xn+1 = Anxn, n ∈ Z. (3.1)

Given a sequence ( fn)n∈Z of maps fn : X → X , we can consider the nonlinear dif-

ference equation given by

xn+1 = Anxn + fn(xn), n ∈ Z. (3.2)

We now introduce the notion of a (δ,B,w)-pseudotrajectory for (3.2).

Definition 3.1. Let δ > 0. We say that a sequence (yn)n∈Z ⊂ X is an (δ,B,w)-
pseudotrajectory for (3.2) if the sequence (yn+1 − Anyn − fn(yn))n∈Z belongs to

YX ,B,w and

‖(yn −An−1yn−1 − fn−1(yn−1))n∈Z‖X ,B,w ≤ δ. (3.3)

Remark 3.1. In the particular case when w = (wk)k≥0 is a constant sequence wk =
1, the notion of an (δ,B,w)-pseudotrajectory reduces to the notion of an (δ,B)-
pseudotrajectory, which was introduced and studied in [2].
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In the sequel, we will use the following simple result established in [10, Lemma

4.5].

Lemma 3.1. For every λ > 0 there exists λ′,L > 0 such that for every n,m ∈ Z:

1. e−λ(m−n) w|n|

w|m|
≤ Le−λ′(m−n), for m ≥ n;

2. e−λ(n−m) w|n|

w|m|
≤ Le−λ′(n−m), for m ≤ n.

We are now in the position to formulate and establish the main result of our

paper.

Theorem 3.1. Assume that a sequence (An)n∈Z ⊂ B(X) admits an exponential

dichotomy. Furthemore, suppose that there exists c > 0 such that

‖ fn(x)− fn(y)‖ ≤ c‖x− y‖, for x,y ∈ X and n ∈ Z. (3.4)

Then, provided that c is sufficiently small, there exists L > 0 with the following

property: for each δ > 0 and an (δ,B,w)-pseudotrajectory (yn)n∈Z ⊂ X for (3.2),

there exists a solution (xn)n∈Z ⊂ X of (3.2) such that

‖(xn − yn)n∈Z‖X ,B,w ≤ Lδ. (3.5)

Proof. Take δ > 0 and a (δ,B,w)-pseudotrajectory (yn)n∈Z ⊂ X for (3.2). Set

G(m,n) =

{

A(m,n)Pn m ≥ n;

−A(m,n)(Id−Pn) m < n.

For a sequence z = (zn)n∈Z ∈ YX ,B,w, set

(T z)n = ∑
k∈Z

G(n,k)(Ak−1yk−1 + fk−1(yk−1 + zk−1)− yk), n ∈ Z.

By (2.6) and (2.7), we have that

‖(T 0)n‖ ≤
n

∑
k=−∞

‖A(n,k)Pk(Ak−1yk−1 + fk−1(yk−1)− yk)‖

+
∞

∑
k=n+1

‖A(n,k)Pk(Ak−1yk−1 + fk−1(yk−1)− yk)‖

≤C
n

∑
k=−∞

e−λ(n−k)‖Ak−1yk−1 + fk−1(yk−1)− yk‖

+C
∞

∑
k=n+1

e−λ(k−n)‖Ak−1yk−1 + fk−1(yk−1)− yk‖,
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and thus

w|n|‖(T 0)n‖ ≤C
n

∑
k=−∞

e−λ(n−k) w|n|

w|k|
w|k|‖Ak−1yk−1 + fk−1(yk−1)− yk‖

+C
∞

∑
k=n+1

e−λ(k−n) w|n|

w|k|
w|k|‖Ak−1yk−1 + fk−1(yk−1)− yk‖.

By invoking Lemma 3.1, we conclude that

w|n|‖(T 0)n‖ ≤C′
n

∑
k=−∞

e−λ′(n−k)w|k|‖Ak−1yk−1+ fk−1(yk−1)−yk‖

+C′
∞

∑
k=n+1

e−λ′(k−n)w|k|‖Ak−1yk−1+ fk−1(yk−1)−yk‖

=C′
∞

∑
j=0

e−λ′ jw|n− j|‖An− j−1yn− j−1+ fn− j−1(yn− j−1)−yn− j‖

+C′
∞

∑
j=1

e−λ′ jw|n+ j|‖An+ j−1yn+ j−1+ fn+ j−1(yn+ j−1)−yn+ j‖, (3.6)

for some constants C′,λ′ > 0 that depend only on C,λ. We define sequences (sn)n∈Z

and (si
n)n∈Z, i = 1,2 of nonnegative numbers by

sn = w|n|‖An−1yn−1 + fn−1(yn−1)− yn‖,

s1
n =

∞

∑
j=0

e−λ′ jsn− j and s2
n =

∞

∑
j=1

e−λ′ jsn+ j.

Then, (3.6) implies that

w|n|‖(T 0)n‖ ≤C′(s1
n + s2

n), n ∈ Z. (3.7)

On the other hand, (3.3) together with Proposition 2.1 gives that

‖(s1
n)n∈Z‖B ≤

1

1− e−λ′ δ and ‖(s2
n)n∈Z‖B ≤

e−λ′

1− e−λ′ δ. (3.8)

By combining (3.7) and (3.8), we have that

‖T 0‖X ,B,w ≤ Mδ, (3.9)

where

M :=C′ 1+ e−λ′

1− e−λ′ > 0.

Moreover, for z = (zn)n∈Z ∈ YX ,B,w we have (using (3.4)) that

‖Ak−1yk−1 + fk−1(yk−1 + zk−1)− yk‖ ≤ ‖Ak−1yk−1 + fk−1(yk−1)− yk‖+ c‖zk−1‖,

for k ∈ Z. Hence,
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w|k|‖Ak−1yk−1 + fk−1(yk−1 + zk−1)− yk‖

≤ w|k|‖Ak−1yk−1 + fk−1(yk−1)− yk‖+ cw|k|‖zk−1‖

≤ w|k|‖Ak−1yk−1 + fk−1(yk−1)− yk‖+Dw|k−1|‖zk−1‖, (3.10)

for k ∈ Z, where (see (2.5))

D := sup
k∈Z

w|k|

w|k−1|
<+∞.

In addition, using (2.6), (2.7) and Lemma 3.1, we have that

w|n|‖(T z)n‖≤C′
n

∑
k=−∞

e−λ′(n−k)w|k|‖Ak−1yk−1+ fk−1(yk−1+zk−1)− yk‖

+C′
∞

∑
k=n+1

e−λ′(k−n)w|k|‖Ak−1yk−1+ fk−1(yk−1 + zk−1)−yk‖, (3.11)

for n∈Z. By combining (3.10) together with (3.11), and using the same arguments

that enabled us to establish (3.9), we find that

‖T z‖X ,B,w ≤C′ 1+ e−λ′

1− e−λ′ δ+C′D
1+ e−λ′

1− e−λ′ ‖z‖X ,B,w <+∞.

In particular, T : YX ,B,w →YX ,B,w is a well-defined map.

Now take zi = (zi
n)n∈Z ∈ YX ,B,w, i = 1,2. We have that

(T z1)n − (T z2)n = ∑
k∈Z

G(n,k)( fk−1(yk−1 + z1
k−1)− fk−1(yk−1 + z2

k−1)), n ∈ Z.

Furthermore, (3.4) implies that

‖ fk−1(yk−1 + z1
k−1)− fk−1(yk−1 + z2

k−1)‖ ≤ c‖z1
k−1 − z2

k−1‖, k ∈ Z.

By proceeding as above, we conclude that

‖T z1 −T z2‖X ,B,w ≤ q‖z1 − z2‖X ,B,w, (3.12)

where

q := cDC′ 1+ e−λ′

1− e−λ′ .

Provided that c is sufficiently small, we have that q < 1 and thus T is a contraction

on YX ,B,w. Let

L :=
M

1−q
> 0,

and set

D := {z ∈YX ,B,w : ‖z‖X ,B,w ≤ Lδ}.

Take z ∈ D . By (3.9) and (3.12), we have that

‖T z‖X ,B,w ≤ ‖T z−T 0‖X ,B,w +‖T 0‖X ,B,w ≤ qLδ+Mδ = Lδ.

We conclude that T (D)⊂ D , and thus T has a unique fixed point z= (zn)n∈Z ∈D .

Hence,
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zn+1 −Anzn

= ∑
k≤n+1

A(n+1,k)Pk(Ak−1yk−1 + fk−1(yk−1 + zk−1)− yk)

− ∑
k≥n+2

A(n+1,k)(Id−Pk)(Ak−1yk−1 + fk−1(yk−1 + zk−1)− yk)

− ∑
k≤n

A(n+1,k)Pk(Ak−1yk−1 + fk−1(yk−1 + zk−1)− yk)

+ ∑
k≥n+1

A(n+1,k)(Id−Pk)(Ak−1yk−1 + fk−1(yk−1 + zk−1)− yk)

= Pn+1(Anyn + fn(yn + zn)− yn+1)

+ (Id−Pn+1)(Anyn + fn(yn + zn)− yn+1)

= Anyn + fn(yn + zn)− yn+1,

for n ∈ Z. Consequently, setting xn = yn + zn, n ∈ Z, we conclude that (xn)n∈Z is

a solution of (3.2). Moreover, since z ∈ D , we have that (3.5) holds. The proof of

the theorem is completed. �

Remark 3.2. In the particular case when w = (wk)k≥0 is the constant sequence

wk = 1, Theorem 3.1 follows from [2, Theorem 3].

Corollary 3.1. Assume that a sequence (An)n∈Z ⊂ B(X) admits an exponential

dichotomy. Then, there exists L > 0 with the following property: for each δ > 0

and an (δ,B,w)-pseudotrajectory (yn)n∈Z ⊂ X for (3.1), there exists a solution

(xn)n∈Z ⊂ X of (3.1) such that (3.5) holds.

Proof. The desired conclusion follows directly from Theorem 3.1 applied to the

case when fn ≡ 0, n ∈ Z. �
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[14] D. Dragičević and M. Pituk, Shadowing for nonautonomous difference equations with infinite

delay, Appl. Math. Lett. 120 (2021), 107284.

[15] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics,

840, Springer-Verlag, Berlin-New York, 1981.

[16] N. T. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces

on a half-line, J. Funct. Anal. 235 (2006), 330–354.

[17] N. T. Huy, Invariant manifolds of admissible classes for semi-linear evolution equations, J.

Differential Equations 246 (2009), 1820–1844.

[18] A. L. Sasu and B. Sasu, Integral equations, dichotomy of evolution families on the half-line and

applications, Integral Equations Operator Theory 66 (2010), 113–140.

[19] A. L. Sasu and B. Sasu, On the dichotomic behavior of discrete dynamical systems on the

half-line, Discrete Contin. Dyn. Syst. 33 (2013), 3057–3084.

[20] B. Sasu, Input-output control systems and dichotomy of variational difference equations, J.

Difference Equ. Appl. 17 (2011) 889–913.

[21] D. Todorov, Generalizations of analogs of theorems of Maizel and Pliss and their application

in shadowing theory, Discrete Contin. Dyn. Syst. 33 (2013), 4187 – 4205.

[22] A. Zada and B. Zada, Hyers-Ulam stability and exponential dichotomy of discrete semigroup,

Appl. Math. E-Notes 19 (2019), 527–534.

(Received: January 23, 2022)

(Revised: March 12, 2022)

Davor Dragičević
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