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COINCIDENCE AND COMMON FIXED POINTS OF
WEAKLY RECIPROCALLY CONTINUOUS AND
COMPATIBLE HYBRID MAPPINGS VIA AN IMPLICIT
RELATION AND AN APPLICATION

S. CHAUHAN, M. IMDAD, Z. KADELBURG AND C. VETRO

ABSTRACT. Using the hybrid version of the notion of weakly reciprocally
continuous pairs of mappings due to Gairola et al. [Coincidence and
fixed point for weakly reciprocally continuous single-valued and multi-
valued maps, Demonstratio Math. (2013/2014), accepted], we prove
a coincidence and common fixed point theorem for a hybrid pair of
compatible mappings via an implicit relation. Our main result improves
and generalizes a host of previously known theorems. As an application,
we give a homotopy theorem which supports our main result.

1. INTRODUCTION AND PRELIMINARIES

The celebrated Banach Contraction Principle is one of the most fruitful
results in nonlinear functional analysis. In 1969, Nadler [11] proved a multi-
valued version of the Banach Contraction Principle which is also known as
the Nadler Multi-valued Contraction Principle. It has various applications
within and beyond mathematics (see, for instance, [2,22]). It provides tech-
niques for solving functional inclusions and optimization problems (see [4]).
Hybrid fixed point theory for nonlinear single-valued and multi-valued map-
pings is a development within the multivalued fixed point theory which has
already made considerable progress. In recent years, there has been vigorous
and intense research activity in multi-mapping fixed point theory (including
hybrid fixed point results) and by now there exists an extensive literature
on this specific theme. Here, it can be specifically pointed out that hybrid
fixed theorems have numerous applications in science and engineering.
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In the following lines, we present some definitions and their implications
which will be utilized throughout this paper.

Let (X, d) be a metric space. Then, in the line with Nadler [11], we adopt
the following:

(1) CL(X) ={A: A is a non-empty closed subset of X},
(2) CB(X) ={A: Ais a non-empty closed and bounded subset of X},
(3) For non-empty closed and bounded subsets A, B of X and z € X,

d(z,A) = inf{d(z,a) : a € A} and

H(A, B) = max {sup{d(a, B) : a € A},sup{d(b,A) : b € B}}.

It is well known that C'B(X) is a metric space with the distance H which is
known as the Hausdorff-Pompeiu metric on CB(X). The following termi-
nology is also standard.
Let (X, d) be a metric space with f : X — X and T': X — CB(X). Then
(1) apoint x € X is a fixed point of f (resp. T') if x = fx (resp. x € Tz).
The set of all fixed points of f (resp. T') is denoted by F(f) (resp.
F(T)),
(2) a point x € X is a coincidence point of f and T if fx € Tx. The set
of all coincidence points of f and T is denoted by C(f,T),
(3) a point x € X is a common fixed point of f and T if z = fx € Tx.
The set of all common fixed points of f and T is denoted by F(f,T),
(4) for A C X, T'(A) stands for the set (J .4 Tz. In particular, T'(X) =

U:cEX Tx.

The notions of commutativity and weak commutativity for a hybrid pair
of mappings on metric spaces were defined by Kaneko [9,10]. Thereafter,
Singh et al. [19] weakened the notion of weak commutativity by introducing
the notion of compatible mappings for a hybrid pair of mappings and ob-
tained some common fixed point theorems for nonlinear hybrid contractions.
This way of proving new results continue to attract the attention of many
researchers of this domain, where it can be observed that under compatibil-
ity the fixed point results often require continuity of one of the underlying
mappings. In 2002, Singh and Mishra [20] extended the notion of reciprocal
continuity (due to Pant [12]) to a hybrid pair of mappings and established
some common fixed point theorems in metric spaces. Most recently, Gairola
et al. [5] defined a more general notion, namely weak reciprocal continuity
(due to Pant et al. [13]) for a hybrid pair of mappings and proved common
fixed point theorems for non-expansive mappings. The technical definitions
of the earlier mentioned notions are described in the following lines.

Definition 1. Let (X, d) be a metric space with f : X - X and T': X —
CL(X). A hybrid pair of mappings (f,T) is said to be:
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(1) commuting on X [9] if fTx C T fx for all z € X,

(2) compatible [19] if fTz € CL(X) for all x € X and lim,, oo H(T fxy,
fTxy,) =0, whenever {z,} is a sequence in X such that T'z,, - A €
CL(X) and fx, > t€ A, as n — 0,

(3) reciprocally continuous on X (resp., at t € X) [20] if fTx € CL(X)
for each x € X (with fT't € CL(X)) limp—oo fTz, = fA and
lim,, o0 T'fx,, = Tt whenever {z,} is a sequence in X such that
limy, 00 Ty = A € CL(X), limy 00 f, =1t € A,

(4) weakly reciprocally continuous on X (resp., at t € X) [5] if fTx €
CL(X) for each z € X (with fTt € CL(X)) and lim,_,o fTz, =
fA or lim,, oo T fz, = Tt whenever {z,} is a sequence in X such
that limy, oo T2, = A € CL(X), limy, o0 fz, =t € A,

(5) coincidentally idempotent [7] if ffv = fov for every v € C(f,T), i.e.,
f is idempotent at the coincidence points of f and T,

(6) occasionally coincidentally idempotent [14] if ffv = fov for some

ve C(f,T).

For more details on systematic comparison and illustrations of earlier
described notions, we refer to [5,7-10,19,20].

Lemma 1 ( [11]). Let P,Q € CL(X) and k > 1. Then for each p € P,
there exists a point q € Q such that d(p,q) < kH(P,Q).

In this paper, an attempt has been made to derive common fixed point
theorems for a hybrid pair of mappings using weak reciprocal continuity
with occasionally coincidentally idempotent property besides employing an
implicit relation and compatibility. The presented theorems extend and
unify various known fixed point results. In addition, we give a homotopy
theorem using our results.

2. IMPLICIT RELATIONS

In the recent past, implicit functions has been utilized to prove unified
common fixed points results covering various kinds of contraction conditions
in one go (see, for example, [3,21] and references therein). In fact, this
idea was initiated by Popa [15,16] where the author introduced an implicit
function which covers a variety of contraction classes. In [18], Popa and
Patriciu introduced the following implicit function and utilize the same to
prove some coincidence and common fixed point results for hybrid pairs of
mappings covering several contraction conditions in one go.

In what follows, ® denotes the set of all continuous functions ¢ : R?r - R
satisfying the following conditions:

(¢1) ¢ is non-increasing in variables tg, ..., ts and non-decreasing in ¢,
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(¢2) there exist h € (0,1) and k& > 1 with hk < 1 such that for u,v > 0,
u < kt and ¢(t,v,v,u,u+v,0) <0 or ¢(t,v,u,v,0,u+v) <0 imply

t < hv,
(¢3) H(t,t,t,0,t,t) >0, for all t > 0.

The following functions are examples of implicit functions ¢ : Rf_ - R

belonging to the set ® due to Popa [17] and Imdad and Ali [6].

Example 1.

ts +t
o(t1,t2,t3,t4,t5,16) = t1 — hmax {t27t3,t47 > 5 6},

where h € (0,1).

Example 2.

t5+t6}

G(t1,ta, ta,ta, ts, te) = t1 — h[amax {t2,t3,t47 >

2 2

1 1 3
+ (1= a) [, tsta, tat, S tats, Stats] } 7

where h € (0,1) and 0 < a < 1.

Example 3.

NI

G(t1,ta, s, ta, ts, te) = t1 — h [max{t3, tsts, tste, tats, tsts}]

1
where h € <0, ﬁ)’

Example 4.

t

17253,47556:t+ + — — |at5 + + c ,

t1,to, s, ta, s, t 3442 L 24 btk + ot
1+ t516

where 0 <a+b+c < 1.

Example 5.

t3 + 3
ts + 1y

¢(t17t27t37t47t57t6) = tl — |: :| - B[tf) +t6] - 7t27

where 0 < 2a+ 28+ v < 1.

Example 6.
2+t
ts + g

G(t1,ta,t3,t4,t5,t6) =t1 — [ ] — Blts + ta] — o,

where 0 < 2a + 28+ v < 1.

)

(2.3)

(2.6)
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Example 7.
ctsth + btsth
¢(t17t27t37t47t57t6) :tzf _atg - M ) (27)
t3 + 1y
where 1 <2a4+c¢<2,0<2a+b<2andp>1.

Certainly, apart from the foregoing examples, there are many more that
meet the requirements (¢1), (¢2) and (¢3).

3. MAIN RESULTS
Now, we state and prove our main result.
Theorem 1. Let (X, d) be a complete metric space and T : X — CL(X)
and f: X — X be mappings satisfying
(1) T(X) C f(X),
(2) there exists ¢ € © such that

¢ (H(Tz,Ty),d(fz, fy),d(fz, Tx),d(fy,Ty),d(fz,Ty),d(fy, Tx)) g(g, |
1

~— —

forallz,y € X,

(3) the pair (T, f) is weakly reciprocally continuous and compatible.
Then the mappings f and T have a coincidence point (i.e., C(T,f) # 0).
Moreover, the mappings f and T have a common fized point in X provided
that the pair (T, f) is occasionally coincidentally idempotent.

Proof. Let xp be an arbitrary point in X. By (1), we choose a point z; in
X such that y; = fz; € Txg. By Lemma 1, one can find a point yo € Tz
such that d(y1,y2) < kH(Txo,Tx1) where k > 1. Continuing in this way,
one can inductively define sequences {x,}, {y,} in X as follows:

Ynt1 = frny1 € Txy (32)
such that
d(Yn+1, yn+2) < kH(Twm Trny1). (3.3)
On using inequality (3.1) with x = x,, and y = x,,4+1 and property (¢1) of
function ¢ € @, we have
d) H(Tmn,Txn+1),d(fxn,fxn+1),d(fxn,Txn), <0
d(frnt1, Topi1), d(f2n, Tonir), d(frnsr, Tan) ) — 7
¢ < H(T$n, Txn+1)> d(yn7 yn—H)a d(ynv yn+1), >

IN

0,
d(ynJrla yn+2)7 d(yna yn+2), 0

¢ ( H(T'Tnv T$n+1)a d(ym yn+1), d(ym yn+1), >
d(yn+1a yn+2>v d(yna ynJrl) + d(yn+17 yn+2)7 0

IN

0.  (3.4)
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In view of (3.3), (3.4) and (¢2), we get

H(T.Q;‘n, TfUn—H) < hd(yn, yn+1). (3.5)
Hence, (3.3) and (3.5) imply
d(yn+17 yn-‘r?) < kh d(ynvyn-‘rl)' (36)

Since kh < 1, it follows from (3.6) that {y,} is a Cauchy sequence in X
and then by (3.5), that {Tx,} is a Cauchy sequence in CL(X). Also, the
completeness of the space X implies the completeness of the hyperspace
CL(X). Thus, the sequence {y,} converges to some z € X and {Tx,}
converges to some A € CL(X). Also,

d(z,A) <d(z, fxy) + d(fxn, A)
<d(z, frn) + HTzp-1,A) = 0 (as n — 00). (3.7)

Since A is closed in X, it follows that z € A. Therefore the compatibility of
the pair (f,T") implies non-vacuous compatibility, meaning thereby the exis-
tence of a sequence {z,} in X such that {fz,} and {Tz,} converge to z € X
and A € CL(X), respectively so that z € A and limy, oo H(T fxy,, fTx,) =
0. The weak reciprocal continuity of the mappings f and T implies that
limy oo fTxy, = fA or limy, oo T fx, =Tz.

Case I: Let limy, oo fTx, = fA. By (3.2), this yields ffx, € fTx,—1 —
fA asn — oo. The compatibility of f and T yields limy, oo H(T fzy, fTxy)
= 0 so that Tfx,, - fAasn — co. On using (3.1) with z = z and y = fx,,
we get

¢ (H(Tz,Tfxn),d(fz, f frn),d(f2,T2),
d(f fan, T fan), d(f2,T fan),d(f fon, TZ)) < 0. (3.8)

Since z € A, we have fz € fA. Taking the limit as n — oo in (3.8) and
using (¢7), we have

¢ (d(Tz, f2),0,d(fz,T2),0,0,d(fz,Tz)) <O0.

Since d(T'z, fz) < kd(T'z, fz), and in view of (¢2), we get fz € Tz. Hence z
is a coincidence point of f and T, i.e., C(T, f) is non-empty. Also, compat-
ibility of the pair (7, f) implies that 7" and f commute at their coincidence
points, i.e., fTz=Tfz.

If the mappings f and T are occasionally coincidentally idempotent, then
there exists 2/ € C(T, f) with ffz' = f2’. This implies f2' = ffz' € [Tz =
Tfz'. Hence fz' is a common fixed point of the mappings f and T. This
completes the proof.

Case II: Now assume that lim,, oo T fz,, = Tz. Then the compatibility
of f and T implies lim,, oo H(T fzp, fTxy) = 0, and so fTx, — Tz as
n — oco. By (3.2), ffx, € fTxp,—1 — Tz as n — oo and there exists a point
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u € X (due to (1)) such that fu € Tz. On using (3.1) with x = fz, and
y = u, we have

& (H(T fp, Tu), d(f fn, fu), d(f fon, Tfan),
d(fu,Tu),d(f frn, Tu),d(fu, T fz,)) <0. (3.9)
Passing to the limit as n — oo and using (¢1) as well as fu € Tz, we get
¢ (d(fu,Tu),0,0,d(fu, Tu),d(fu,Tu),0) <O0.

Since d(Tu, fu) < kd(Tu, fu), owing to (¢2), we get fu € Tu so that u is the
coincidence point of f and 7. The compatibility of the pair (7, f) implies
commutativity of 7" and f at their coincidence points, i.e., fTu =T fu.

If the mappings T" and f are occasionally coincidentally idempotent, the
rest of the proof runs along the lines of Case I. This completes the proof. [

Corollary 1. The conclusions of Theorem 1 remain true if for all distinct
x,y € X the implicit relation (3.1) is replaced by one of the following:

[ ]
H(Tz,Ty)

< hmax {d(fz, fy), d(fa, 7). d(fy, Ty), 5ld(f, Ty) + d(7y, 7))},
where h € (0,1);

H(Tz,Ty) Sh[{d(ffc, fy), d(fx, Tx), d(fy, Ty), %[d(far, Ty) +d(fy, Tﬂ:)]}
+ (L= a)[(fz, fo), d(fo, Ta)d(fy, Tg), d(f, Ty)d(f, ),
Sd(w, To)d(fy, ), Sd(Fy, Ty)d(fz, To)] ],

where h € (0,1) and 0 < a < 1;
[ ]

H(Ts, Ty) < b max{d(f, fy),d(fz, T)d(fy, Ty),d(fz, Ty)d(fy, Tx),

1
2

d(fy, Ty)d(fy, Tw), d(fz, Ta)d(fo, Ty)} |,

where h € (0, %),
H*(Tx, Ty) + & (fx, fy) < ad®(fx, fy) + bd*(fz, Tx) + cd*(fy, Ty)
B H(Tz,Ty)
1 +d(fx,Ty)d(fy, Tx)’
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where 0 < a+b+c<1;

(e Ty) < o {d?(fx,m + d?(fy,qu

d(fz,Tz) +d(fy, Ty)
+ Bld(fx, Ty) + d(fy, Tz)] +~vd(fz, fy),
where 0 < 2a+ 28 +v < 1;

H(Tz,Ty) < a [‘p(fx’T?/) + dQ(fy,Tw)}

d(fz,Ty) + d(fy,Tx)
+ Bld(fz, Tz) + d(fy, Ty)| +vd(fz, fy),
where 0 < 2o+ 28 +v < 1;

[ ]
p p
HP(Tz, Ty) < [cd(f:c,Tx)d (fy, Ty)+bd(fx, Ty)dP(fy, Tx)
d(fx,Tz)+d(fy, Ty)
where 1 <2a+¢<2,0<2a+b<2andp>1.

}radp(fx,fy%

Proof. The proof in each of the cases easily follows from Theorem 1 in view
of Examples 2.1-2.7. (]

Suppose that 7' is a self mapping from X to X. Then Theorem 1 can be
stated for single-valued mappings as follows:

Corollary 2. Let (X,d) be a complete metric space and let f,T : X — X
satisfy

(1) T(X) C f(X),
(2) there exists ¢ € ® such that
¢ (d(Tz,Ty),d(fz, fy),d(fz,Tx),d(fy, Ty),d(fz,Ty),d(fy,Tx)) <0,
(3.10)
forallz,y € X,
(3) the pair (f,T) is weakly reciprocally continuous and compatible.

If the mappings f and T have a coincidence point (i.e., C(T, f) #0), then
the mappings f and T have a unique common fized point in X.

Proof. The proof of this corollary can be completed on the lines of the proof
of Theorem 1 contained in Pant et al. [13]. O
4. AN APPLICATION

In this section, we apply Corollary 2 to get a homotopy result. For further
details, readers are referred to the book of Agarwal et al. [1].
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Theorem 2. Let (X, d) be a complete metric space, F be a closed subset of
X, U be an open subset of X with U C F and f : FF — X be a mapping.
Also suppose that T: F x [0,1] — X is an operator satisfying the following
conditions:

(i) = # T(x,t) for each x € F\U and each t € [0,1],
(ii) there exists ¢ € ® such that
¢ (d(T(x,1), T(y,1)),d(fx, fy),d(fz, T (x, 1)),
d(fy, T(y,1)),d(fx, T(y, 1), d(fy, T(x,1))) <0, (4.1)

for all z,y € F and each t € [0,1],
(iii) there exist a,, f > 0 and a continuous increasing function «y : [0,1] —
R such that

d(T (e, 1), T(x,12)) < aly(t1) — 1(t2)] and

max{d(T(x, tl)’ T(ya tl))? d(f$a fy)} < Bd(l’, y)a

for all t1,t € [0,1] and z,y € F,
(iv) T(X) C f(X),
(v) the pair (f,T) is weakly reciprocally continuous and compatible,
(vi) f(B(z,R) C B(z,R), for allx € F(f) and R > 0.

If T(-,0) and f have a common fized point in F', then T(-,1) and f have a
common fixzed point in U.

Proof. Consider the set
Q: ={(t,z) €[0,1] x U :z = fox =T(x,t)}.
Clearly, () is a nonempty set. Now, endow ) with the partial order:
(t,x) = (s,y) iff ¢t <sandd(z,y) < aly(s) =)

Next, let K be a totally ordered subset of @ and let t* = sup{t : (t,z) €
K}. Consider a sequence {(t,,z,)} C K such that (t,,x,) < (tnt1,ZTn+1)
and t, — t*, as n — 0o. Then, we get

d($m7xn) < O‘[’Y(tm) - V(tn)]a

for all m,n € N, with m > n. Passing to the limit as m,n — oo, we obtain
d(xm, xn) — 0 so that {z,} is a Cauchy sequence and it converges to an
element z* € X. Now, z* = fz* as

d(xp, fo*) = d(fan, fz*) < Bd(zy, x").
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Also, x* = T'(z*,t*) as
d(xn, T (27, t%))

d(T(zp, tn), T(z*,t"))

AT (zn,tn), T(wn, ) + d(T(zn, 1), T (2", 17))
a[y(t") = (tn)] + Bd(zn, z").

Now, from (i) we deduce that z* € U, and hence (t*,2*) € ). Since K is
totally ordered, we get (¢,x) < (t*,2*), for each (t,z) € K. Thus (t*,z%)
is an upper bound of K. Consequently, because of Zorn’s lemma () has a
maximal element, say (to, o) € Q. To complete the proof, we have to show
that to = 1.

Suppose on contrary that typ < 1. Choose R > 0 and t € (to, 1] such that
B(zo,R) C U and R := a[y(t) — v(to)]. Then, we get

d(l‘o, T(l’o, t)) < d(l‘o, T(xo, to)) + d(T(.%'(), to), T(wo, t))

<0+ afy(t) —~(to)]

=R.
In view of (vi), it follows that f,T(-,t) : B(zo, R) — B(zo, R) satisfy all
the hypotheses of Corollary 2. Thus, we apply Corollary 2 to deduce the
existence of a common fixed point z € B(zg, R) for F' and T'(-,t), and hence
(t,z) € Q. Finally, as

d(wo, x) < R = afy(t) — y(to)];

we have (tg,z9) < (¢, ), which contradicts the maximality of (¢g,z¢). This
completes the proof. ([l

)

<
<
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