PARTIAL SUMS FOR A CERTAIN SUBCLASS OF MEROMORPHIC UNIVALENT FUNCTIONS

M. K. AOUF, A. O. MOSTAFA, A. Y. LASHIN AND B. M. MUNASSAR

Abstract. In this paper, the class $\Sigma_{\lambda}(\alpha, \beta, \gamma)$ of univalent meromorphic functions defined using the Ruscheweyh derivative in the punctured unit disk U^* is introduced. We study some results concerning the partial sums of meromorphic univalent starlike functions and meromorphic univalent convex functions.

1. Introduction

Let Σ denote the class of meromorphic functions of the form:

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k \quad (a_k \geq 0), \quad (1.1)$$

which are regular and univalent in the punctured unit disc $U^* = \{ z : z \in \mathbb{C} \text{ and } 0 < |z| < 1 \} = U\{0\}$. Let $g \in \Sigma$, be given by

$$g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} b_k z^k, \quad (1.2)$$

then the Hadamard product (or convolution) of f and g is given by

$$(f \ast g)(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k b_k z^k = (g \ast f)(z). \quad (1.3)$$

A function $f \in \Sigma$ is said to be meromorphically starlike of order α if

$$\text{Re} \left\{ -\frac{zf'(z)}{f(z)} \right\} > \alpha \quad (z \in U; \ 0 \leq \alpha < 1). \quad (1.4)$$
Denote by $\Sigma^*(\alpha)$ the class of all meromorphically starlike functions of order α. A function $f \in \Sigma$ is said to be meromorphically convex of order α if

$$\text{Re}\left\{-\left(1 + \frac{zf''(z)}{f'(z)}\right)\right\} > \alpha \quad (z \in U; \quad 0 \leq \alpha < 1).$$

(1.5)

Denote by $\Sigma^*_k(\alpha)$ the class of all meromorphically convex functions of order α. We note that $f(z) \in \Sigma^*_k(\alpha) \iff -zf'(z) \in \Sigma^*(\alpha)$.

The classes $\Sigma^*(\alpha)$ and $\Sigma^*_k(\alpha)$ had been extensively studied by Pommerenke [7], Miller [6] and others.

For $\lambda > -1$, the Ruscheweyh derivative of order λ is denoted by $D^\lambda f$ and is defined for function of the form (1.1) as follows: If

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k,$$

then

$$D^\lambda f(z) = \frac{1}{z} \frac{1}{(1 - z)^{\lambda+1}} * f(z) = z^{-1} + \sum_{k=1}^{\infty} D_k(\lambda) a_k z^k, \quad z \in U^*, \quad (1.6)$$

where

$$D_k(\lambda) = \frac{(\lambda + 1)(\lambda + 2) \ldots (\lambda + k + 1)}{(k + 1)!}. \quad (1.7)$$

For $\beta \geq 0$, $0 \leq \alpha < 1, 0 \leq \gamma < \frac{1}{2}$ and $\lambda > -1$, Atshan and Kulkarni [4] and Atshan [3] defined the class $\Sigma_\lambda(\alpha, \beta, \gamma)$ consisting of functions of the form (1.1) and satisfying the analytic criterion:

$$\text{Re}\left\{\frac{z(D^\lambda f(z))'}{(1 - \gamma)D^\lambda f(z) + \gamma z(D^\lambda f(z))'} + \alpha\right\} \geq \beta \left|\frac{z(D^\lambda f(z))'}{(1 - \gamma)D^\lambda f(z) + \gamma z(D^\lambda f(z))'} + 1\right| \quad (z \in U).$$

(1.8)

We note that:

$$\Sigma_0(\alpha, 0, 0) = \Sigma^*(\alpha) \quad (0 \leq \alpha < 1) \quad (\text{see Pommerenke [7]}).$$

Also, we note that

$$\Sigma_\lambda(\alpha, \beta, 0) = \Sigma^*_\lambda(\alpha, \beta) =$$

$$-\text{Re}\left\{\frac{z(D^\lambda f(z))'}{D^\lambda f(z)} + \alpha\right\} \geq \beta \left|\frac{z(D^\lambda f(z))'}{D^\lambda f(z)} + 1\right| \quad (z \in U).$$

(1.9)

For $\beta \geq 0$, $0 \leq \alpha < 1$, and $\lambda > -1$, we denote by $\Sigma^*_{k,\lambda}(\alpha, \beta)$ the subclass of Σ consisting of functions of the form (1.1) and satisfying the analytic
criterion:
\[-\text{Re} \left\{ 1 + \frac{z(D^\lambda f(z))''}{D^\lambda f'(z)} + \alpha \right\} \geq \beta \left| 2 + \frac{z(D^\lambda f(z))''}{D^\lambda f'(z)} \right| (z \in U), \quad (1.10)\]

We note that:
\(\Sigma_{k,0}(\alpha, 0) = \Sigma^*_k(\alpha) (0 \leq \alpha < 1)\) (see Pommerenke [7]).

It is easy to observe from (1.9) and (1.10) that
\(f(z) \in \Sigma^*_k,\lambda (\beta, \alpha) \iff -zf'(z) \in \Sigma^*_\lambda (\beta, \alpha). \quad (1.11)\)

In order to prove our results for functions belonging to the class \(\Sigma^*_\lambda (\alpha, \beta, \gamma)\) we shall need the following lemma given by Atshan and Kulkarni [4].

Lemma 1. [4, Theorem 2.1] Let the function \(f\) be defined by (1.1). Then \(f \in \Sigma^*_\lambda (\alpha, \beta, \gamma)\) if and only if
\[\sum_{k=1}^{\infty} (1 + \gamma k - \gamma) [k(1 + \beta) + (\beta + \alpha)] D_k(\lambda) a_k \leq (1 - \alpha) (1 - 2\gamma). \quad (1.12)\]

where \(0 \leq \alpha < 1, \beta \geq 0, 0 \leq \gamma < \frac{1}{2}, \lambda > -1, \) and \(D_k(\lambda)\) is given by (1.7).

Taking \(\gamma = 0\) in Lemma 1, we obtain the following corollary.

Corollary 1. Let the function \(f\) defined by (1.1). Then \(f \in \Sigma^*_\lambda (\beta, \alpha)\) if and only if
\[\sum_{k=1}^{\infty} k(1 + \beta) + (\beta + \alpha)] D_k(\lambda) a_k \leq (1 - \alpha). \quad (1.13)\]

By using Corollary 1 and (1.11), we can prove the following lemma.

Lemma 2. Let the function \(f\) defined by (1.1). Then \(f \in \Sigma^*_{k,\lambda} (\beta, \alpha)\) if and only if
\[\sum_{k=1}^{\infty} k [k(1 + \beta) + (\beta + \alpha)] D_k(\lambda) a_k \leq (1 - \alpha). \quad (1.14)\]

In this paper, applying the technique used by Silverman [8], we will investigate the ratio of a function of the form (1.1) to its sequence of partial sums \(f_n(z) = \frac{1}{2} + \sum_{k=1}^{n} a_k z^k\) when the coefficients of \(f\) are sufficiently small to satisfy condition (1.13) or (1.14). More precisely, we will determine sharp lower bounds for
\[\text{Re} \left\{ \frac{f(z)}{f_n(z)} \right\}, \text{Re} \left\{ \frac{f_n(z)}{f(z)} \right\}, \text{Re} \left\{ \frac{f'(z)}{f'(z)} \right\}, \text{Re} \left\{ \frac{f'(z)}{f'(z)} \right\} .\]

In the sequel, we will make use of well-known result that \(\text{Re} \left\{ \frac{1+w(z)}{1-w(z)} \right\} > 0 (z \in U)\) if and only if \(w(z) = \sum_{k=1}^{\infty} c_k z^k\) satisfies the inequality \(|w(z)| \leq |z|\).
Unless otherwise stated, we will assume that \(f \) is of the form (1.1) and its sequence of partial sums is denoted by \(f_n(z) = \frac{1}{z} + \sum_{k=1}^{n} a_k z^{-k} \).

For the notational convenience we shall henceforth denote
\[
\delta_k(\lambda, \beta, \alpha) = [k(1 + \beta) + (\beta + \alpha)] D_k(\lambda). \quad (1.15)
\]

\section{Main results}

\bf{Theorem 1.} If \(f \) of the form (1.1) satisfies condition (1.13), then
\[
\text{Re} \left\{ \frac{f(z)}{f_n(z)} \right\} \geq \frac{\delta_{n+1}(\lambda, \beta, \alpha) - (1 - \alpha)}{\delta_{n+1}(\lambda, \beta, \alpha)} \quad (z \in U). \quad (2.1)
\]

The result is sharp, with extremal function
\[
f(z) = \frac{1}{z} + \frac{1 - \alpha}{\delta_{n+1}(\lambda, \beta, \alpha)} z^{n+1} \quad (n \geq 1). \quad (2.2)
\]

\bf{Proof.} We may write
\[
\frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \left[\frac{f(z)}{f_n(z)} - \frac{\delta_{n+1}(\lambda, \beta, \alpha) - (1 - \alpha)}{\delta_{n+1}(\lambda, \beta, \alpha)} \right] = \frac{1 + \sum_{k=1}^{n} a_k z^{-k+1} + \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \sum_{k=n+1}^{\infty} a_k z^{-k+1}}{1 + \sum_{k=1}^{n} a_k z^{-k+1}} = 1 + A(z) \]
\[
= \frac{1}{1 + B(z)},
\]

Set \(\frac{1 + A(z)}{1 + B(z)} = \frac{1 + w(z)}{1 - w(z)} \), so that \(w(z) = \frac{A(z) - B(z)}{2 + A(z) + B(z)} \). Then
\[
w(z) = \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \sum_{k=n+1}^{\infty} a_k z^{-k+1}
\]
\[
= \frac{2 + 2 \sum_{k=1}^{n} a_k z^{-k+1} + \delta_{n+1}(\lambda, \beta, \alpha)}{2 + 2 \sum_{k=1}^{n} a_k - \delta_{n+1}(\lambda, \beta, \alpha)} \sum_{k=n+1}^{\infty} a_k z^{-k+1}
\]

and
\[
|w(z)| \leq \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \sum_{k=n+1}^{\infty} a_k \]
\[
= 2 - 2 \sum_{k=1}^{n} a_k - \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \sum_{k=n+1}^{\infty} a_k.
\]

Now \(|w(z)| \leq 1 \) if and only if
\[
2 \left(\frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \right) \sum_{k=n+1}^{\infty} a_k \leq 2 - 2 \sum_{k=1}^{n} a_k,
\]
which is equivalent to
\[
\sum_{k=1}^{n} a_k + \left(\frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \right) \sum_{k=n+1}^{\infty} a_k \leq 1. \tag{2.3}
\]

It suffices to show that the left hand side of (2.3) is bounded above by
\[
\sum_{k=1}^{\infty} \left(\frac{\delta_k(\lambda, \beta, \alpha)}{1-\alpha} \right) a_k,
\]
which is equivalent to
\[
\sum_{k=1}^{n} \frac{\delta_k(\lambda, \beta, \alpha) - (1-\alpha)}{1-\alpha} a_k + \sum_{k=n+1}^{\infty} \frac{\delta_k(\lambda, \beta, \alpha) - \delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} a_k \geq 0.
\]

To see that the function \(f \) given by (2.2) gives the sharp result, we observe for \(z = re^{\pi i/(n+2)} \) that
\[
\frac{f(z)}{f_n(z)} = 1 + \frac{1-\alpha}{\delta_{n+1}(\lambda, \beta, \alpha)} z^{n+2} = 1 - \frac{1-\alpha}{\delta_{n+1}(\lambda, \beta, \alpha)} = \frac{\delta_{n+1}(\lambda, \beta, \alpha) - (1-\alpha)}{\delta_{n+1}(\lambda, \beta, \alpha)} \text{ when } r \to 1^{-}.
\]

Therefore the proof of Theorem 1 is completed. \(\square \)

Theorem 2. If \(f \) of the form (1.1) satisfies condition (1.14), then
\[
\operatorname{Re} \left\{ \frac{f(z)}{f_n(z)} \right\} \geq \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha) - (1-\alpha)}{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)} \quad (z \in U). \tag{2.4}
\]

The result is sharp for every \(n \), with extremal function
\[
f(z) = \frac{1}{z} + \frac{1-\alpha}{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)} z^{n+1} \quad (n \geq 1). \tag{2.5}
\]

Proof. We may write
\[
\frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \left[\frac{f(z)}{f_n(z)} - \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha) - (1-\alpha)}{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)} \right]
\]

\[=\frac{1 + \sum_{k=1}^{n} a_k z^{k+1} + \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k z^{k+1}}{1 + \sum_{k=1}^{n} a_k z^{k+1}}
\]

\[=\frac{1 + w(z)}{1 - w(z)}
\]

which implies
\[
\sum_{k=1}^{n} a_k \leq \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k.
\]
where
\[w(z) = \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k z^{k+1} + 2 + 2 \sum_{k=1}^{n} a_k z^{k+1} + \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k z^{k+1}. \]

Now
\[|w(z)| \leq \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k, \]
if
\[\sum_{k=1}^{n} a_k + \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k \leq 1. \quad (2.6) \]

The left hand side of (2.6) is bounded above by
\[\sum_{k=1}^{\infty} \left(\frac{k\delta_k(\lambda, \beta, \alpha)}{1-\alpha} \right) a_k, \]
if
\[\frac{1}{1-\alpha} \left\{ \sum_{k=1}^{n} [k\delta_k(\lambda, \beta, \alpha) - (1-\alpha)] a_k + \sum_{k=n+1}^{\infty} [k\delta_k(\lambda, \beta, \alpha) - (n+1)\delta_{n+1}(\lambda, \beta, \alpha)] a_k \right\} \geq 0 \]
and the proof of Theorem 2 is completed.

We next determine bounds for Re\(\left\{ \frac{f_n(z)}{f(z)} \right\} \).

Theorem 3. (a) If \(f \) of the form (1.1) satisfies condition (1.13), then
\[\text{Re} \left\{ \frac{f_n(z)}{f(z)} \right\} \geq \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{(1-\alpha) + \delta_{n+1}(\lambda, \beta, \alpha)} \quad (z \in U). \quad (2.7) \]

(b) If \(f \) of the form (1.1) satisfies condition (1.14), then
\[\text{Re} \left\{ \frac{f_n(z)}{f(z)} \right\} \geq \frac{(n+1)\delta_{n+1}(\lambda, \beta, \alpha)}{(1-\alpha) - (n+1)\delta_{n+1}(\lambda, \beta, \alpha)} \quad (z \in U). \quad (2.8) \]

Equalities hold in (a) and (b) for the functions given by (2.2) and (2.5), respectively.
Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted. We write

$$
\frac{(1 - \alpha) + \delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \left[\frac{f_n(z)}{f(z)} - \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{(1 - \alpha) + \delta_{n+1}(\lambda, \beta, \alpha)} \right] = \frac{1 + \sum_{k=1}^{n} a_k z^{k+1} - \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \sum_{k=n+1}^{\infty} a_k z^{k+1}}{1 + \sum_{k=1}^{\infty} a_k z^{k+1}} = \frac{1 + w(z)}{1 - w(z)},
$$

where

$$
|w(z)| \leq \frac{(1 - \alpha) + \delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \sum_{k=n+1}^{\infty} a_k \leq 1.
$$

This last inequality is equivalent to

$$
\sum_{k=1}^{n} a_k + \left(\frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha} \right) \sum_{k=n+1}^{\infty} a_k \leq 1. \quad (2.9)
$$

Since the left hand side of (2.9) is bounded above by

$$
\sum_{k=1}^{\infty} \left(\frac{\delta_k(\lambda, \beta, \alpha)}{1 - \alpha} \right) a_k,
$$

the proof is completed. \(\square\)

We next turn to ratios involving derivatives. The proof of Theorem 4 below follows the pattern of those in Theorem 1 and (a) of Theorem 3 and so the details may be omitted.

Theorem 4. If f of the form (1.1) satisfies condition (1.13), then

$$
(a) \Re \left\{ \frac{f'(z)}{f_n(z)} \right\} \geq \frac{\delta_{n+1}(\lambda, \beta, \alpha) + (n + 1)(1 - \alpha)}{\delta_{n+1}(\lambda, \beta, \alpha)} \quad (z \in U),
$$

$$
(b) \Re \left\{ \frac{f'_n(z)}{f'(z)} \right\} \geq \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{\delta_{n+1}(\lambda, \beta, \alpha) - (n + 1)(1 - \alpha)} \quad (z \in U; \alpha \neq 0). \quad \text{The extremal function for the case (a) is given by (2.2) and the extremal function for the case (b) is given by (2.2) with \(\alpha \neq 0\).}
Remark 1. Putting $\beta = 0$ and $\lambda = 0$ in Theorem 2, we obtain the following corollary:

Corollary 2. If f of the form (1.1) satisfies condition (1.13) (with $\beta = 0$ and $\lambda = 0$), that is $f \in \Sigma^*(\alpha)$, then

(a) $\text{Re} \left\{ \frac{f'(z)}{f_n'(z)} \right\} \geq \frac{2(n+1)-n\alpha}{n+1+\alpha} \quad (z \in U),$

(b) $\text{Re} \left\{ \frac{f_n'(z)}{f'(z)} \right\} \geq \frac{n+1+\alpha}{\alpha(n+2)} \quad (z \in U; \alpha \neq 0).$

The extremal function for the case (a) is given by (2.2) (with $\beta = 0$ and $\lambda = 0$) and the extremal function for the case (b) is given by (2.2). (with $\beta = 0$, $\lambda = 0$ and $\alpha \neq 0$).

Remark 2. We note that Corollary 2 corrects the result obtained by Cho and Owa [5, Theorem 4].

Theorem 5. If f of the form (1.1) satisfies condition (1.14), then

(a) $\text{Re} \left\{ \frac{f'(z)}{f_n'(z)} \right\} \geq \frac{\delta_{n+1}(\lambda, \beta, \alpha) - (1-\alpha)}{\delta_{n+1}(\lambda, \beta, \alpha)} \quad (z \in U).$

(b) $\text{Re} \left\{ \frac{f_n'(z)}{f'(z)} \right\} \geq \frac{\delta_{n+1}(\lambda, \beta, \alpha)}{(1-\alpha) + \delta_{n+1}(\lambda, \beta, \alpha)} \quad (z \in U).$

In both cases, the extremal function is given by (2.5).

Proof. It is well known that $f \in \Sigma^*_k(\alpha) \iff -zf' \in \Sigma^*(\alpha)$. In particular, f satisfies condition (1.14) if and only if $-zf'$ satisfies condition (1.13). Thus, (a) is an immediate consequence of Theorem 1 and (b) follows directly from (a) of Theorem 3. \qed

Remark 3. Putting $\beta = 0$ and $\lambda = 0$, in the above results, we get the results obtained by Cho and Owa [5].

Remark 4. Putting $\beta = 0$ and $\lambda = 0$, in the above results, we get the results obtained by Aouf and Silverman [2 with $p = 1$].

Remark 5. Putting $\beta = 0$ and $\lambda = 0$, in the above results, we get the results obtained by Aouf and Mostafa [1 with $p = B = 1$ and $A = 2\alpha - 1$, $0 \leq \alpha < 1$].
References

(Received: March 13, 2014) M. K. Aouf, A. O. Mostafa, A. Y. Lashin and B. M. Munassar
Department of Mathematics
Faculty of Science
University of Mansoura
Mansoura
Egypt
mkaouf127@yahoo.com
adelaeg254@yahoo.com
aylashin@yahoo.com
bmunassar@yahoo.com