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ABSTRACT. The purpose of this paper is to investigate Ulam stability of first-

order nonlinear dynamic equations on time scales. Based on the method of the

Picard operator and using dynamic inequalities, we obtain four types of stability.

In addition, as applications of our main result, we obtain new Ulam stability

results for other nonlinear dynamic equations. An example is also provided to

illustrate our main result.

1. INTRODUCTION

It is widely known that stability of solutions is one of the most important and in-

teresting properties among various qualitative properties of solutions. In the exist-

ing literature, there are several stability theories, for both differential and difference

equations (see e.g., [15, 20, 23, 24] for the discrete case and [25, 26] for PDEs) but

the concept of Ulam stability has significant applications in various fields of math-

ematical analysis. This is mainly because Ulam stability essentially deals with the

existence of an exact solution near to every approximate solution and is useful in

the situation when it is difficult to find the exact solution. This kind of stability

for functional equations was first discussed by Ulam [39] in his famous talk at the

University of Wisconsin in 1940. He proposed to “provide an approximate solu-

tion for the exact solution in a simple form for a functional equation”. One year

later, D. H. Hyers [22] delivered an affirmative answer to this question. Thereafter,

the results of Hyers were extended by many authors, but remarkable improvements

were provided separately by T. Aoki [10], D. G. Bourgin [19], and Th. M. Ras-

sias [31]. The problem of stability in Ulam sense for various kinds of differential,

difference, integral equations etc. has been seriously studied by many researchers

employing several techniques. In 2005, D. Popa [30] studied Ulam-type stability

for difference equations. Some very recent studies on Ulam stability for difference

equations can be found in [5–8, 11–13, 27]. I. A. Rus [33] presented four types of

Ulam stability for differential equations
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x′(t) = f (t,x(t))

both in finite and infinite intervals. Also, in [34], he presented and discussed Ulam-

type stability for the differential equation

x′(t) = p(t)+ f (t,x(t))

in Banach spaces. Y. Shen and Y. Li [36], employing the method of variation

of parameters, established the Ulam stability for linear differential equations of

first-order, second-order, third-order, and nth order. In 2015, J. Huang et al. [21],

adopting a fixed point method, investigated Hyers–Ulam as well as generalized

Hyers–Ulam stability of nonlinear differential equations involving a Lipschitz con-

dition on infinite intervals. Q. H. Alqifiary and S. M. Jung [3] proved Hyers–Ulam

stability for second-order differential equations using Gronwall’s inequality. Very

recently, A. B. Makhlouf et al. [14] investigated Hyers–Ulam and Hyers–Ulam–

Rassias stability for stochastic functional differential equations via the method of

fixed point and stochastic analysis techniques.

S. András and A. R. Mészáros [9] studied Hyers–Ulam stability of some linear

and nonlinear dynamic equations as well as integral equations on time scales. They

employed both direct and operational methods, and based on the theory of Picard’s

operators, proposed a unified approach to Hyers–Ulam stability. Y. Shen [35],

employing the method of integrating factor, investigated Ulam stability of the first-

order linear dynamic equation

x∆(t) = p(t)x(t)+ f (t)

and its adjoint equation

x∆(t) =−p(t)xσ(t)+ f (t)

on a finite interval. Also, D. R. Anderson and M. Ointsuka [4] established Hyers–

Ulam stability of certain first-order linear homogeneous dynamic equations with

constant coefficients. They extended the results given in [28, 29] to all time scales

and also provided an application to a perturbed linear dynamic equation.

Most recently, in 2021, applying dynamic inequalities, M. A. Alghamdi et al.

[1, 2] obtained several results on Hyers–Ulam and Hyers–Ulam–Rassias stability

for the first-order dynamic equations

x∆(t) = p(t)x(t)+ f (t)

and
x∆(t) = p(t)x(t)+ f (t,x(t),h(x(t)))+g(t),

respectively.

In this paper, we investigate Ulam stability for the nonlinear dynamic equation

(NDE) of the form

x∆(t)+ p(t)xσ(t) = f (t,x(t)), t ∈ J
κ, (1.1)

where J := [a,b]T, a,b ∈ T with a < b, x : J→ R is the unknown function to be

determined, xσ = x ◦σ, x∆ is the delta derivative of x, p : T → R is a positively
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regressive and rd-continuous function, f : J×R → R is rd-continuous in its first

variable and continuous in its second variable.

Based on the method of Picard operator and dynamic inequalities, we obtain

results on stability of NDE (1.1). The results obtained in this paper are more

general than the known results available in the literature and include the stud-

ies [2,4,21,33,36]. For the existence, uniqueness, and other properties of solutions

of NDE (1.1), we refer to [18, 37, 38].

2. PRELIMINARIES

To understand the notation used in this paper, we include some preliminary ma-

terial. The following material pertinent to time scales can be found in [16, 17]. A

nonempty closed subset of the real line R is called a time scale T. We usually write

Tκ = T\{maxT} if maxT< ∞, otherwise Tκ = T.

Definition 2.1. A function f : T→ R is said to be delta differentiable at t ∈ Tκ if

there exists f ∆(t) ∈ R, a so-called delta derivative of f , with the following prop-

erty: For any ε > 0 there is a neighbourhood N of t, such that

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| ≤ ε
∣

∣σ(t)− s
∣

∣ for all s ∈ N.

Definition 2.2. A function f : T→ R is rd-continuous if it is continuous at every

right-dense point or maximal point in T and its left sided limits exist at left-dense

points in T. The symbol Crd(T,R) will be used for the set of all such functions. If

a function f : T×R→R is rd-continuous in its first variable and continuous in its

second variable, then we write f ∈ Crd(T×R,R).

Remark 2.1. The family Crd(J,R) of all rd-continuous functions from J into R

forms a Banach space coupled with the norm ‖ · ‖ defined as ‖x‖ := sup
t∈J

|x(t)|.

Definition 2.3. We say that p : T → R is regressive if 1 + µ(t)p(t) 6= 0 for all

t ∈ T. The symbol R (T,R) will be used for the set of all rd-continuous regressive

functions. If 1+µ(t)p(t)> 0 for all t ∈T, then p is said to be positively regressive,

and R +(T,R) denotes the set of all rd-continuous positively regressive functions.

Definition 2.4. For p ∈ R (T,R), the generalized exponential function ep(t,s) on

the time scale T is defined as

ep(t,s) :=















exp

(∫ t

s

Log |1+µ(r)p(r)|

µ(r)
∆r

)

if µ(r) 6= 0,

exp

(∫ t

s
p(r)∆r

)

if µ(r) = 0.

For p,q ∈ R (T,R), we define

p⊕q := p+q+µpq, ⊖p :=
−p

1+µp
, p⊖q := p⊕ (⊖q).
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Remark 2.2. We let

Ep := sup
s,t∈J

|e⊖p(t,s)|> 0 and Eq := sup
s,t∈J

|e⊖ q
1−µq

(t,s)|> 0.

In our investigation, we mainly use the following results and definition.

Theorem 2.1 (See [40, Theorem 2]). Let y,F ∈ Crd(T,R
+) with F a nondecreas-

ing function and G ,H ∈ R +(T,R) with G ≥ 0, H ≥ 0. If

y(t)≤ F (t)+
∫ t

a
H (s)

[

y(s)+
∫ s

a
G(τ)y(τ)∆τ

]

∆s for all t ∈ T
κ,

then

y(t)≤ F (t)eH +G(t,a) for all t ∈ T
κ.

Definition 2.5 (See [32, Definition 2.1]). Let (M,d) be a metric space. An operator

A : M → M is said to be a Picard operator if there exists u∗ ∈ M with the following

properties:

(i) FA = {u∗}, where FA is the fixed point set of A;

(ii) the sequence {An(u)}n∈N converges to u∗ for all u ∈ M.

Lemma 2.1 (Abstract Gronwall lemma [32, Lemma 2.1]). Let (M,d,≤) be an

ordered metric space and A : M → M an increasing Picard operator (FA = u∗A).
Then for u ∈ M, u ≤ A(s) implies u ≤ u∗A, while u ≥ A(s) implies u ≥ u∗A.

Lemma 2.2 (See [18, Lemma 3.1]). Let a ∈ T, f ∈ Crd(J×R,R), and p ∈ (J,R).
Then, x satisfies (1.1) if and only if

x(t) = e⊖p(t,a)x(a)+
∫ t

a
e⊖p(t,s) f (s,x(s))∆s for all t ∈ J. (2.1)

Now, we introduce some basic definitions that will be used in this paper.

Definition 2.6. We say that NDE (1.1) has Hyers–Ulam stability if there exists

K > 0 with the following property: For any ε > 0, if y ∈ C1
rd(J,R) is such that

|y∆(t)+ p(t)yσ(t)− f (t,y(t))| ≤ ε for all t ∈ J
κ, (2.2)

then there exists x ∈ C1
rd(J,R) satisfying (1.1) such that

|y(t)− x(t)| ≤ Kε for all t ∈ J. (2.3)

Such K > 0 is known as HUS constant.

Definition 2.7. We say that NDE (1.1) has generalized Hyers–Ulam stability if

there exists θ f ∈ C(R+,R+), θ f (0) = 0 with the following property: For any ε > 0,

if y ∈ C1
rd(J,R) is such that

|y∆(t)+ p(t)yσ(t)− f (t,y(t))| ≤ ε for all t ∈ J
κ, (2.4)

then there exists x ∈ C1
rd(J,R) satisfying (1.1) such that

|y(t)− x(t)| ≤ θ f (ε) for all t ∈ J. (2.5)
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Definition 2.8. Let N be a family of positive nondecreasing rd-continuous func-

tions defined on J. We say that NDE (1.1) has Hyers–Ulam–Rassias stability of

type N if there exists K > 0 with the following property: For any φ ∈ N and ε > 0,

if y ∈ C1
rd(J,R) is such that

|y∆(t)+ p(t)yσ(t)− f (t,y(t))| ≤ εφ(t) for all t ∈ J
κ, (2.6)

then there exists x ∈ C1
rd(J,R) satisfying (1.1) such that

|y(t)− x(t)| ≤ Kεφ(t) for all t ∈ J. (2.7)

Such K > 0 is known as HURS constant.

Definition 2.9. Let N be a family of positive nondecreasing rd-continuous func-

tions defined on J. We say that NDE (1.1) has generalized Hyers–Ulam–Rassias

stability of type N if there exists K > 0 with the following property: For any φ∈N ,

if y ∈ C1
rd(J,R) is such that

|y∆(t)+ p(t)yσ(t)− f (t,y(t))| ≤ φ(t) for all t ∈ J
κ, (2.8)

then there exists x ∈ C1
rd(J,R) satisfying (1.1) such that

|y(t)− x(t)| ≤ Kφ(t) for all t ∈ J. (2.9)

Such K > 0 is known as GHURS constant.

Remark 2.3. A function y ∈ C1
rd(J,R) satisfies (2.6) if there exists ψ ∈ C1

rd(J,R)
(which depends on y) with the following properties:

(i) |ψ(t)| ≤ εφ(t) for all t ∈ J,

(ii) y∆(t)+ p(t)yσ(t) = f (t,y(t))+ψ(t) for all t ∈ Jκ.

Similar arguments hold for the inequalities (2.4) and (2.8).

3. ULAM STABILITY

In this section we prove our main result of Ulam stability for NDE (1.1) and

provide its applications.

Theorem 3.1. Consider the NDE (1.1). Assume that the following conditions are

satisfied.

(C1) Let p ∈ R +(J,R) and f ∈ Crd(J×R,R).
(C2) There exists L f > 0 such that

| f (t,u)− f (t,v)| ≤ L f |u− v| for all t ∈ J and u,v ∈ R. (3.1)

(C3) There exists η > 0 such that for φ ∈ N (J,R+)∫ t

a
φ(s)∆s ≤ ηφ(t) for all t ∈ J. (3.2)

If EpL f (b−a)< 1, then the following assertions hold:
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(i) The NDE (1.1) has a unique solution x ∈ C1
rd(J,R) satisfying the initial con-

dition x(a) = A for any initial value A ∈R.

(ii) The NDE (1.1) has Hyers–Ulam–Rassias stability of type N with HURS con-

stant Ep(b−a)eEpL f
(b,a).

Proof. By Lemma 2.2, the NDE (1.1) with initial condition x(a) = A is equivalent

to the integral equation

x(t) = e⊖p(t,a)A+

∫ t

a
e⊖p(t,s) f (s,x(s))∆s for all t ∈ J. (3.3)

We first show (i). Fix A ∈ R and define T : Crd(J,R)→ Crd(J,R) by

T (x)(t) := e⊖p(t,a)A+

∫ t

a
e⊖p(t,s) f (s,x(s))∆s. (3.4)

We show that the operator T has a fixed point, and for this we use the contraction

mapping principle. For any x,y ∈ Crd(J,R), we can write

|T (x)(t)−T (y)(t)|

≤ |e⊖p(t,a)||A−A|+
∫ t

a
|e⊖p(t,s)|| f (s,x(s))− f (s,y(s))|∆s

(C2)

≤ Ep

∫ t

a
L f |x(s)− y(s)|∆s

≤ EpL f (b−a)‖x− y‖.

Thus,

‖T (x)−T (y)‖ ≤ EpL f (b−a)‖x− y‖ for all x,y ∈ Crd(J,R).

Since EpL f (b− a) < 1, the above inequality implies that the operator T is a con-

traction on Crd(J,R). So, T has a unique fixed point x∗ ∈ Crd(J,R), which is the

unique solution of the NDE (1.1) satisfying x∗(a) = A.

Now we show (ii). Let y ∈ C1
rd(J,R) satisfy (2.6) and let x ∈ Crd(J,R) be the

unique solution of (1.1) satisfying the initial condition x(a) = y(a). Then (C1)

allows to write

x(t) = e⊖p(t,a)y(a)+
∫ t

a
e⊖p(t,s) f (s,x(s))∆s for all t ∈ J.

Now, since y ∈ C1
rd(J,R) satisfies (2.6), by Remark 2.3, we can write

y∆(t)+ p(t)yσ(t) = f (t,y(t))+ψ(t) for all t ∈ J
κ,

where ‖ψ(t)‖ ≤ εφ(t) for all t ∈ J. Thus,

y(t) = e⊖p(t,a)y(a)+

∫ t

a
e⊖p(t,s)( f (s,y(s))+ψ(s))∆s

= e⊖p(t,a)y(a)+
∫ t

a
e⊖p(t,s) f (s,y(s))∆s+

∫ t

a
e⊖p(t,s)ψ(s)∆s.

This gives
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∣

∣

∣

∣

y(t)− e⊖p(t,a)y(a)−

∫ t

a
e⊖p(t,s) f (s,y(s))∆s

∣

∣

∣

∣

≤

∫ t

a
|e⊖p(t,s)||ψ(s)|∆s

(C3)

≤ Ep(b−a)ηφ(t)ε for all t ∈ J.

(3.5)

Now, for t ∈ J, we can write

|y(t)− x(t)|=

∣

∣

∣

∣

y(t)− e⊖p(t,a)y(a)−

∫ t

a
e⊖p(t,s) f (s,y(s))∆s

+

∫ t

a
e⊖p(t,s) f (s,y(s))∆s−

∫ t

a
e⊖p(t,s) f (s,x(s))∆s

∣

∣

∣

∣

≤

∣

∣

∣

∣

y(t)− e⊖p(t,a)y(a)−

∫ t

a
e⊖p(t,s) f (s,y(s))∆s

∣

∣

∣

∣

+

∫ t

a
|e⊖p(t,s)|| f (s,y(s))− f (s,x(s))|∆s

(3.5)

≤ Ep(b−a)ηφ(t)ε+

∫ t

a
|e⊖p(t,s)|| f (s,y(s))− f (s,x(s))|∆s

(C2)

≤ Ep(b−a)ηφ(t)ε+L f

∫ t

a
|e⊖p(t,s)(y(s)− x(s))|∆s. (3.6)

According to (3.6), we consider the operator S : Crd(J,R)→ Crd(J,R) defined by

S(x)(t) := Ep(b−a)ηφ(t)ε+L f

∫ t

a
e⊖p(t,s)x(s)∆s. (3.7)

For u,v ∈ Crd(J,R
+), we can write

S(u)(t)−S(v)(t) = L f

∫ t

a
e⊖p(t,s)(u(s)− v(s))∆s.

Then
|S(u)(t)−S(v)(t)| ≤ L f Ep(b−a)‖u− v‖.

Since EpL f (b− a) < 1, we obtain that S is a contraction on Crd(J,R), and using

the Banach contraction principle, we see that S is a Picard operator and FS = {u∗}.

Then for t ∈ J, we have

u∗(t) = Ep(b−a)ηφ(t)ε+L f

∫ t

a
e⊖p(t,s)u

∗(s)∆s.

We notice that u∗ is increasing and

u∗(t)≤ Ep(b−a)ηφ(t)ε+
∫ t

a
EpL f u

∗(s)∆s.

Employing the Gronwall inequality given in Theorem 2.1 to the above inequality

with y(t) = u∗(t), F (t) = Ep(b−a)ηφ(t)ε, H (t) = EpL f , and G(t) = 0, we obtain

u∗(t)≤ Ep(b−a)ηφ(t)εeEpL f
(t,a) for all t ∈ J.
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From (3.6), we have u(t) ≤ S(u)(t) for all t ∈ J, where u(t) = |y(t)− x(t)|. Thus,

S is an increasing Picard operator on Crd(J,R). Now, in view of Lemma 2.1, we

obtain u(t) ≤ u∗(t) for all t ∈ J. This implies that

u(t)≤ Ep(b−a)eEpL f
(t,a)εηφ(t) for all t ∈ J.

That is,

|y(t)− x(t)| ≤ Ep(b−a)eEpL f
(t,a)εηφ(t) for all t ∈ J.

Thus, the NDE (1.1) has Hyers–Ulam–Rassias stability of type N with HURS

constant Ep(b−a)ηeEpL f
(b,a). �

Corollary 3.1. Assume (C1)–(C3). If EpL f (b−a) < 1, then (1.1) has generalized

Hyers-Ulam-Rassias stability of type N with GHURS constant Ep(b−a)ηeEpL f
(b,a).

Proof. In the proof of Theorem 3.1, if we take ε = 1, then we obtain

|y(t)− x(t)| ≤ Ep(b−a)eEpL f
(b,a)ηφ(t) for all t ∈ J.

This shows that NDE (1.1) has generalized Hyers–Ulam–Rassias stability of type

N with GHURS constant Ep(b−a)ηeEpL f
(b,a). �

Corollary 3.2. Assume (C1)–(C3). If EpL f (b−a)< 1, then NDE (1.1) has Hyers–

Ulam stability with HUS constant Ep(b−a)ηeEpL f
(b,a).

Proof. In the proof of Theorem 3.1, if we take φ(t)≡ 1, then we obtain

|y(t)− x(t)| ≤ Ep(b−a)ηeEpL f
(b,a)ε for all t ∈ J.

Thus NDE (1.1) has Hyers–Ulam stability with HUS constant Ep(b−a)ηeEpL f
(b,a).

�

Corollary 3.3. Assume (C1)–(C3). If EpL f (b−a)< 1, then NDE (1.1) has gener-

alized Hyers–Ulam stability.

Proof. Using θ f (ε) = Ep(b − a)ηeEpL f
(b,a)ε, the result follows from Corollary

3.2. �

Now, as an application of Theorem 3.1, we shall discuss Hyers–Ulam–Rassias

stability of the adjoint equation to (1.1), namely

x∆(t)+q(t)x(t) = g(t,x(t)) for all t ∈ J
κ, (3.8)

where q ∈ R +(J,R) and g ∈ Crd(J×R,R).

Theorem 3.2. Consider the adjoint NDE (3.8). Assume that the following condi-

tions are satisfied.

(C4) Let g ∈ Crd(J×R,R) and q ∈ R +(J,R) be such that 1−µ(t)q(t) > 0 for

all t ∈ J.

(C5) There exists Lg > 0 such that
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|g(t,u)−g(t,v)| ≤ Lg(1−µ(t)q(t))|u− v| (3.9)

for all t ∈ J and u,v ∈ R.

(C6) There exists η > 0 such that for φ ∈ N (J,R+)∫ t

a
φ(s)∆s ≤ ηφ(t) for all t ∈ J. (3.10)

If EqLg(1−µ(t)q(t))(b−a) < 1, then the following assertions hold:

(i) The NDE (3.8) has a unique solution x ∈ C1
rd(J,R) satisfying the initial

condition x(a) = A for any initial value A ∈ R.

(ii) The NDE (3.8) has Hyers–Ulam–Rassias stability of type N with HURS

constant Eq(b−a)ηeEqLg
(b,a).

Proof. In view of the ‘simple useful formula’, putting xσ − µx∆ in place of x in

(3.8), we obtain
x∆(t)+q(t)(xσ(t)−µ(t)x∆(t)) = g(t,x(t)).

Rearranging the terms, we can write this equation as

x∆(t)+

(

q(t)

1−µ(t)q(t)

)

xσ(t) =
g(t,x(t))

1−µ(t)q(t)
.

This equation is in the form of (1.1) with p(t) := q(t)
1−µ(t)q(t) and f (t,x) := g(t,x)

1−µ(t)q(t) .

In view of conditions (C4) and (C5), it is not difficult to show that (C2) and (C3)

are verified. Hence, assertions (i) and (ii) follow from Theorem 3.1. �

Remark 3.1. Other Ulam stability results for NDE (3.8) can be derived by using

Theorem 3.2.

Another application of Theorem 3.1 concerns Hyers–Ulam–Rassias stability of

the NDE

x∆(t) = F(t,x(t)) for all t ∈ J
κ. (3.11)

Theorem 3.3. Consider the NDE (3.11). Assume that the following conditions are

satisfied.

(C7) Let F ∈ Crd(J×R,R) and q ∈ R +(J,R) be such that

1−µ(t)q(t) > |q(t)| for all t ∈ J.

(C8) There exists LF >
|q(t)|

1−µ(t)q(t)
such that

|F(t,u)−F(t,v)| ≤ (LF(1−µ(t)q(t))−|q(t)|)|u− v|

for all t ∈ J and u,v ∈ R, where q is as given in (C7).

(C9) There exists η > 0 such that for φ ∈ N (J,R+)∫ t

a
φ(s)∆s ≤ ηφ(t) for all t ∈ J. (3.12)

If (EqLF(1−µ(t)q(t))−|q(t)|)(b−a) < 1, then the following assertions hold:
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(i) The NDE (3.11) has a unique solution x ∈ C1
rd(J,R) satisfying the initial con-

dition x(a) = A for any initial value A ∈R.

(ii) The NDE (3.11) has Hyers–Ulam–Rassias stability of type N with HURS

constant Eq(b−a)ηeEqLF
(b,a).

Proof. Keeping in mind the ‘simple useful formula’ and rearranging the terms, we

rewrite (3.11) as

x∆(t)+

(

q(t)

1−µ(t)q(t)

)

xσ(t) =
q(t)x(t)+F(t,x(t))

1−µ(t)q(t)
for all t ∈ J

κ.

That is,
x∆(t)+ p(t)xσ(t) = f (t,x(t)) for all t ∈ J

κ,

where p(t) := q(t)
1−µ(t)q(t) and f (t,x) := q(t)x+F(t,x)

1−µ(t)q(t) . Now, it remains to verify the

condition (C2) in Theorem 3.1. From (C8), we have

|F(t,u)−F(t,v)|+ |q(t)||u− v| ≤ LF(1−µ(t)q(t))|u− v|

for all t ∈ J and u,v ∈ R. This gives

|F(t,u)−F(t,v)+q(t)(u− v)| ≤ LF(1−µ(t)q(t))|u− v|

for all t ∈ J and u,v ∈ R. Rearranging the terms, we can write
∣

∣

∣

∣

F(t,u)+q(t)u

1−µ(t)q(t)
−

F(t,v)+q(t)v

1−µ(t)q(t)

∣

∣

∣

∣

≤ LF |u− v|

for all t ∈ J and u,v ∈ R. That is,

| f (t,u)− f (t,v)| ≤ LF |u− v| for all t ∈ J and u,v ∈ R.

Hence, (C2) is verified. Now, we are able to apply Theorem 3.1 and obtain that

assertions (i) and (ii) follow from Theorem 3.1. �

Remark 3.2. Other Ulam stability results for NDE (3.11) can be derived by using

Theorem 3.3.

4. EXAMPLE

Let T= 2N0 and a = 2, b = 32. Then J := [a,b]∩T= {2,4,8,16,32}. Consider

the NDE

x∆(t)+ txσ(t) =
1

et(t,2)
+

(x2(t)+5)1/2

8
for all t ∈ J

κ (4.1)

with the initial condition x(2) = 2 and the inequality
∣

∣

∣

∣

∣

y∆(t)+ tyσ(t)−
1

et(t,2)
−

(y2(t)+5)1/2

8

∣

∣

∣

∣

∣

≤ εe 1
20
(t,2) for all t ∈ J

κ. (4.2)

Here f (t,x(t)) = 1
et(t,2)

+ (x2(t)+5)1/2

8
which satisfies (C2) with L f =

1
8
, and p = t,

µ(t) = t for all t ∈ T. Clearly, 1+µ(t)p(t) = 1+ t2 > 0. Thus p ∈ R +(J,R). Also,



ULAM STABILITY FOR FIRST-ORDER NONLINEAR DYNAMIC EQUATIONS 93

(⊖p)(t) =
−p(t)

1+µ(t)p(t)
=

−t

1+ t2
.

With these values, we obtain

e⊖p(t,s) = exp

(∫ t

s

1

µ(r)
ln(1+µ(r)⊖ p)∆r

)

= exp

(∫ t

s

1

r
ln

(

1+ r

(

−r

1+ r2

))

∆r

)

= exp

(∫ t

s

1

r
ln

(

1+
−r2

1+ r2

)

∆r

)

= exp

(∫ t

s

1

r
ln

(

1

1+ r2

)

∆r

)

= exp

(

t/2

∑
r=s

ln

(

1

1+ r2

)

)

=
t/2

∏
r=s

1

1+ r2
for s ≤ t and t ∈ J.

This leads to

Ep = sup
s,t∈J

∣

∣

∣

∣

∣

t/2

∏
r=s

1

1+ r2

∣

∣

∣

∣

∣

=
1

5
.

Further, we find that EpL f (b−a) = 1
5

1
8
(32−2) = 3

4
< 1. Thus, all the conditions in

Theorem 3.1 are satisfied. Therefore, (4.1) has a unique solution satisfying initial

condition x(2) = 2. Now, let y ∈ C1
rd(J,R) be a solution of (4.2). Then, by Remark

2.3, there exists ψ ∈ Crd(J,R) such that |ψ(t)| ≤ εe 1
20
(t,2) and

y∆(t)+ tyσ(t) =
1

ep(t,2)
+

(y2(t)+5)1/2

8
+ψ(t) for all t ∈ J

κ. (4.3)

By Lemma 2.2, we have

y(t) =(y(2)+ t −2)
t/2

∏
r=2

1

1+ r2
+

1

8

t/2

∑
s=2

(

t/2

∏
r=s

1

1+ r2

)

(y2(r)+5)1/2

+
t/2

∑
s=2

(

t/2

∏
r=s

1

1+ r2

)

ψ(s) for all t ∈ J.

(4.4)

From Theorem 3.1, we find that the dynamic problem

x∆(t)+ txσ(t) =
1

ep(t,2)
+

(x2(t)+5)1/2

8
; t ∈ J

κ,

x(2) = y(2)

has a unique solution. According to Lemma 2.2, this unique solution is given by
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x(t) = y(2)e⊖p(t,2)+
∫ t

2
e⊖p(t,s)

(

1

ep(s,2)
+

(x2(s)+5)1/2

8

)

∆s

= y(2)e⊖p(t,2)+
∫ t

2

(

e⊖p(t,2)+ e⊖p(t,s)
(x2(s)+5)1/2

8

)

∆s

= y(2)e⊖p(t,2)+ e⊖p(t,2)(t −2)+
1

8

∫ t

2
e⊖p(t,s)(x

2(s)+5)1/2∆s

= (y(2)+ t −2)e⊖p(t,2)+
1

8

∫ t

2
e⊖p(t,s)(x

2(s)+5)1/2∆s

= (y(2)+ t −2)
t/2

∏
r=2

1

1+ r2
+

1

8

t/2

∑
s=2

(

t/2

∏
r=s

1

1+ r2

)

(x2(r)+5)1/2.

That is,

x(t) =(y(2)+ t −2)
t/2

∏
r=2

1

1+ r2

+
1

8

t/2

∑
s=2

(

t/2

∏
r=s

1

1+ r2

)

(x2(r)+5)1/2 for all t ∈ J.

(4.5)

Now, from (4.4) and (4.5), we can write for t ∈ J,

|y(t)− x(t)| ≤
t/2

∑
s=2

(

t/2

∏
r=s

1

1+ r2

)

|ψ(s)|

≤
t/2

∑
s=2

(

t/2

∏
r=s

1

1+ r2

)

εe 1
20
(s,2)

≤ ε
1

5

t/2

∑
s=2

e 1
20
(s,2)

≤ ε
1

5
e 1

20
(32,2)30.

Thus, |y(t)− x(t)| ≤ 6εe 1
20
(32,2), t ∈ J, which yields that (4.1) has Hyers–Ulam–

Rassias stability of type N with HURS constant 6e 1
20
(32,2).
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