ON THE CONVOLUTION AND NEUTRIX CONVOLUTION OF THE FUNCTIONS \(\sinh^{-1} x \) AND \(x^r \)

BRIAN FISHER AND FATMA AL-SIREHY

Abstract. The neutrix convolution \(\sinh^{-1} x \odot x^r \) is evaluated for \(r = 0, 1, 2, \ldots \). Further results are also given.

1. Introduction

The functions \(\sinh^{-1} x_+ \) and \(\sinh^{-1} x_- \) are defined by
\[
\sinh^{-1} x_+ = H(x) \sinh^{-1} x, \quad \sinh^{-1} x_- = H(-x) \sinh^{-1} x,
\]
where \(H \) denotes Heaviside’s function. Note that
\[
\sinh^{-1} x = \sinh^{-1} x_+ + \sinh^{-1} x_-.
\]

If \(f \) and \(g \) are locally summable functions then the classical definition for the convolution \(f \ast g \) of \(f \) and \(g \) is as follows:

Definition 1. Let \(f \) and \(g \) be functions. Then the convolution \(f \ast g \) is defined by
\[
(f \ast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt
\]
for all points \(x \) for which the integral exists.

It follows easily from the definition that if the classical convolution \(f \ast g \) of \(f \) and \(g \) exists, then \(g \ast f \) exists and
\[
f \ast g = g \ast f.
\]
Further, if \((f \ast g)' \) and \(f' \ast g \) (or \(f' \ast g \)) exist, then
\[
(f \ast g)' = f' \ast g \quad \text{or} \quad f' \ast g.
\]

2010 Mathematics Subject Classification. 33B15, 33B20, 46F10.

Key words and phrases. Convolution, neutrix convolution, neutrix limit.

Copyright © 2015 by ANUBiH.
The classical definition of the convolution can be extended to define the convolution \(f * g \) of two distributions \(f \) and \(g \) in \(D' \) with the following definition, see [9].

Definition 2. Let \(f \) and \(g \) be distributions in \(D' \). Then the convolution \(f * g \) is defined by the equation

\[
\langle (f * g)(x), \varphi(x) \rangle = \langle f(y), \langle g(x), \varphi(x + y) \rangle \rangle
\]

for arbitrary \(\varphi \) in \(D' \), provided that \(f \) and \(g \) satisfy either of the following conditions:

(a) either \(f \) or \(g \) has bounded support,
(b) the supports of \(f \) and \(g \) are bounded on the same side.

It follows that if the convolution \(f * g \) exists by this definition, then equations (2) and (3) are satisfied.

The following theorems were proved in [10].

Theorem 1. The neutrix convolutions \((\tan^{-1}_+ x) \odot x^{2r+1} \) and \((\tan^{-1}_+ x) \odot x^{2r} \) exist and

\[
(\tan^{-1}_+ x) \odot x^{2r+1} = \sum_{k=0}^{r} \left(\frac{2r + 1}{2k} \right) (-1)^{k+1} \pi x^{2r-2k+1} \pi x^{2r-2k},
\]

\[
(\tan^{-1}_+ x) \odot x^{2r} = \sum_{k=0}^{r} \left(\frac{2r}{2k} \right) (-1)^{k+1} \pi x^{2r-2k} + \sum_{k=1}^{r} \left(\frac{2r}{2k-1} \right) (-1)^{k} \pi x^{2r-2k+1},
\]

for \(r = 0, 1, 2, \ldots \).

Theorem 2. The neutrix convolutions \(x^{2r+1} \odot \tan^{-1}_+ x \) and \(x^{2r} \odot \tan^{-1}_+ x \) exist and

\[
x^{2r+1} \odot \tan^{-1}_+ x = \sum_{k=0}^{r} \left(\frac{2r + 1}{2k} \right) x^{2r-2k+1} G_k(x) - \sum_{k=0}^{r} \left(\frac{2r + 1}{2k+1} \right) x^{2r-2k} F_k(x),
\]

\[
x^{2r} \odot \tan^{-1}_+ x = \sum_{k=0}^{r} \left(\frac{2r}{2k} \right) x^{2r-2k} G_k(x) - \sum_{k=0}^{r-1} \left(\frac{2r}{2k+1} \right) x^{2r-2k-1} F_k(x),
\]

for \(r = 0, 1, 2, \ldots \).

The next theorem was proved in [6].
Theorem 3. If \(\lambda, \lambda + \mu < 0 \) and \(\mu \neq 0 \), then the neutrix convolution \(\text{ei}_-(\lambda x) \ast e^{\mu x} \) exists and

\[
\text{ei}_-(\lambda x) \ast e^{\mu x} = -\mu^{-1} \ln(1 + \mu/\lambda)e^{\mu x}.
\]

The dilogarithm integral \(\text{Li}(x) \) see [6] is defined for by

\[
\text{Li}(x) = -\int_0^x \frac{\ln|1-t|}{t} dt
\]

and the associated functions \(\text{Li}_+(x) \) and \(\text{Li}_-(x) \) are defined by

\[
\text{Li}_+(x) = H(x) \text{Li}(x), \quad \text{Li}_-(x) = H(-x) \text{Li}(x) = \text{Li}(x) - \text{Li}_+(x),
\]

where \(H(x) \) denotes Heaviside’s function.

The following theorem was proved in [6].

Theorem 4. The neutrix convolution \(\text{Li}_+(x) \ast x^r \) exists and

\[
\text{Li}_+(x) \ast x^r = \frac{1}{r+1} \sum_{i=0}^{r} \binom{r+1}{i} \frac{(-1)^{r-i}}{(r-i+1)^2} x^i
\]

for \(r = 0, 1, 2, \ldots \). In particular

\[
\text{Li}_+(x) \ast H(x) = 1,
\]

\[
\text{Li}_+(x) \ast x_+ = x - \frac{1}{8}.
\]

2. Main results

We need the following lemmas to prove our results on the convolution and neutrix convolution.

Lemma 1.

\[
\sinh^{2r} x = 2^{1-2r} \sum_{k=1}^{r} \left(\frac{2r}{r-k} \right) (-1)^{r-k} \cosh(2kx) + (-1)^r 2^{-2r} \left(\frac{2r}{r} \right), \quad (5)
\]

\[
\sinh^{2r-1} x = 2^{2-2r} \sum_{k=1}^{r} \left(\frac{2r-1}{r-k} \right) (-1)^{r-k} \sinh(2k-1)x, \quad (6)
\]

for \(r = 1, 2, \ldots \).
Proof. We have

\[
\sinh^{2r} x = 2^{-2r} (e^x - e^{-x})^{2r} = 2^{-2r} \sum_{k=0}^{2r} \binom{2r}{k} (-1)^k e^{(2r-2k)x}
\]

\[
= 2^{-2r} \sum_{k=0}^{r-1} \binom{2r}{k} (-1)^k (e^{(2r-2k)x} + e^{-(2r-2k)x}) + (-1)^r 2^{-2r} \binom{2r}{r}
\]

\[
= 2^{1-2r} \sum_{k=1}^{r} \left(\frac{2r}{r-k} \right) (-1)^{r-k} \cosh(2kx) + (-1)^r 2^{-2r} \binom{2r}{r},
\]

proving equation (5).

Similarly, we have

\[
\sinh^{2r-1} x = 2^{1-2r} (e^x - e^{-x})^{2r-1} = 2^{1-2r} \sum_{k=0}^{2r-1} \binom{2r-1}{k} (-1)^k e^{(2r-2k-1)x}
\]

\[
= 2^{1-2r} \sum_{k=0}^{r-1} \binom{2r-1}{k} (-1)^k (e^{(2r-2k-1)x} - e^{-(2r-2k-1)x})
\]

\[
= 2^{2-2r} \sum_{k=1}^{r} \left(\frac{2r-1}{r-k} \right) (-1)^{r-k} \sinh(2k-1)x,
\]

proving equation (6).

For shortness, we will write

\[
\sinh^{r} x = \sum_{k=0}^{r} [a_{r,k} \cosh(kx) + b_{r,k} \sinh(kx)],
\]

(7)

for \(r = 1, 2, \ldots \), where

\[
a_{2r, 2k-1} = 0; \quad k = 1, 2, \ldots, r,
\]

\[
a_{2r-1, k} = 0; \quad k = 0, 1, 2, \ldots, 2r - 1,
\]

\[
b_{2r-1, 2k} = 0; \quad k = 0, 1, 2, \ldots, r - 1,
\]

\[
b_{2r, k} = 0; \quad k = 1, 2, \ldots, 2r
\]

so that

\[
\sinh^{2r} x = \sum_{k=0}^{r} a_{2r, 2k} \cosh(2kx),
\]

(8)

\[
\sinh^{2r-1} x = \sum_{k=1}^{r} a_{2r-1, 2k-1} \sinh(2k-1)x,
\]

(9)

for \(r = 1, 2, \ldots \) and \(k = 1, 2, \ldots, r \). □
Lemma 2.

\[
\sinh(2rx) = \sum_{k=1}^{r} \sum_{j=0}^{k-1} \binom{2r}{2k-1} \binom{k-1}{j} (-1)^{k+j+1} \cosh^{2r-2k+2j+1} x \sinh x,
\]

\[
\sinh(2r-1)x = \sum_{k=1}^{r} \sum_{j=0}^{k-1} \binom{2r-1}{2k-1} \binom{k-1}{j} (-1)^{k+j+1} \cosh^{2r-2k+2j} x \sinh x,
\]

for \(r = 1, 2, \ldots \).

Proof. Using de Moivre’s Theorem, we have

\[
\cos(2rx) + i \sin(2rx) = (\cos x + i \sin x)^{2r}.
\]

Equating the imaginary parts, we have

\[
\sin(2rx) = \sum_{k=1}^{r} \binom{2r}{2k-1} (-1)^{k+1} \cosh^{2r-2k+1} x \sin^{2k-1} x
\]

\[
= \sum_{k=1}^{r} \binom{2r}{2k-1} (-1)^{k+1} \cosh^{2r-2k+1} x (1 - \cos^2 x)^{k-1} \sin x
\]

\[
= \sum_{k=1}^{r} \binom{2r}{2k-1} (-1)^{k+1} \cosh^{2r-2k+1} x \sum_{j=0}^{k-1} \binom{k-1}{j} (-1)^{j} \cos^{2j} x \sin x.
\]

(12)

Replacing \(x \) by \(ix \) in equation (12), we get equation (10).

Similarly, we have

\[
\sin(2r-1)x = \sum_{k=1}^{r} \binom{2r-1}{2k-1} (-1)^{k+1} \cosh^{2r-2k} x \sin^{2k-1} x
\]

\[
= \sum_{k=1}^{r} \binom{2r-1}{2k-1} (-1)^{k+1} \cosh^{2r-2k} x (1 - \cos^2 x)^{k-1} \sin x
\]

\[
= \sum_{k=1}^{r} \binom{2r-1}{2k-1} (-1)^{k+j+1} \cosh^{2r-2k} x \sum_{j=0}^{k-1} \binom{k-1}{j} \cos^{2j} x \sin x.
\]

(13)

Replacing \(x \) by \(ix \) in equation (13), we get equation (11).

For shortness, we will write

\[
\sinh(rx) = \sum_{k=1}^{r} c_{r,k} \cosh^{k} x \sinh x,
\]

(14)
for \(r = 1, 2, \ldots \) and \(k = 1, 2, \ldots, r \), where \(c_{2r,2k} = c_{2r-1,2k-1} = 0 \), for \(k = 1, 2, \ldots, r \), so that

\[
\sinh(2rx) = \sum_{k=1}^{r} c_{2r,2k+1} \cosh^{2r-2k+1} x \sinh x, \tag{15}
\]

\[
\sinh(2r-1)x = \sum_{k=1}^{r} c_{2r-1,2k} \cosh^{2r-2k} x \sinh x, \tag{16}
\]

for \(r = 1, 2, \ldots \) and \(k = 1, 2, \ldots, r \).

Lemma 3.

\[
\int \sinh^r x \, dx = \sum_{k=1}^{r} \sum_{i=1}^{k} \frac{a_{r,k}b_{k,i}}{k} \cosh^i x \sinh x, \tag{17}
\]

for \(r = 1, 2, \ldots \).

Proof. Using equations (7) and (14), we have

\[
\int \sinh^r x \, dx = \sum_{k=1}^{r} \int [a_{r,k} \cosh(kx) + b_{r,k} \sinh(kx)] \, dx
\]

\[= \sum_{k=1}^{r} \frac{a_{r,k} \sinh(kx) + b_{r,k} \cosh(kx)}{k}
\]

\[= \sum_{k=1}^{r} \sum_{i=1}^{k} \frac{a_{r,k}b_{k,i}}{k} \cosh^i x \sinh x,
\]

proving equation (17).

Theorem 5. The convolution \(\sinh^{-1} x_+ \ast x_+^r \) exists and

\[
\sinh^{-1} x_+ \ast x_+^r = \sum_{k=0}^{r} \binom{r}{k} \left[(-1)^k x_+^{r+k+1} \sinh^{-1} x \right.
\]

\[\left. - \sum_{i=1}^{k+1} \sum_{j=1}^{i} \frac{a_{k+1,ij}b_{ji}}{i(k+1)} x_+^{r-k+1} (x^2 + 1)^{i/2} \right], \tag{18}
\]

for \(r = 0, 1, 2, \ldots \).

Proof. It is obvious that \(\sinh^{-1} x_+ \ast x_+^r = 0 \) if \(x < 0 \). When \(x > 0 \), we have

\[
\sinh^{-1} x_+ \ast x_+^r = \int_0^x \sinh^{-1} t(x - t)^r \, dt
\]

\[= \sum_{k=0}^{r} \binom{r}{k} x_+^{r-k} \int_0^x (-t)^k \sinh^{-1} t \, dt. \tag{19}
\]
Making the substitution \(t = \sinh u \), we get
\[
\int_0^x t^k \sinh^{-1} t \, dt = \int_0^{\sinh^{-1} x} u \sinh^k u \cosh u \, du
\]
\[
= \frac{x^{k+1} \sinh^{-1} x}{k+1} - \int_0^{\sinh^{-1} x} \frac{\sinh^{k+1} u}{k+1} \, du
\]
\[
= \frac{x^{k+1} \sinh^{-1} x}{k+1} - \sum_{i=1}^{k+1} \sum_{j=1}^i \frac{a_{k+1,i}b_{i,j}}{i(k+1)} x(x^2+1)^{j/2},
\]
(20)
on using equation (17). Equation (18) now follows from equations (19) and (20).
□

Replacing \(x \) by \(-x\) in equation (18), we get

Corollary 1. The convolution \(\sinh^{-1} x_+ \ast x_+ \) exists and

\[
\sinh^{-1} x_+ \ast x_+ = \sum_{k=0}^\infty \binom{r}{k} \left[\frac{(-1)^k x^{r+1} \sinh^{-1} x}{k+1} \right.
\]
\[
- \sum_{i=1}^{k+1} \sum_{j=1}^i \frac{a_{k+1,i}b_{i,j}}{i(k+1)} x^{-k+1}(x^2+1)^{j/2} \right],
\]
(21)
for \(r = 0, 1, 2, \ldots \)

The definition of the convolution is rather restrictive and so the non-commutative neutrix convolution was introduced in [2]. In order to define the neutrix convolution we first of all let \(\tau \) be a function in \(\mathcal{D} \) satisfying the following properties:

(i) \(\tau(x) = \tau(-x) \),
(ii) \(0 \leq \tau(x) \leq 1 \),
(iii) \(\tau(x) = 1 \) for \(|x| \leq \frac{1}{2} \),
(iv) \(\tau(x) = 0 \) for \(|x| \geq 1 \).

The function \(\tau_n \) is then defined by
\[
\tau_n(x) = \begin{cases}
1, & |x| \leq n, \\
\tau(n^nx - n^{n+1}), & x > n, \\
\tau(n^nx + n^{n+1}), & x < -n
\end{cases}
\]
for \(n = 1, 2, \ldots \).

The following definition was given in [2].

Definition 3. Let \(f \) and \(g \) be distributions in \(\mathcal{D}' \) and let \(f_n = f \tau_n \) for \(n = 1, 2, \ldots \). Then the **neutrix convolution** \(f \circledast g \) is defined as the neutrix
limit of the sequence \(\{ f_n \ast g \} \), provided that the limit \(h \) exists in the sense

\[
N - \lim_{n \to \infty} \langle f_n \ast g, \varphi \rangle = \langle h, \varphi \rangle
\]

for all \(\varphi \) in \(\mathcal{D} \), where \(N \) is the neutrix, see van der Corput [1], having domain \(N' = \{ 1, 2, \ldots, n, \ldots \} \) and range \(N'' \), the real numbers, with negligible functions being finite linear sums of the functions

\[
n^\lambda \ln^{r-1} n, \ln^r n \quad (\lambda > 0, r = 1, 2, \ldots)
\]

and all functions which converge to zero in the usual sense as \(n \) tends to infinity.

In particular, if

\[
\lim_{n \to \infty} \langle f_n \ast g, \varphi \rangle = \langle h, \varphi \rangle
\]

for all \(\varphi \) in \(\mathcal{D} \), we say that the convolution \(f \ast g \) exists and equals \(h \).

Note that in this definition the convolution \(f_n \ast g \) is as defined in Gel’fand and Shilov’s sense, the distribution \(f_n \) having compact support. Note also that because of the lack of symmetry in the definition of \(f \otimes g \), the neutrix convolution is in general non-commutative.

The following theorem was proved in [2], showing that the neutrix convolution is a generalization of the convolution.

Theorem 6. Let \(f \) and \(g \) be distributions in \(\mathcal{D}' \) satisfying either condition (a) or condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution \(f \otimes g \) exists and

\[
f \otimes g = f \ast g.
\]

We now prove the following theorem.

Theorem 7. The neutrix convolution \(\sinh^{-1} x_+ \otimes x^r \) exists and

\[
\sinh^{-1} x_+ \otimes x^r = \sum_{k=0}^{r} \binom{r}{k} (-1)^k x^{r-k} \left[c_{k+1} - \sum_{i=1}^{k+1} \sum_{j=1}^{i} a_{k+1,i} b_{i,j} d_j \right],
\]

for \(r = 0, 1, 2, \ldots \), where

\[
c_k = \begin{cases} 0, & k \text{ odd}, \\ -\left(\frac{1}{k/2} \right)^{1/2}, & k \text{ even}, \end{cases}
\]

\[
d_k = \begin{cases} 0, & j \text{ even}, \\ \left(\frac{1}{(j+1)/2} \right), & j \text{ odd}. \end{cases}
\]
Proof. Putting \[\sinh^{-1} x_+ \]_n = \sinh^{-1} x_+ \tau _n(x), we have
\[
\left[\sinh^{-1} x_+ \right]_n \star x^r = \int_0^n \sinh^{-1} t(x - t)^r dt + \int_{n}^{n+n-n} \sinh^{-1} t(x - t)^r \tau _n(t) dt
\]
\[
= \sum_{k=0}^{r} \binom{r}{k} (-1)^k x^r - k \int_0^n t^k \sinh^{-1} t dt
\]
\[
+ \int_{n+n-n}^{n+n-n} \sinh^{-1} t(x - t)^r \tau _n(t) dt
\]
\[
= I_1 + I_2. \tag{23}
\]
Replacing \(x \) by \(n \) in equation (20), we get
\[
\int_0^n t^k \sinh^{-1} t dt = \frac{n^{k+1} \sinh^{-1} n}{k + 1} - \sum_{i=1}^{k+1} \sum_{j=1}^{i} \frac{a_{k+1, i} b_i j}{i(k + 1)} n(n^2 + 1)j/2. \tag{24}
\]
Now,
\[
\left[\sinh^{-1} x \right]' = (x^2 + 1)^{-1/2} = x^{-1} \sum_{i=0}^{\infty} \left(-\frac{1}{2} \right)_i x^{-2i}
\]
and so
\[
\sinh^{-1} x = \ln x - \sum_{i=1}^{\infty} \left(-\frac{1}{2} \right)_i \frac{x^{-2i}}{2i} + \text{const.} \tag{25}
\]
Hence, for \(k = 0, 1, 2, \ldots, \) we have
\[
N - \lim_{n \to \infty} n^k \sinh^{-1} n = \begin{cases} 0, & k \text{ odd,} \\ -\left(-\frac{1}{2} \right)_k \frac{1}{k}, & k \text{ even} \end{cases} = c_k, \tag{26}
\]
for short.

Further,
\[
(n^2 + 1)^j/2 = n^j \sum_{i=0}^{\infty} \left(\frac{j/2}{i} \right) n^{-2i}
\]
and so for \(j = 1, 2, \ldots, \) we have
\[
N - \lim_{n \to \infty} n(n^2 + 1)^j/2 = \begin{cases} 0, & j \text{ even,} \\ \left(\frac{j}{j+1/2} \right), & j \text{ odd} \end{cases} = d_j, \tag{27}
\]
for short.
It now follows from equations (24) to (26) that

\[N^{-\lim_{n \to \infty}} I_1 = \sum_{k=0}^{r} \binom{r}{k} (-1)^k x^{r-k} \left[c_{k+1} - \sum_{i=1}^{k+1} \sum_{j=1}^{i} \frac{a_{k+1,i} b_{i,j} d_j}{i(k+1)} \right]. \]

(28)

Next, it is easily seen that \(I_2 = O(n^{-n}) \) and so

\[\lim_{n \to \infty} I_2 = 0. \]

(29)

Equation (22) now follows from equations (23), (28) and (29).

Replacing \(x \) by \(-x\) in equation (22), we get

Corollary 2. The neutrix convolution \(\sinh^{-1} x_- \ast x^r \) exists and

\[\sinh^{-1} x_- \ast x^r = -\sum_{k=0}^{r} \binom{r}{k} x^{r-k} \left[c_{k+1} - \sum_{i=1}^{k+1} \sum_{j=1}^{i} \frac{a_{k+1,i} b_{i,j} d_j}{i(k+1)} \right], \]

(30)

for \(r = 0, 1, 2, \ldots \).

Corollary 3. The neutrix convolution \(\sinh^{-1} x \ast x^r \) exists and

\[\sinh^{-1} x \ast x^r = \sum_{k=0}^{r} \binom{r}{k} \left[(-1)^k - 1 \right] x^{r-k} \left[c_{k+1} - \sum_{i=1}^{k+1} \sum_{j=1}^{i} \frac{a_{k+1,i} b_{i,j} d_j}{i(k+1)} \right], \]

(31)

for \(r = 0, 1, 2, \ldots \).

Proof. We have

\[\sinh^{-1} x \ast x^r = \sinh^{-1} x_+ \ast x^r + \sinh^{-1} x_- \ast x^r \]

and then equation (31) follows from equations (22) and (30).

Corollary 4. The neutrix convolution \(\sinh^{-1} x_+ \ast x_- \) exists and

\[\sinh^{-1} x_+ \ast x_- = \sum_{k=0}^{r} \binom{r}{k} \left[(-1)^k x^{r+k} \right] x^{-k} \left[c_{k+1} - \sum_{i=1}^{k+1} \sum_{j=1}^{i} \frac{a_{k+1,i} b_{i,j} d_j}{i(k+1)} \right] \]

\[- \sum_{k=0}^{r} \binom{r}{k} \left[\frac{(-1)^k x^{r+k}}{k+1} \right] \sinh^{-1} x \]

\[- \sum_{i=1}^{k+1} \sum_{j=1}^{i} \frac{a_{k+1,i} b_{i,j} d_j}{i(k+1)} x^{r-k+1} (x^2 + 1)^{i/2}, \]

(32)

for \(r = 0, 1, 2, \ldots \).
Proof. We have

\[(-1)^r \sinh^{-1} x_+ \odot x_+^r = \sinh^{-1} x_+ \odot x^r - \sinh^{-1} x_+ \ast x_+^r \]

\[= \sum_{k=0}^{r} \binom{r}{k} (-1)^k x^{r-k} \left[c_{k+1} - \sum_{i=1}^{k+1} \left(\sum_{j=1}^{i} a_{k+1,i} b_{i,j} d_{j} \right) \right] \]

\[- \sum_{k=0}^{r} \binom{r}{k} \left[(-1)^k x^{r+1} \sinh^{-1} x
ight] \]

\[- \sum_{i=1}^{k+1} \left(\sum_{j=1}^{i} a_{k+1,i} b_{i,j} x^{r-k+1} (x^2 + 1)^{j/2} \right) \]

on using equations (18 and (22) and equation (32) follows. □

Replacing \(x \) by \(-x \) in equation (32), we get

Corollary 5. The neutrix convolution \(\sinh^{-1} x_- \odot x_+^r \) exists and

\[\sinh^{-1} x_- \odot x_+^r = \sum_{k=0}^{r} \binom{r}{k} x^{r-k} \left[c_{k+1} - \sum_{i=1}^{k+1} \left(\sum_{j=1}^{i} a_{k+1,i} b_{i,j} d_{j} \right) \right] \]

\[- \sum_{k=0}^{r} \binom{r}{k} \left[(-1)^{r+k} x^{r+1} \sinh^{-1} x \right] \]

\[+ \sum_{i=1}^{k+1} \left(\sum_{j=1}^{i} a_{k+1,i} b_{i,j} \right) \left(-1 \right)^{r+j+k} x^{r-k+1} (x^2 + 1)^{j/2} \], (33)

for \(r = 0, 1, 2, \ldots \)

For further related results, see [4], [5], [7] and [8].

References

(Received: August 20, 2014) Brian Fisher
(Revised: October 22, 2014) University of Leicester
Department of Mathematics
Leicester, LE1 7RH, UK
fbr@le.ac.uk

Fatma Al-Sirehy
King Abdulaziz University
Department of Mathematics
Jeddah, Saudi Arabia
falserehi@kau.edu.sa