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ON THE LPA MODEL WITH µa = 1
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ABSTRACT. In this article we establish conditions for the local stability of the
positive fixed point for the structured population model of Dennis, Desharnais,
Cushing, and Costantino (or LPA model) where no adults survive longer than a
single time step and when there is a specific one-parameter bifurcation. Also,
we study local and global behavior of orbits for which at least one component is
equal to zero, and establish conditions for the existence of a curve contained in
the union of the coordinate planes which is invariant for the map associated with
the model.

1. INTRODUCTION

This article will focus on the behavior of the Larvae/Pupae/Adult (LPA) model,
which was first introduced by Dennis, Desharnais, Cushing, and Costantino [4] in
1995. The LPA model is a three-dimensional age-structured population model
which describes the interactions, in particular cannibalization, between the life
stages of the flour beetle Tribolium castaneum. The authors of [4] analyzed and
validated the LPA model through laboratory experiments, a feature that is highly
desirable for a population model. Indeed, [4] has been cited hundreds of times
and spurred further analysis of the model’s dynamical behavior over the past two
decades, see for example [3], [5], [6], and [8].

The flour beetle has four life stages- egg, larva, pupa, and adult. An individual
moves from one life stage to the next over a time span of roughly two weeks. Let
x1(t), x2(t), and x3(t) be the number of larvae, pupae, and adults at time step t ∈N.
The LPA model is given by

x1(t +1) = bx3(t)e−cel x1(t)−cea x3(t)

x2(t +1) = (1−µl)x1(t)

x3(t +1) = x2(t)e−cpa x3(t)+(1−µa)x3(t).

(1.1)
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with t ≥ 0 and (x1(0),x2(0),x3(0)) ∈ R3
+ := {(x1,x2,x3) : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}.

In equation (1.1), the parameter b represents the average number of viable eggs laid
by an adult over a two week time step. It is assumed that cannibalization occurs
as a result of random encounters of eggs with larvae and adults and of pupae with
adults, which is modeled by Poisson distributions with nonnegative search effici-
ency parameters cel , cea, and cpa, respectively. The nonnegative parameters µl and
µa correspond to the mortality rates of the larvae and adults, respectively. The egg
population is not explicitly measured since it is assumed that any surviving eggs
laid by adults during a time step will have hatched into larvae by the next time step.

In population models, the net reproduction number (or net reproductive rate) R is
the average number of female offspring that a single female has in her lifetime [7].
The critical value R = 1 is the bifurcation value at which the origin loses its sta-
bility, i.e. the threshold value between persistence or extinction of the populations.
For the LPA model, the net reproduction number is given by

R =
b(1−µl)

µa
. (1.2)

Next we present a synopsis, taken from [3], of some known facts about the dy-
namical behavior of system (1.1) (see [2] and [3]). All orbits defined by (1.3) are
nonnegative and bounded for t > 0. The map associated with system (1.1) is dis-
sipative. If the net reproduction number R is less than 1, then the zero equilibrium
(0,0,0) is locally asymptotically stable (LAS) and attracts all orbits in the non-
negative octant. As R increases above 1, a bifurcation occurs which results in the
instability of the zero equilibrium and the creation of a positive equilibrium. For
all R > 1 there exists one and only one positive equilibrium which may or may not
be stable. The system (1.1) is uniformly persistent with respect to the origin. Only
in some special cases is it known when the positive equilibrium is stable.

The case studied in this article is µa = 1, which was investigated in [3]. Biolog-
ically, setting µa = 1 assumes that no adults survive longer than a single time step.
In this case (1.2) gives b = R/(1−µl), and the parameter b may be replaced by the
parameter R with R > 0 [3]. The LPA model with µa = 1 is

x1(t +1) = R
1−µl

x3(t)e−cel x1(t)−cea x3(t)

x2(t +1) = (1−µl)x1(t)

x3(t +1) = x2(t)e−cpa x3(t)

(1.3)

Following [3], define a point (x1(0),x2(0),x3(0)) to be fully synchronous if exactly
two of the components are equal to zero, and partially synchronous if exactly one
of the components is equal to zero [3]. By direct inspection of (1.3) one can see
that if a point (x1(0),x2(0),x3(0)) is fully (partially) synchronous, then the entire
orbit {(x1(t),x2(t),x3(t))}t≥t0 is as well. Thus fully synchronous orbits are subsets
of the positive coordinate axes, and partially synchronous orbits are subsets of the
positive coordinate planes. See Fig. 1.
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(a) (b)

FIGURE 1. (a) A fully synchronous orbit of T is contained in the union
of the nonnegative semiaxes. (b) A partially synchronous orbit of T is
contained in the union of the coordinate quadrants.

It is stated in [3] that the bifurcation at R = 1 for the special case µa = 1 is
nongeneric and that an exchange of equilibrium stability does not occur: Theorem
1 in [3] states that the positive fixed point is unstable for all allowable parameter
values and R > 1 with R− 1 sufficiently small. However, the latter statement is
incorrect, as there is an elementary algebra error in the proof (for details see Section
2). In [3] it is shown that for R > 1 there exists a positive fully synchronous 3-cycle

{(q1,0,0),(0,q2,0),(0,0,q3)} (1.4)

with
q = (q1,q2,q3) :=

(
1

cea(1−µl)
ln(R), 1

cea
ln(R), 1

cea
ln(R)

)
. (1.5)

The parameter range 1 < R < e2 and (cpa −cea)(1−µl)+cel > 0 was discussed in
detail and it was shown that (1.4) globally attracts all synchronous orbits (Theorem
5 in [3]). Theorem 2 of [3] states that the dynamics of fully synchronous orbits
are governed by Ricker maps and that there is a period-doubling route to chaos
for nontrivial solutions on the positive coordinate axes. Also Theorem 7 in [3]
establishes for the case 1 < R < e2 and (cpa − cea)(1−µl)+ cel > 0 the existence
of an “invariant loop” of the LPA model (1.3) consisting of synchronous orbits. The
loop has the form of a “cycle chain” in that it is made up of the 3-cycle (1.4) and
invariant sets of synchronous orbits that heteroclinically connect the three phases
of the 3-cycle [3]. Furthermore, in the case (cpa−cea)(1−µl)+cel < 0 and letting
γ =− (cpa−cea)(1−µl)+cel

cea2(1−µl)
, the existence of a positive partially synchronous 3-cycle is

established. It is given by{(
ln(R)

cea(1−µl)
,0,γ ln(R)

)
,
(

γRcpa/cea ln(R)
(1−µl)

, ln(R)
cea

,0
)
,
(

0,γRcpa/cea ln(R), ln(R)
cea

)}
. (1.6)

The dynamical behavior of partially synchronous solutions and the local stability
of the partially synchronous 3-cycle (1.6) are left as open problems in [3]. The
dynamics of the system in the interior of the non-negative octant were not treated.
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(a) (b)

FIGURE 2. Example from [3] (Figure 1 in page 666). (a) The synchro-
nous cycle chain of the system (1.3) is shown for cel = cpa = cea = 0.1,
µl = 0.2, R = 1.6. (b) An orbit of Eq. (1.3) approaches the cycle chain
in (a) in an outwardly spiralling manner. The initial conditions are
x1(0) = x2(0) = x3(0) = 10.

The goals of this article are to: (i) give a complete description of the local sta-
bility character of the positive equilibrium of (1.3) as R increases above the critical
value R = 1, with R− 1 sufficiently small (discussed in Section 2), (ii) give a de-
scription of global dynamics of partially synchronous solutions of (1.3) (discussed
in Section 3), and (iii) determine properties of the “cycle chain” in Theorem 7
of [3] and expand the range of parameters for the existence of this set (discussed in
Section 4).

2. LOCAL STABILITY OF THE POSITIVE FIXED POINT

Theorem 1 in [3] addresses the local stability character of the positive equilib-
rium of the LPA model (1.3) for values of R that are larger than 1 with R−1 small.
However, Theorem 1 in [3] states incorrectly that the positive fixed point is unsta-
ble for all R > 1 with R−1 sufficiently small. There is an elementary algebra error
in the proof of the result, specifically in the formula for the expansion of |σ2(ε)|2
in page 660 of [3], where σ2(ε) represents a characteristic value associated with
the positive fixed point at R = 1+ ε such that σ2(0) is not a real number. The cor-
rect expansion is given by |σ2|2 = 1+ 1−µℓ

3 ∆ε+O(ε2), where ∆ is given by (2.2)
below. With this correction, this expansion could be used to prove the cases for
which ∆ ̸= 0 of the main result of this section (Theorem 2.1). In this section an
approach different than the one in [3] is used, with the benefit that both cases ∆ ̸= 0
and ∆ = 0 are treated effectively.

The map associated with the LPA model (1.3) is T : R3
+ → R3

+, where

T (x1,x2,x3) :=
(

Rx3 e−cel x1−cea x3

1−µl
,(1−µl)x1,x2 e−cpa x3

)
. (2.1)
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Theorem 2.1. For positive parameters cea, cpa, cel and µl with µl < 1 of the LPA
model (1.3), let

∆ := 1
2

(
−2cea + cpa +

cel

1−µl

)
. (2.2)

There exists ε > 0 such that if 1 < R < 1+ ε, then T at the positive fixed point
has one real characteristic value which belongs to (0,1), and a pair of complex
conjugate characteristic values with magnitude ρ, where

(i) ρ > 1 if ∆ > 0, or if ∆ = 0 and (2−
√

2)cpa ≤ cea < (2+
√

2)cpa, and
(ii) ρ < 1 in all cases not included in (i).

Thus the positive fixed point is unstable in case (i) and L.A.S. in case (ii).

Proof. The following equations are satisfied by fixed points of T :

Rx3 e−x3 cea−cel x1

1−µl
= x1 , x1 (1−µl) = x2 , x2 e−x3 cpa = x3. (2.3)

From (2.3) it follows that a nontrivial fixed point x must satisfy

x1 =
x3 ecpa x3

1−µl
, x2 = x3 ecpa x3 , R = ecea x3+cpa x3+

cel x3 ecpax3
1−µl . (2.4)

The third equation in (2.4) implies that R is an increasing function of x3 for x3 ≥ 0.
Thus R with R ≥ 1 and x3 with x3 ≥ 0 are in one-to-one (smooth) correspondence.
Motivated by this fact, define

R(α) := ecea α+cpa α+
cel αecpa α

1−µl , α ≥ 0, (2.5)

and

Tα(x1,x2,x3) :=
(

R(α)x3 e−cel x1−cea x3

1−µl
,(1−µl)x1,x2 e−cpa x3

)
, α ≥ 0. (2.6)

For each α > 0, the map Tα has a unique fixed point given by(
αecpa α

1−µl
,αecpa α,α

)
. (2.7)

A straightforward calculation (omitted) gives the characteristic polynomial of the
Jacobian matrix of Tα in (2.6) at the fixed point (2.7), namely

χα(t) := t3 +
α((1−µl)cpa+cel eαcpa )

1−µl
t2 +

α2 cel cpa eαcpa

1−µl
t +αcea −1. (2.8)

Thus χ0(t) = t3 −1, and the roots of χ0(t) are the cubic roots of unity: 1, 1
2(−1+√

3), and 1
2(−1−

√
3). Let λ0 be one of these values. Since λ0 has multiplicity one,

∂χα(t)
∂t

∣∣∣
t=λ0

̸= 0, and the Implicit Function Theorem applied to χα(λ) = 0 gives the

existence of a neighborhood J of 0 on which λ is a smooth function of α satisfying

λ(0) = λ0 and χα(λ(α)) = 0 for α ∈ J . (2.9)
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Derivative values λ(ℓ)(0), ℓ ≥ 1 can be obtained with implicit differentiation, in
particular,

λ
′(0) =−

∂χα(t)
∂α

∂χα(t)
∂t

∣∣∣∣∣
t=λ(0),α=0

=−
cel + cpa (1−µl)

3(1−µl)
− cea

3λ2
0
. (2.10)

Set ρ(α) := |λ(α)|2 = λ(α)λ(α) for α ∈ J . The product rule gives

ρ
(m)(0) =

m

∑
k=0

(
m
k

)
λ
(k)(0)λ(m−k)(0) , m = 0,1,2, . . . . (2.11)

By using relation (2.11), the order m Taylor expansion of ρ(·) about 0,

ρ(α) = ρ(0)+ρ
′(0)α+ · · ·+ ρ(m)(0)

m!
α

m +O(|α|m+1) (2.12)

may be written in terms of λ(ℓ)(0), ℓ= 0, . . . ,m. This is done next for the cases (A)
λ(0) = 1 and (B) λ(0) = 1

2(1±
√

3 i).

(A) If λ0 = 1, from (2.10) we get

λ
′(0) =−

∂χα(t)
∂α

∂χα(t)
∂t

∣∣∣∣∣
t=1

=−
cel +(1−µl)(cea + cpa)

3(1−µl)
. (2.13)

From λ(0) = 1, (2.11) and (2.13) we have

ρ
′(0) = λ

′(0)λ(0)+λ′(0)λ(0) =−2(cel+(1−µl)(cea+cpa))
3(1−µl)

. (2.14)

With ρ(0) = |λ(0)|2 = 1 and (2.14), expansion (2.12) with m = 1 takes the
form

ρ(α) = 1−
(

2(cel+(1−µl)(cea+cpa))
3(1−µl)

)
α+O(α2). (2.15)

Thus ρ(α)< 1 for α positive and close enough to 0. Since ρ(α) is the square
of the modulus of an eigenvalue of the Jacobian matrix of Tα at the positive
fixed point, one can see that the corresponding root λ(α) is inside the unit disk
of the complex plane for all positive α that are sufficiently small. Further, for
α sufficiently small, λ(α) is a real number, and λ(α) ∈ (0,1).

(B) If λ0 =
1
2(1±

√
3), calculations similar to those in case (i) give the following

expansion:

ρ(α) = 1+ 1
3

(
cel

1−µl
+ cpa −2cea

)
α+O(α2). (2.16)

If cel
1−µl

+ cpa −2cea = 0, then the Taylor expansion of ρ(α) is

ρ(α) = 1− 1
3 ((cea − (2−

√
2)cpa)(cea − (2+

√
2)cpa)) α

2 +O(α3). (2.17)
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If both cel
1−µl

+cpa−2cea = 0 and (cea−(2−
√

2)cpa)(cea−(2+
√

2)cpa) = 0, then

ρ(α) = 1− 1
6 βcpa

3
α

3 +O(α4), where β =

{
−11+8

√
2 if cea = (2+

√
2)cpa

−11−8
√

2 if cea = (2−
√

2)cpa
. (2.18)

Table 1 summarizes the formulas for this case.

Case Condition Taylor expansion of ρ(α) = |λ(α) |2 about α = 0
with λ(0) = 1

2

(
1+

√
3 i
)

or λ(0) = 1
2

(
1−

√
3 i
)

(a) cel
1−µl

+ cpa −2cea ̸= 0 1+ 1
3

(
cel

1−µl
+ cpa −2cea

)
α+O(α2)

(b)

cel
1−µl

+ cpa −2cea = 0,
cea ̸= (2+

√
2) cpa,

and cea ̸= (2−
√

2) cpa

1+ 1
3

(
−c2

ea +4cea cpa −2c2
pa
)

α2 +O(α3)

(c)

cel
1−µl

+ cpa −2cea = 0

and cea = (2+
√

2) cpa

1− 1
6 (−11+8

√
2) cpa

3 α3 +O(α4)

cel
1−µl

+ cpa −2cea = 0

and cea = (2−
√

2) cpa

1− 1
6 (−11−8

√
2) cpa

3 α3 +O(α4)

TABLE 1. Taylor expansions of ρ(α) for case ii.

One can see that the linear term of equation (2.16) and the quadratic term
of (2.17) are positive if and only if ∆ > 0 or ∆ = 0 and (2 −

√
2)cpa < cea <

(2+
√

2)cpa, and negative otherwise, whereas the cubic term of equation (2.18)
is always negative. Thus (i) and (ii) hold for all α sufficiently close to zero. For-
mula (2.5) gives R as an increasing function of α for α > 0 and R = 1 for α = 0, so
the conclusion follows for some value of ε > 0. □

The proof of Theorem 2.1 has the following corollary, which gives a geometric
interpretation to the relation ∆ = 0.

Corollary 2.1. Let λ be as in (2.9), with λ(0) ∈
{1

2(1−
√

3 i), 1
2(1+

√
3 i)

}
. Then

∆ = 0 if and only if the curve λ(·) is tangential to the unit circle at the contact point
λ(0).
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Proof. Since re(λ(0)) =−1
2 and 1/λ(0)2 =−λ(0), relation (2.10) gives

re
(

λ(0)λ′(0)
)
= re

(
λ(0)

(
−

cel + cpa (1−µl)

3(1−µl)
+

cea

3
λ(0)

))
=−1

2

(
−

cel + cpa (1−µl)

3(1−µl)

)
+

cea

3

=
−2cea (1−µl)+ cel + cpa (1−µl)

6(1−µl)

= 1
3 ∆. (2.19)

Thus ∆ = 0 is equivalent to the relation |λ(0)+λ′(0)|2 = |λ(0)|2 + |λ′(0)|2. The
statement follows from this, (2.10), and the relations |λ(0)|= 1 and λ′(0) ̸= 0. □

3. SYNCHRONOUS ORBITS

In this section we establish local and global dynamics of synchronous orbits of
(1.3). It is shown in [3] that for R ∈ (1,e2), there exists a unique fully synchronous
3-cycle for all allowable parameters, there exists a partially synchronous 3-cycle
for some parameter choices, and if the partially synchronous 3-cycle exists, it is
unique. We begin by reviewing some calculations from [3]. The identities satisfied
by period three points of the map T in (2.1) are

x1 = Rx1 exp
(
−cea(1−µl)x1e−cpax2e−cpax3

−x2 e−cpax3
(

cpa +bcel e−bcele−cel x1−ceax3−cea x2 e−cpax3
))

,

x2 = Rx2 exp
(
−cpa x3 − ceax2e−cpax3 −bcel x3 e−celx1−ceax3

)
,

x3 = Rx3 exp
(
−cel x1 − ceax3 − cpa(1−µl)x1 e−cpa x2 e−cpax3

)
.

(3.1)

To find synchronous 3-cycles, substitute x2 = 0 in system (3.1) to obtain

x1 = Rx1 e−cea (1−µl)x1 ,

x3 = Rx3 e−cel x1−cea x3−cpa (1−µl)x1 .
(3.2)

Solving (3.2) for x1 and x3 yields the following three non-trivial period 3 points:(
0,0, ln(R)

cea

)
,
(

ln(R)
cea(1−µl)

,0,0
)
, and

(
ln(R)

cea(1−µl)
,0,− (cpa−cea)(1−µl)+cel

cea2(1−µl)
ln(R)

)
. (3.3)

Neither of the first two points in (3.3) belong to a partially synchronous 3-cycle,
since each has more than one zero entry. With ∆ as in (2.2) and γ defined by

γ :=
−∆− cea

cea
2 =−

(cpa − cea)(1−µl)+ cel

cea
2(1−µl)

, (3.4)

the partially synchronous cycle of the third point in (3.3) is
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ln(R)

cea(1−µl)
,0,γ ln(R)

)
,
(

γRcpa/cea ln(R)
(1−µl)

, ln(R)
cea

,0
)
,
(

0,γRcpa/cea ln(R), ln(R)
cea

)}
. (3.5)

We will need the following lemma, which is probably a known result. For A ⊂Rk,
we denote with A◦ the interior of the set A.

Lemma 3.1. Let s = (s1,s2) ∈ (R2
+)

◦, o = (0,0) and U : [o,s]→ [o,s] be a map of
the form U(ξ1,ξ2) = (U1(ξ1),U2(ξ1,ξ2)). Assume

(i) U([o,s]◦)⊂ [o,s]◦.
(ii) U has an interior fixed point (ξ+1 ,ξ

+
2 ) which is locally asymptotically

stable (L.A.S.).
(iii) Un

1 (ξ1)→ ξ
+
1 whenever ξ1 ∈ (0,s1].

(iv) For every ξ2 ∈ (0,s2], Un(ξ+1 ,ξ2)→ (ξ+1 ,ξ
+
2 ).

(v) U is smooth on a neighborhood of (ξ+1 ,0), and (ξ+1 ,0) is a saddle point of
U with a local stable manifold that is a subset of the line through (0,0) and
(ξ+1 ,0).

Then (ξ+1 ,ξ
+
2 ) attracts every orbit with initial point in [o,s]◦.

Proof. Let (ξ1,ξ2) ∈ [o,s]◦ (so in particular ξ1 > 0), and set
(ξ1(n),ξ2(n)) := Un(ξ1,ξ2), n = 1,2, . . .. Note (ξ1(n),ξ2(n)) ∈ [o,s]◦ for n ≥ 0.
By (iii), ξ1(n) → ξ

+
1 as n → ∞. Hence the orbit of (ξ1,ξ2) under U has at least

one accumulation point (ξ+1 ,ξ
∗
2) on the line segment joining (ξ+1 ,0) to (ξ+1 ,s2). We

claim ξ∗2 can be chosen to be different from 0. Otherwise there do not exist accu-
mulation points (ξ+1 ,ξ

∗
2) that are not (ξ+1 ,0), in which case Un(ξ1,ξ2) → (ξ+1 ,0),

which is impossible by (i) and (v). Assume (ξ+1 ,ξ
∗
2) is an accumulation point of

the orbit of (ξ1,ξ2) with ξ∗2 ̸= 0. By (ii), there exists a neighborhood O of (ξ+1 ,ξ
+
2 )

such that O is a subset of the basin of (ξ+1 ,ξ
+
2 ). By (iv), there exists m > 0 such

that Um(ξ+1 ,ξ
∗
2) ∈ O. By continuity of Um, there exists a neighborhood V of

(ξ+1 ,ξ
∗
2) such that Um(V ) ⊂ O. Choose n0 so that Un(ξ1,ξ2) ∈ V . It follows

that Un0+m(ξ1,ξ2) ∈ O. Thus Un(ξ1,ξ2)→ (ξ+1 ,ξ
+
2 ) as n → ∞. □

The following result establishes parameter values for which a unique partially
synchronous 3-cycle exists as well as the local stability character and basin of
attraction for the fully- and the partially synchronous 3-cycles.

Theorem 3.1. The LPA model with µa = 1 and R > 1 satisfies the following condi-
tions:
(a) A partially synchronous 3-cycle exists if and only if ∆ <−cea, and if it exists it

is unique.
(b) If ∆ <−cea and R ∈ (1,e2), the characteristic values associated with the par-

tially synchronous 3-cycle are real, with two of them stable and the remaining
one unstable.

(c) If ∆ <−cea and R ∈ (1,e2), then the partially synchronous 3-cycle attracts all
nontrivial partially synchronous orbits.
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(d) If ∆ ≥ −cea and R ∈ (1,e2), then the fully synchronous 3-cycle attracts all
nontrivial synchronous orbits.

Proof. (a) Note that the condition ∆ <−cea is equivalent to γ > 0. Thus the state-
ment follows from this and (3.5).
(b) If y =

(
γRcpa/cea ln(R)

(1−µl)
, ln(R)

cea
,0
)

from (3.5), a calculation gives that the matrix

product DT (T 2(y)) ·DT (T (y)) ·DT (y) is triangular. Thus the eigenvalues associ-
ated with this product appear on the diagonal, and they are readily found to be

λ1 = 1− ceaγ ln(R), λ2 = 1− ln(R), and λ3 = R1−
γ(cpa(1−µl )+cel Rcpa/cea)

1−µl . (3.6)

Now
cea γ = − (cpa−cea)(1−µl)+cel

cea (1−µl)
= 1− cpa

cea
− cel

cea (1−µl)
< 1. (3.7)

From the formulas of λ1 and λ2, the inequality γ > 0, and from (3.7) we have

|λ1|< 1 and |λ2|< 1 for all R ∈
(

1,min
{

e2,e
2

γcea

})
= (1 , e2 ). (3.8)

To verify λ3 > 1 for R ∈ (1,e2), (3.6) can be used to write λ3 = RΛ(R) where

Λ(ρ) := 1− γ

1−µl

(
cpa (1−µl)+ cel ρ

cpa/cea
)

for ρ > 0. (3.9)

Thus it suffices to prove Λ(R) > 0 for 1 ≤ R ≤ e2. Now the derivative Λ′(ρ) =

− cel cpa γρ
(cpa−cea)/cea

cea (1−µℓ)
is negative for ρ> 0, so Λ(·) is a decreasing function. Therefore

the proof of (b) will be complete once we verify that Λ(e2) is positive. For this
purpose we introduce the auxiliary function φ(τ) := 2eτ + e2τ (τ− 1)− τ, τ ≥ 0.
Note the function φ(·) is positive for τ≥ 0, which can be deduced from the relations
φ(0) = 1, φ′(0) = 0, and the positive character of φ′′(τ) = 2eτ (1+2τeτ) for τ ≥ 0.
From the definition of φ and relation − γcel

1−µl
= γ2 cea

2 + γ(cpa − cea) from (3.4), the
following identity can be shown to be valid:

Λ(e2) =
(

1− γcea e
cpa
cea

)2
+ γcea φ

(
cpa
cea

)
. (3.10)

From (3.10) and the positive character of φ(·), we conclude Λ(e2)> 0. This com-
pletes the proof of (b).
(c) Each of the points in the 3-cycle (3.5) is a fixed point of T 3. Set K◦

{i, j} :=K{i, j}\(
K{i}∪K{ j}

)
. Since T 3(K{i, j})⊂ K{i, j} and T 3(K{i})⊂ K{i}, we have T 3(K◦

{i, j})⊂
K◦
{i, j}. Also, under the hypothesis, T 3 has a unique fixed point x{i, j} in K◦

{i, j}, which
is one of the points in (3.5). Therefore the statement to be proved is that every point
in K◦

{i, j} is attracted to x{i, j}. Consider the case {i, j}= {1,3}. We have,

T 3(x1,0,x3) =
(

Rx1 e−cea (1−µl)x1 ,0,Rx3 e−cel x1−cea x3−cpa (1−µl)x1
)
, (3.11)

and define U : R2
+ → R2

+ by
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U(ξ1,ξ2) =
(

Rξ1 e−cea (1−µl)ξ1 ,Rξ2 e−cel ξ1−cea ξ2−cpa (1−µl)ξ1
)
. (3.12)

From (3.5), the interior fixed point of U is (ξ̄1, ξ̄2) :=
(

ln(R)
cea(1−µl)

,γ ln(R)
)

. The
components of U = (U1,U2) are bounded:

U1(ξ1,ξ2)≤ R
cea (1−µl)e and U2(ξ1,ξ2)≤ R

cea e for (ξ1,ξ2) ∈ R2
+. (3.13)

Set s :=
(

e
cea (1−µl)

, e
cea

)
. With o=(0,0) we have U

(
R2
+

)
⊂ [o,s] and U

((
R2
+

)◦)⊂
[o,s]◦. Therefore to obtain the desired conclusion, it is sufficient to verify that
the restriction of U to [o,s] satisfies the hypotheses of Lemma 3.1. Note that
U([o,s])]◦) ⊂ U [o,s]◦ since R ∈ (1,e2) by hypothesis. The Jacobian matrix of U
at the positive fixed point (ξ̄1, ξ̄2) is a lower triangular matrix, where the diagonal
entries are exactly the first λ1 and λ2 in (3.6), and thus by (3.8) (ξ̄1, ξ̄2) is L.A.S.
if 1 < R < e2. This gives condition (ii) of Lemma 3.1. Verification of condition
(v) is similar and we skip the details. Note that U1 as a function of ξ1 alone is
a Ricker map with a globally asymptotically stable positive fixed point, and thus
satisfies the hypothesis (iii) of Lemma 3.1 with ξ̄1 =

ln(R)
cea(1−µl)

. Similarly, U2(ξ̄1, ·)
is a Ricker map with a globally asymptotically stable fixed point, so hypothesis (iv)
is satisfied. Thus Lemma 3.1 and the relation U

((
R2
+

)◦)⊂ [o,s]◦ imply that every
point in K◦

{1,3} is attracted to x{1,3}. The proofs of the corresponding statements for
K{1,2} and K{2,3} are similar.
(d) From Theorem 2 in [3], a unique fully synchronous 3-cycle exists and attracts
all fully synchronous orbits for R ∈ (1,e2). Further, it is shown in Theorem 5
of [3] that the synchronous 3-cycle attracts all partially synchronous orbits if (cpa−
cea)(1−µl)+ cel > 0, which is equivalent to ∆ >−cea. It remains to show that all
partially synchronous orbits are attracted to the unique fully synchronous 3-cycle
when ∆ =−cea, but a proof of this statement proceeds in the same way as the proof
of (c), so we do not show it here. □

4. EXISTENCE OF AN INVARIANT CURVE

In this section we prove that if R > 1 is such that R−1 is sufficiently small, there
exists an invariant curve contained in the union of the coordinate planes. For fixed
but otherwise arbitrary positive constants cea, cel , cpa, µl with µl < 1, let

r :=
(

R
(1−µl)ceae ,

R
ceae ,

R
ceae

)
and

C := [o,r ] = {(x1,x2,x3) ∈ R3
+ : 0 ≤ xi ≤ ri}.

(4.1)

Proposition 4.1. The set C is invariant under T , and T 3(R3
+)⊂C.

Proof. If x ∈C, then using the fact that x3e−ceax3 ≤ 1/(ceae) for x3 ≥ 0, we have
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T1(x) = R
(1−µl)

x3 e−cea x3 e−cel x1 ≤ R
(1−µl)cea e ,

T2(x) = (1−µl)x1 ≤ R
cea e ,

T3(x) = x2 e−cpa x3 ≤ R
cea e ,

(4.2)

therefore T (x) ∈C and C is invariant. Consider the orbit of a point (x1(0),x2(0),
x3(0)) ∈ R3

+ under T . Since x3e−ceax3 ≤ 1
ceae for x3 ≥ 0, we have x1(t) ≤ R

(1−µl)ceae

for all t ≥ 1. Since x2(t +1) = (1−µl)x1(t), we conclude that x2(t) ≤ R
ceae for all

t ≥ 2 which in turn implies, since x3(t+1)= x2(t)e−cpax3(t) ≤ x2(t), that x3(t)≤ R
ceae

for all t ≥ 3. Thus every orbit enters [o,r] in at most three steps. □

For i ∈ {1,2,3}, we use the short-hand notation {xi = 0} to denote the set
{(x1,x2,x3) ∈ R3 : xi = 0}. The following proposition concerns the dynamics of
the restriction of T 3 to C∩{xi = 0}.

Proposition 4.2. Assume R > 1. For all R > 1 such that R−1 is sufficiently small,
and for each i ∈ {1,2,3}, there exists a smooth curve Ci ⊂C∩{xi = 0} that joins
all the nontrivial fixed points of T 3 in C∩{xi = 0} and is is invariant under T 3.
Furthermore, there is a smooth parametrization of Ci such that at any point of Ci,
the velocity vector ν has a zero entry, a positive entry, and a negative entry in a
suitable order.

Proof. First note the restriction of T 3 to C∩{xi = 0} is a diffeomorphism of C∩
{xi = 0} onto its image. Indeed, a calculation gives for all (x,y,z) ∈C, and with H
a suitable function of (x,y,z) and the parameters,

detDT 3(x,y,z) = R3 (zcea −1)(ycea − ezcpa)
(

xcea (ul −1)+ eycpae−zcpa
)

eH > 0.

Thus T 3 is locally one-to-one on C∩{xi = 0}. Since T 3(x,y,z) = (0,0,0) implies
(x,y,z) = (0,0,0), by Lemma 2.3.4 in [1] T 3 is also one-to-one on C∩{xi = 0}.

We now set i = 1 for the rest of this proof (a proof for the cases i = 2 and i = 3
is almost identical, and we do not supply it here). A calculation (omitted) shows
(0,q2,0) is a saddle point of T 3, with DT 3(0,q2,0) having eigenvalue R > 1 and
associated eigenvector

v = (0,− ln(R)(cpa(1−µl)(1− ln(R))+ cel R),+cea(1−µl)(R+ ln(R)−1)) .

For R > 1 and R−1 sufficiently small sign(v) = (0,−,+). In this case there exists
a local (smooth) unstable manifold W u

loc ⊂ C ∩{x1 = 0} that is tangential to v at
(0,q2,0). The arc-length parametrization of W u

loc with initial point (0,q2,0) may
be assumed (without loss of generality) to be such that the tangent vector at any
point of W u

loc has the sign configuration (0,−,+). We claim a parametrization of
the global unstable manifold W u = ∪∞

ℓ=1(T
3)ℓ(W u

loc) has the same sign property.
First note (T 3)ℓ(W u

loc) ⊂ (T 3)ℓ+1(W u
loc). Arguing by induction, suppose ℓ > 0 is

such that E := (T 3)ℓ(W u
loc) has a smooth parametrization (0,y(σ),z(σ)), α ≤ σ ≤ β

with sign(v′) = sign(0,y′(σ),z′(σ)) = (0,−,+). The set T 3(E) is parametrized by
T 3(0,y(σ),z(σ)), and it satisfies E ⊂ T 3(E). Note
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d
dσ
(T 3(0,y(σ),z(σ)) = DT 3

x (0,y(σ),z(σ)) · (0,y′(σ),z′(σ)). (4.3)

With + and − and 0 denoting positive, negative and zero entries, and with +0 and
−0 denoting non-negative and non-positive entries, from (4.3) and the Appendix
we have

sign
( d

dσ
(T 3(0,y(σ),z(σ))

)
=

 + 0 0
+0 + −0
+0 0 +

 0
−
+

=

 0
−
+

 . (4.4)

This completes the proof of the claim. It follows from the claim, the definition of
global unstable manifold, and compactness of C∩{x1 = 0} that both endpoints of
W u are fixed points of T 3. If ∆ ≥ −cea, then by Theorem 3.1 there are only two
fixed points (0,q2,0) and (0,0,q3) in C∩{x1 = 0} and we are done; if ∆ < −cea,
then by Theorem 3.1 there is a third fixed point (0, p1, p2):=

(
0,γRcpa/cea ln(R), ln(R)

cea

)
in C∩{x1 = 0}. In this case each of (0,q2,0) and (0,0,q3) has an associated unsta-
ble manifold with the required monotonicity, which connect (0,q2,0) to (0, p1, p2)
and (0, p1, p2) to (0,0,q3), respectively. The union of these manifolds is the curve
C1, which in this case is precisely the stable manifold of T 3 at (0, p2, p3). □

The main result of this section is the following.

Theorem 4.1. For each R > 1 such that R− 1 is sufficiently small, there exists a
simple closed curve C in the union of the coordinate planes, which is invariant for
the map T and contains the points of every synchronous and fully synchronous 3-
cycle. Furthermore, the section of the curve in each coordinate plane has a smooth
parametrization such that at any point, the velocity vector ν has a zero entry, a
positive entry, and a negative entry in a suitable order.

Proof. Set C := C1∪C2∪C3, where Ci is the curve in {xi = 0} given by Proposition
4.2. We claim T (C1) = C2, T (C2) = C3 and T (C3) = C1. To prove T (C1) = C2,
note first that T maps C∩{x1 = 0} into C∩{x2 = 0}, and T maps fixed points of
T 3 to fixed points of T 3. Also if w = T (v) with v ∈ C1, then

lim
n→∞

(T 3)−n(w) = lim
n→∞

(T 3)−n(T v)

= T ( lim
n→∞

(T 3)−n(v))

= T (q1,0,0)
= (0,q2,0),

(4.5)

which implies that w ∈ C2, by uniqueness of the unstable manifold. It follows that
T (C1)⊂ C2. Since T maps endpoints of C1 to endpoints of C2, T (C1) = C2 follows.
Similarly, T (C2) = C3 and T (C3) = C1. Therefore T (C ) = C . Note that any two
curves Ci, C j with i ̸= j have a single common point, which is a point of the 3-cycle
of T . The rest of the statement is a consequence of Proposition 4.2 and the fact that
points of a 3-cycle of T are fixed points of T 3. □



20 WILLIAM T. JAMIESON AND ORLANDO MERINO

5. LOCAL STABILITY CHARACTER OF THE POSITIVE EQUILIBRIUM:
GRAPHICAL EXAMPLES

In this section we present some tables and graphical depictions of numerical ex-
amples. Figures 3 and 4 are graphical depictions of the modulus of the eigenvalues
of the Jacobian of the map at the positive equilibrium point for various parameter
values, where the parameter R has been replaced by α and the map Tα is given in
the proof of Theorem 2.1 by equation (2.6). Figure 5 consists of plots of orbits
generated with parameter conditions outlined in Theorem 2.1.
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(c)
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FIGURE 3. Plot of the magnitude ρ of the characteristic values as a
function of α in Case (i) of Theorem 2.1. (a) ∆ > 0. (b) ∆ = 0 and
(2−

√
2)cpa < cea < (2+

√
2)cpa. (c) ∆ = 0 and cea = (2−

√
2)cpa.

For parameter values see Table 2.
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FIGURE 4. Plot of the magnitude ρ of the characteristic values as a
function of α in Case (ii) of Theorem 2.1. (a) ∆ < 0. (b) ∆ = 0 and
cea < (2−

√
2)cpa. (c) ∆ = 0 and (2+

√
2)cpa < cea. (d) ∆ = 0 and

cea = (2+
√

2)cpa. For parameter values see Table 2.
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Fig. 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) 4(d)
cea 1 1 2−

√
2 1 1 1 1

cpa 1 1 1 1 59
32

5
32 1+

√
2

2

cel 2 1
2

3
2 −

√
2 1

4
5

64
7
8

7
8

µl
1
2

1
2

1
2

1
2

1
2

31
59 −3

4 +
7
√

2
8

TABLE 2. Parameter values of Figs. 3 and 4.

x3

x2 x1

(a)

x3

x2 x1

(b)

x3

x2 x1

(c) (d)

FIGURE 5. Numerical examples of the dynamical behavior of the LPA
map. (a) ∆<−cea. The orbit with initial condition (x1(0),x2(0),x3(0))
= (0.6,0.01,0.01) is attracted to the positive equilibrium point.
(b) −cea <∆< 0. The orbit with initial condition (x1(0),x2(0),x3(0)) =
(0.6,0.01,0.01) is attracted to the positive equilibrium point.
(c) ∆ > 0. The orbit with initial condition (x1(0),x2(0),x3(0)) =
(0.244281,0.12214,0.09) is attracted to the heteroclinic orbit cycle
which forms the boundary of the carrying simplex Σα.
(d) Parameter values used in (a), (b) and (c).
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6. CONCLUSIONS

The LPA model with µa = 1 was studied in this work. For values of the pa-
rameter R that are larger than 1 but close enough to 1, the local stability character
of the positive equilibrium was completely characterized in Theorem 2.1. Global
dynamics on the boundary of the non-negative octant were also determined in The-
orem 3.1 whenever 1 < R < e2. Finally Theorem 4.1 guarantees the existence of
an invariant curve contained in the union of the coordinate planes that appears as R
increases above the critical value 1. The work remaining in the analysis of the LPA
model with µa = 1 includes mainly the study of global dynamics in the interior of
the nonnegative cone when a positive equilibrium exists. This will be treated in the
upcoming article [9].
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7. APPENDIX: SIGNS OF THE ENTRIES OF DT 3 AT (0,y,z)

Claim: With C as in Proposition 4.1, if (0,y,z) ∈ C∩{x1 = 0}, then sign(J) =(
+ 0 0
+0 + −0
+0 0 +

)
.

Proof. Write J := DT 3(0,y,z) = (J[1]|J[2]|J[3]), where J[i] is the i-th column of J. A
calculation gives the following formulas:



ON THE LPA MODEL WITH µa = 1 23

J[1] =



Rexp

ye−zcpa

Rcel exp
(

Rzcele
−zcea

ul−1 −yceae−zcpa

)
ul−1 − cpa


R2yzc2

el exp
(
−z

(
Rcele

−zcea
1−ul

+cpa

)
−(ce a(ye−zcpa+z))

)
1−ul

Rze−zcea

(
cpa (ul −1)eycpa(−e−zcpa)− cel

)


,

J[2] =


0

R(ezcpa − ycea)exp
(

Rzcele−zcea

ul−1 + ycea (−e−zcpa)−2zcpa

)
0

 ,

J[3] =


0

−Ry(Rcel(zcea−1)ezcpa+cpa(ul−1)ezcea (ezcpa−ycea))exp(H)

ul−1

e−zcea (R−Rzcea)

 ,

where

H :=
(

Rzcele−zcea

ul −1
−
(
cea

(
ye−zcpa + z

))
−2zcpa

)
.

The statement follows from Proposition 4.1 and direct inspection of the columns
of J given above. □
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