\textbf{I}_2\text{-ASYMPTOTICALLY LACUNARY STATISTICAL EQUIVALENCE OF WEIGHT } g \text{ OF DOUBLE SEQUENCES OF SETS}

\textsc{"Omer Kisi}

\textsc{Abstract.} In this paper, our aim is to introduce new notions, namely, Wijsman asymptotically \textit{I}_2\text{-statistical equivalence of weight } g, \text{ Wijsman strongly asymptotically } \mathcal{I}_2\text{-lacunary equivalence of weight } g \text{ and Wijsman asymptotically } \mathcal{I}_2\text{-lacunary statistical equivalence of weight } g \text{ of double set sequences. We mainly investigate their relationship and also make some observations about these classes.}

1. Introduction

Theory of statistical convergence was firstly originated by Fast [6]. This concept was extended to the double sequences by Mursaleen and Edely [14]. Lacunary statistical convergence was defined by Fridy and Orhan [7]. Çakan and Altay [3] presented multidimensional analogues of the results presented by Fridy and Orhan [7].

The idea of \textit{I}-convergence was introduced by Kostyrko et al. [11] as a generalization of statistical convergence which is based on the structure of the ideal \textit{I} of subset of the set of natural numbers. Recently, Das et al. [5] introduced new notions, namely \textit{I}-statistical convergence and \textit{I}-lacunary statistical convergence by using ideal. The notion of lacunary ideal convergence of real sequences was introduced in [23].

Das, Koystrko, Wilczynski and Malik [4] introduced the concept of \textit{I}-convergence of double sequences in a metric space and studied some properties of this convergence. Belen et al. [2] introduced the notion of ideal statistical convergence of double sequences, which is a new generalization of the notions of statistical convergence and usual convergence. Kumar et al. [12] introduced \textit{I}-lacunary statistical convergence of double sequences.

Nuray and Rhoades [15] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [24] defined the Wijsman lacunary statistical convergence of sequence

\textit{2010 Mathematics Subject Classification.} 34C41, 40A05, 40A35.

\textit{Key words and phrases.} Asymptotic equivalence; Sequences of sets; \textit{I}_2\text{-convergence.}
of sets and considered its relation with Wijsman statistical convergence. Kişi and Nuray [8] introduced a new convergence notion, for sequences of sets, which is called Wijsman I-convergence by using ideal. Recently, Ulusu and Dündar [26] studied the concepts of Wijsman I-statistical convergence, Wijsman I-lacunary statistical convergence and Wijsman strongly I-lacunary convergence of sequences of sets.

Nuray et al. [16] studied Wijsman statistical convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy double sequences of sets and investigate the relationship between them. Kişi [10] introduced the concepts of the Wijsman I_2-statistical convergence, Wijsman I_2-lacunary statistical convergence and Wijsman strongly I_2-lacunary convergence of double sequences of sets and investigate the relationship between them.

Asymptotic equivalence of sequences was introduced by Pobyvanets [18]; Marouf’s work [13] was extension of Pobyvanets’s work. In 2003, Patterson [19] extended these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices.

In [17] asymptotically lacunary statistical equivalent which is a natural combination of the definitions for asymptotically equivalent, statistical convergence and lacunary sequences was studied. Also in [20], I-asymptotically statistical equivalent and I-asymptotically lacunary statistical equivalent sequences were examined.

The concept of asymptotically equivalence of sequences of real numbers which is defined by Marouf [13] has been extended by Ulusu and Nuray [25] to concept of Wijsman asymptotically equivalence of set sequences. In addition to these definitions, natural inclusion theorems are presented. Kişi et al. [9] introduced the concept of Wijsman I-asymptotically equivalence of sequences of sets.

Now, we recall the basic definitions and concepts.

The upper density of weight g was defined in [1] by the formula
\[d_g^*(A) = \lim_{n \to \infty} \sup_{1 \leq k \leq n} \frac{A(1,n)}{g(n)} \]
for $A \subseteq \mathbb{N}$ where as before $A(1,n)$ denotes the cardinality of the set $A \cap [1,n]$. Then, the family
\[I_g = \{ A \subseteq \mathbb{N} : d_g^*(A) = 0 \} \]
forms an ideal. It has been observed in [1] that $\mathbb{N} \in I_g$ if and only if $\frac{n}{g(n)} \to 0$ as $n \to \infty$. So we additionally assume that $\frac{n}{g(n)} \to 0$ as $n \to \infty$ so that $\mathbb{N} \notin I_g$ and I_g is a proper admissible ideal of \mathbb{N}. The collection of all such weight functions g satisfying the above properties will be denoted by G. As a natural consequence we can introduce the following definition.
Definition 1.1. ([1]) A sequence \(\{x_n\} \) of real numbers is said to be statistically convergent to \(x \) if for any given \(\varepsilon > 0 \), \(\hat{d}_g(A_{\varepsilon}) = 0 \), where \(A_{\varepsilon} \) is the set defined in Definition 1.3.

Savaş [21] introduced new notions, namely, \(I \)-statistical double convergence of weight \(g \) and \(I \)-lacunary double statistical convergence of weight \(g \) and investigated their relationship and also make some observations about these classes.

A double sequence \(x = (x_{k,l}) \) has a Pringsheim limit \(L \) (denoted by \(P - \lim x = L \)) provided that given an \(\varepsilon > 0 \), there exists a \(n \in \mathbb{N} \) such that \(|x_{k,l} - L| < \varepsilon \), whenever \(k, l > n \). We describe such an \(x = (x_{k,l}) \) more briefly as "P-convergent".

The double sequence \(\{A_{k,l}\} \) is Wijsman convergent to \(A \), if for each \(x \in X \),

\[
\lim_{k,l \to \infty} d(x, A_{k,l}) = d(x, A) \text{ or } \lim_{k,l \to \infty} d(x, A_{k,l}) = d(x, A).
\]

In this case we write \(W_2 - \lim A_{k,l} = A \).

We define \(d(x; A_{k,j}, B_{k,j}) \) as follows:

\[
d(x; A_{k,j}, B_{k,j}) = \begin{cases} d(x, A_{k,j}) & \text{if } x \notin A_{k,j} \cup B_{k,j} \\ L & \text{if } x \in A_{k,j} \cup B_{k,j} \end{cases}
\]

The double sequences \(\{A_{k,j}\} \) and \(\{B_{k,j}\} \) are Wijsman asymptotically equivalent of multiple \(L \) if every \(\varepsilon > 0 \), for each \(x \in X \), \(\lim_{k,j \to \infty} d(x; A_{k,j}, B_{k,j}) = L \).

The double sequences \(\{A_{k,j}\} \) and \(\{B_{k,j}\} \) are said to be asymptotically statistical equivalent of multiple \(L \) if every \(\varepsilon > 0 \), for each \(x \in X \),

\[
\lim_{m,n \to \infty} \frac{1}{mn} \left| \left\{ k \leq m, j \leq n : |d(x; A_{k,j}, B_{k,j}) - L| \geq \varepsilon \right\} \right| = 0.
\]

Throughout the paper, we shall denoted by \(\mathcal{I}_2 \) be an admissible ideal of \(\mathbb{N} \times \mathbb{N} \).

A double sequence \(\bar{\theta} = \theta_{ru} = \{(k_r, j_u)\} \) is called double lacunary sequence if there exist two increasing sequences of integers \((k_r) \) and \((j_u) \) such that

\[
k_0 = 0, \ h_r = k_r - k_{r-1} \to \infty \text{ as } r \to \infty
\]

\[
j_0 = 0, \ h_u = j_u - j_{u-1} \to \infty, \text{ as } u \to \infty.
\]

We will use the following notation \(k_{ru} := k_r j_u, \ h_{ru} := h_r \bar{u} \) and \(\theta_{ur} \) is determined by

\[
I_{ur} := \{(k, j) : k_{r-1} < k \leq k_r \text{ and } j_{u-1} < j \leq j_u\},
\]

\[
q_r := \frac{k_r}{k_{r-1}}, \ q_u := \frac{j_u}{j_{u-1}} \text{ and } q_{ru} := q_r q_u.
\]
Throughout the paper, by $\theta_2 = \theta_{ru} = \{(k_r, j_u)\}$ we will denote a double lacunary sequence of positive real numbers, respectively, unless otherwise stated.

Let θ_{ru} be a double lacunary sequence and $\mathcal{I}_2 \subseteq \mathcal{P}(\mathbb{N} \times \mathbb{N})$ be a non-trivial ideal.

Definition 1.2. ([27]) The double sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are Wijsman asymptotically \mathcal{I}_2-equivalent of multiple L if for every $\varepsilon > 0$, for each $x \in X$,

$$\{(k, j) \in \mathbb{N} \times \mathbb{N}: |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon\} \in \mathcal{I}_2.$$

In this case, we write $A_{kj} \overset{(\mathcal{I}_2^L)}{\sim} B_{kj}$ and simply Wijsman asymptotically \mathcal{I}_2-equivalent if $L = 1$.

2. Main Results

Asymptotically \mathcal{I}_2-lacunary statistical equivalence of double sequences of sets was studied by Ulusu and Dündar [27]. It is natural question that whether this concept will be work for Wijsman asymptotically \mathcal{I}_2-lacunary statistical equivalence of weight g. In this paper, we gave some answers of this question and also we prove that Wijsman asymptotically \mathcal{I}_2-lacunary statistical equivalence a better tool than Wijsman asymptotically lacunary statistical equivalence.

In this section, we define the concepts of Wijsman asymptotically \mathcal{I}_2-statistical equivalence of weight g, Wijsman strongly asymptotically \mathcal{I}_2-lacunary equivalence of weight g and Wijsman asymptotically \mathcal{I}_2-lacunary statistical equivalence of weight g of double sequences of sets and investigate the relationship between them.

Definition 2.1. The double sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are Wijsman asymptotically \mathcal{I}_2-statistical equivalent of weight g of multiple L if for every $\varepsilon > 0$, $\delta > 0$ and for each $x \in X$,

$$\left\{ \left(m, n \right) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(mn)} \left\{ k \leq m, j \leq n : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\} \geq \delta \right\} \in \mathcal{I}_2.$$

In this case, we write $A_{kj} \overset{S(\mathcal{I}_2^L)}{\sim} B_{kj}$ and simply Wijsman asymptotically \mathcal{I}_2-statistical equivalent of weight g equivalent if $L = 1$. The set of Wijsman asymptotically \mathcal{I}_2-statistical equivalent double sequences of weight g will be denoted $\{S(\mathcal{I}_2^L)^g\}$.

For $\mathcal{I}_2 = \mathcal{I}_2^I$, Wijsman asymptotically \mathcal{I}_2-statistical equivalence of weight g of multiple L coincides with Wijsman asymptotically statistical equivalence of multiple L.

As an example, consider the following double sequences;
\[A_{kj} = \begin{cases} \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 + 2kgy = 0 \}, & \text{if } k \text{ and } j \text{ are a square integer} \\ \{ 1, 1 \}, & \text{otherwise}, \end{cases} \]

and

\[B_{kj} = \begin{cases} \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 - 2kgy = 0 \}, & \text{if } k \text{ and } j \text{ are a square integer} \\ \{ 1, 1 \}, & \text{otherwise}. \end{cases} \]

If we take \(I_2 = I_2^f \), since

\[\left\{ (m, n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(mn)} \left| \{ (k, j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \} \right| \geq \delta \right\} \in I_2^f, \]

then the double sequences \(\{ A_{kj} \} \) and \(\{ B_{kj} \} \) are Wijsman asymptotically \(I_2 \)-statistical equivalent.

Definition 2.2. Let \(\theta_2 = \{ \theta_{ru} \} \) be a double lacunary sequence. The double sequences \(\{ A_{kj} \} \) and \(\{ B_{kj} \} \) are Wijsman asymptotically \(I_2 \)-lacunary statistical equivalent of weight \(g \) of multiple \(L \) if for \(\varepsilon > 0, \delta > 0 \) and for each \(x \in X \),

\[\left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(h_r h_u)} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \} \right\} \in I_2. \]

In this case, we write \(A_{kj} \sim_{\theta_2 (I_2^f)^g} B_{kj} \) and simply Wijsman \(I_2 \)-asymptotically lacunary statistical equivalent of weight \(g \) if \(L = 1 \). The set of Wijsman asymptotically \(I_2 \)-lacunary statistical equivalent double sequences of weight \(g \) will be denoted \(\{ S_{\theta} (I_2^f)^g \} \).

For \(I_2 = I_2^f \), Wijsman \(I_2 \)-asymptotically lacunary statistical equivalence of weight \(g \) of multiple \(L \) coincides with Wijsman asymptotically lacunary statistical equivalence of weight \(g \) of multiple \(L \).

Definition 2.3. Let \(\theta_2 = \{ \theta_{ru} \} \) be a double lacunary sequence. The double sequences \(\{ A_{kj} \} \) and \(\{ B_{kj} \} \) are Wijsman strongly asymptotically \(I_2 \)-lacunary equivalent of weight \(g \) of multiple \(L \) provided that for every \(\varepsilon > 0 \), for each \(x \in X \),

\[\left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(h_r h_u)} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\} \in I_2. \]

In this case, we write \(A_{kj} \sim_{\theta_2 (I_2^f)^g} B_{kj} \) and simply Wijsman strongly \(I_2 \)-asymptotically lacunary equivalent of weight \(g \) if \(L = 1 \).

Theorem 2.4. Let \(\theta_2 \) be a lacunary sequence. Then,

\[A_{kj} \sim_{\theta_2 (I_2^f)^g} B_{kj} \Rightarrow A_{kj} \sim_{\theta_2 (I_2^f)^g} B_{kj}, \]
and $A_{kj}^{\sim_{L_2}^{I_{L}^{W,2}}} B_{kj}$ is proper subset of $A_{kj}^{\sim_{L_2}^{I_{L}^{W,2}}} B_{kj}$.

Proof. Suppose that $\{A_{kj}\}$ and $\{B_{kj}\}$ are Wijsman strongly asymptotically I_2-lacunary equivalent of weight g of multiple L. Given $\varepsilon > 0$ and for each $x \in X$ we can write

$$
\sum_{(k,j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \geq \sum_{(k,j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| - \varepsilon
$$

and so we get

$$
\frac{1}{g(h_r h_u)} \sum_{(k,j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \cdot |\{(k, j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon\}|.
$$

Hence, for each $x \in X$ and for any $\delta > 0$, we have

$$
\left\{(r, u) \in N \times N : \frac{1}{g(h_r h_u)} |\{(k, j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon\}| \geq \delta\right\}
$$

$$
\subseteq \left\{(r, u) \in N \times N : \frac{1}{g(h_r h_u)} \sum_{(k,j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \delta\right\} \in I_2.
$$

Hence we have $A_{kj}^{\sim_{L_2}^{I_{L}^{W,2}}} B_{kj}$.

Now, let $\{A_{kj}\}$ be defined as follows:

$$
A_{kj} := \begin{pmatrix}
\{1\} & \{2\} & \{3\} & \ldots & \{\sqrt{h_r h_u}\} & \{0\} & \ldots \\
\{2\} & \{2\} & \{3\} & \ldots & \{\sqrt{h_r h_u}\} & \{0\} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
\{2\} & \{\sqrt{h_r h_u}\} & \ldots & \ldots & \{\sqrt{h_r h_u}\} & \{0\} & \ldots \\
\{0\} & \{0\} & \{0\} & \ldots & \{0\} & \{0\} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\
\end{pmatrix}.
$$

For any $\varepsilon > 0,$

$$
\frac{1}{g(h_r h_u)} |\{(k, j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon\}| \leq \frac{\sqrt{h_r h_u}}{g(h_r h_u)}
$$

and consequently for any $\delta > 0$, we get
\[
\left\{(r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(h_r h_u)} |\{(k, j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - 0| \geq \varepsilon\}| \geq \delta \right\}
\leq \left\{(r, u) \in \mathbb{N} \times \mathbb{N} : \frac{\sqrt[r]{n_{ru}}}{g(h_r h_u)} \geq \delta \right\}.
\]

Note that the set on the right hand side is a finite set and so is a member of \(I_2\). Thus \(A_{kj} \sim_{\mathbb{S}_b(I_{W_2})} B_{kj}\) for \(L = 0\). Again observe that
\[
\frac{1}{g(h_r h_u)} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - 0| = \frac{1}{g(h_r h_u)} \frac{\sqrt[r]{n_{ru}} \left(\frac{\sqrt[r]{n_{ru}}}{2g(h_r h_u)} + 1\right)}{2}.
\]

Hence
\[
\left\{(r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(h_r h_u)} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - 0| \geq \frac{1}{4} \right\}
= \left\{(r, u) \in \mathbb{N} \times \mathbb{N} : \frac{\sqrt[r]{n_{ru}} \left(\frac{\sqrt[r]{n_{ru}}}{2g(h_r h_u)} + 1\right)}{2g(h_r h_u)} \geq \frac{1}{2} \right\}
\]
which evidently belongs to \(F(I)\) as \(I\) is admissible. Therefore \(A_{kj} \sim_{\mathbb{S}_b(I_{W_2})} B_{kj}\) for \(L = 0\). \(\square\)

Theorem 2.5. Let \(\theta_2\) be a double lacunary sequence and \(d(x, A_{kj}) \mathcal{O}(d(x, B_{kj}))\). Then,
\[
A_{kj} \sim_{\mathbb{S}_b(I_{W_2})} B_{kj} \Rightarrow A_{kj} \sim_{\mathbb{S}_b(I_{W_2})} B_{kj}.
\]

Proof. Suppose that \(\{A_{kj}\}\) and \(\{B_{kj}\}\) are Wijsman asymptotically \(I_2\)-lacunary statistical equivalent of weight \(g\) of multiple \(L\) and \(d(x, A_{kj}) \mathcal{O}(d(x, B_{kj}))\). Then there is a \(M > 0\) such that
\[
|d(x; A_{kj}, B_{kj}) - L| \leq M
\]
for each \(x \in X\) and all \(k, j \in \mathbb{N}\). Given \(\varepsilon > 0\), for each \(x \in X\) we get
\[
\frac{1}{g(h_r h_u)} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| =
\]
\[
= \frac{1}{g(h_r h_u)} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L|
\]
\[
\geq \frac{1}{2}
\]
\[
+ \frac{1}{g(h_r h_u)} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L|
\]
\[
\leq \frac{M}{g(h_r h_u)} \left|\left\{(k, j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \frac{\varepsilon}{2}\right\}\right| + \frac{\varepsilon}{2}.
\]
Hence, for each \(x \in X \) we have
\[
\left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(h_r h_u)} \sum_{(k,j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\}
\subseteq \left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(h_r h_u)} \left\{ (k,j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \frac{\varepsilon}{2} \right\} \geq \frac{\varepsilon}{2M} \right\} \in \mathcal{I}_2.
\]

Therefore, \(A_{kj} S_{\theta_2} B_{kj} \). This completes the proof. \(\Box \)

Theorem 2.6. For any double lacunary sequence \(\theta_2 \), Wijsman asymptotically \(\mathcal{I}_2 \)-statistical equivalence of weight \(g \) implies Wijsman asymptotically \(\mathcal{I}_2 \)-lacunary statistical equivalence of weight \(g \) if
\[
\liminf_{r} \frac{g(h_r h_u)}{g(k_r u)} > 1.
\]

Proof. Since \(\liminf_{r} \frac{g(h_r h_u)}{g(k_r u)} > 1 \), so we can find a \(H > 1 \) such that for sufficiently large \(r, u \) we have \(\frac{g(h_r h_u)}{g(k_r u)} \geq H \).

Since \(A_{kj} S_{\theta_2} B_{kj} \), for every \(\varepsilon > 0 \) and sufficiently large \(r, u \) we have
\[
\frac{1}{g(k_r u)} \left\{ (k \leq k_r, j \leq j_u : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\}
\geq \frac{1}{g(k_r u)} \left\{ (k,j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\}
\geq H \frac{1}{g(h_r h_u)} \left\{ (k,j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\}.
\]

Then, for any \(\delta > 0 \), we get
\[
\left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(h_r h_u)} \left\{ (k,j) \in I_{ru} : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\} \geq \delta \right\}
\subseteq \left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{g(k_r u)} \left\{ k \leq k_r, j \leq j_u : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \right\} \geq H \delta \right\} \in \mathcal{I}_2.
\]

This shows that \(A_{kj} S_{\theta_2} B_{kj} \). \(\Box \)

It is known that double lacunary statistical convergence implies double statistical convergence if and only if \(\lim_{rs} \sup q_{rs} < \infty \) (see \([22]\)). However for arbitrary admissible ideal \(\mathcal{I}_2 \), this is not clear and we leave it as an open problem.

When Wijsman asymptotically \(\mathcal{I}_2 \)-lacunary statistical equivalence of weight \(g \) implies Wijsman asymptotically \(\mathcal{I}_2 \)-statistical equivalence of weight \(g \)?

References

(Received: July 27, 2018)
(Revised: July 07, 2019)

Ömer Kışi
Bartin University
Department of Mathematics
74000, Bartin, Turkey
okisi@bartin.edu.tr