THE DIAMETER OF A ZERO-DIVISOR GRAPH FOR FINE DIRECT PRODUCT OF COMMUTATIVE RINGS

S. EBRAMI ATANI AND M. SHAJARI KOHAN

Abstract. This paper establishes a set of theorems that describe the diameter of a zero-divisor graph for a finite direct product $R_1 \times R_2 \times \cdots \times R_n$ with respect to the diameters of the zero-divisor graphs of $R_1, R_2, \ldots, R_{n-1}$ and $R_n (n > 2)$.

1. Introduction

All rings in this paper are commutative and not necessary with 1. The concept of zero divisor graph of a commutative ring R was introduced by Beck in [2]. He let all elements of the ring be vertices of the graph and was interested mainly in coloring. In [1], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are the non-zero zero-divisors. Among other things, they proved that $\Gamma(R)$ is always connected and its diameter is always less than or equal to 3 [1, Theorem 2.3]. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools (see, for example, [1], [3], [4]). In [5], J. Warfel describes the diameter of a zero-divisor graph for a direct product $R_1 \times R_2$ with respect to the diameters of the zero-divisor graphs of R_1 and R_2. The main goal in this paper is to generalize some of the results in the paper listed as [5], from $R_1 \times R_2$ to $R_1 \times R_2 \times \cdots \times R_n (n > 2)$ (see section 2).

For the sake of completeness, we state some definitions and notations used throughout. Let R be a commutative ring. We used $Z(R)$ to denote the set of zero-divisors of R; we use $Z^*(R)$ to denote the set of non-zero zero-divisors of R. By the zero-divisor graph of R, denoted $\Gamma(R)$, we mean the graph whose vertices are the non-zero zero-divisors of R, and for distinct $x, y \in Z^*(R)$, there is an edge connecting x and y if and only if $xy = 0$. A graph is said to be connected if there exists a path between any two distinct vertices. For two distinct vertices a and b in the graph $\Gamma(R)$, the
Let \(\text{diam}(\Gamma((i)) \) denote the diameter of the graph of \(Z^*(R) \). The diameter is zero if the graph consists of a single vertex and a connected graph with more than one vertex has diameter 1 if and only if it is complete; i.e. each pair of distinct vertices forms an edge. We tacitly assume that \(R \) has at least 2 non-zero zero-divisors. Also, though it be an abuse of notation, let \(0 = (0, 0, \cdots, 0) \).

2. Finite direct product

In this section, we will investigate the relation between the diameter of a zero-divisor graph of a finite direct product \(R_1 \times R_2 \times \cdots \times R_n \) with the diameters of the zero-divisor graphs of \(R_1, R_2, \ldots, R_{n-1} \) and \(R_n \). Our starting point is the following lemma:

Lemma 2.1. Let \(R \) be commutative ring with \(\text{diam}(\Gamma(R)) = 1 \) and \(R = Z(R) \). Then \(xy = 0 \) for all \(x, y \in Z(R) \). In particular, \(x^2 = 0 \) for every nilpotent element of \(R \).

Proof. Suppose not. Then there are elements \(a, b \in Z(R) \) such that \(ab \neq 0 \), so by [1, Theorem 2.8], \(R \cong Z_2 \times Z_2 \); hence \(R \neq Z(R) \) which is a contradiction, as required. \(\square \)

Theorem 2.2. Let \(R_1, R_2, \ldots, R_{n-1} \) and \(R_n \) be commutative rings such that \(\text{diam}(\Gamma(R_1)) = \cdots = \text{diam}(\Gamma(R_n)) = 1 \), and let \(R = R_1 \times R_2 \times \cdots \times R_n \) \((n > 2)\). Then the following hold:

(i) \(\text{diam}(\Gamma(R)) = 1 \) if and only if \(R_i = Z(R_i) \) for every \(i \in \{1, \ldots, n\} \).

(ii) \(\text{diam}(\Gamma(R)) = 2 \) if and only if \(R_i = Z(R_i) \) and \(R_j \neq Z(R_j) \) for some \(i, j \in \{1, 2, \ldots, n\} \).

(iii) \(\text{diam}(\Gamma(R)) = 3 \) if and only if \(R_i \neq Z(R_i) \) for every \(i \in \{1, 2, \ldots, n\} \).

Proof. (i) Assume that \(R_i = Z(R_i) \) for every \(i = 1, 2, \ldots, n \) and let \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \) be elements of \(Z^*(R) \). By Lemma 2.1, \(a_i, b_i = 0 \) for all \(i \), so \(ab = 0 \); hence \(\text{diam}(\Gamma(R)) = 1 \). Conversely, assume that \(R_j \neq Z(R_j) \) for some \(j \in \{1, 2, \ldots, n\} \). Then, for some \(x_j, y_j \in R_j, x_jy_j \neq 0 \). Set \(x = (0, \ldots, x_j, 0, \ldots, 0), y = (0, \ldots, y_j, 0, \ldots, 0) \), and let \(0 \neq a_i \in R_i \) where \(i \neq j \). Since \(x(0, \ldots, a_i, 0, \ldots, 0) = 0, y(0, \ldots, a_i, 0, \ldots, 0) = 0 \) and \(xy \neq 0 \), we must have \(\text{diam}(\Gamma(R)) > 1 \) which is a contradiction.

(ii) If \(R_i = Z(R_i) \) and \(R_j \neq Z(R_j) \) for some \(i, j \in \{1, 2, \ldots, n\} \), then by (i), the fact that \(R_j \neq Z(R_j) \) implies that \(\text{diam}(\Gamma(R)) > 1 \). Then there exist \(r = (r_1, \ldots, r_n) \in Z^*(R) \) and \(s = (s_1, \ldots, s_n) \in Z^*(R) \) such that \(d(r, s) \neq 1, so rs \neq 0 \). Since \(R_i = Z(R_i) \), there must exist \(t_i \in R_i \) such that
Let \(d_{\text{diam}}(\Gamma) = 0 \), which is a contradiction. Thus \(c \neq a \).

Proof. There must exist \(x_i \in R_i - Z(R_i) \) for every \(i \in \{1, 2, \ldots, n\} \). Let for each \(i \), \(z_i \in Z^*(R_i) \). So there is an element \(z_i' \) of \(Z^*(R_i) \) such that \(z_i z_i' = 0 \) for all \(i \). If \(a = (z_1, x_2, \ldots, x_n) \) and \(b = (x_1, z_2, x_3, \ldots, x_n) \), then \(a(z_1', 0, \ldots, 0) = 0 \) and \(b(0, z_2', 0, \ldots, 0) = 0 \), so \(ab \neq 0 \), the distance between the vertices is greater than one. Since \(d_{\text{diam}}(\Gamma) = 1 \), there must be some \(c = (c_1, \ldots, c_n) \in Z^*(R) \) such that \(ac = bc = 0 \). Then \(c = 0 \), which is not an element of \(Z^*(R) \). But this is a contradiction. Thus \(R_i = Z(R_i) \) and \(R_j \neq Z(R_j) \) for some \(i, j \in \{1, 2, \ldots, n\} \).

(iii) This follows from (i) and (ii).

We will need the following lemma from [5, Lemma 3.1].

Lemma 2.3. Let \(R \) be a commutative ring such that \(d_{\text{diam}}(\Gamma) = 2 \) and \(R = Z(R) \). Then for all \(x, y \in R \), there exists an element \(z \) of \(Z^*(R) \) such that \(xz = yz = 0 \).

Theorem 2.4. Let \(R_1, R_2, \ldots, R_{n-1} \) and \(R_n \) be commutative rings such that \(d_{\text{diam}}(\Gamma(R_1)) = \cdots = d_{\text{diam}}(\Gamma(R_n)) = 2 \), and let \(R = R_1 \times R_2 \times \cdots \times R_n \) \((n > 2) \). Then the following hold:

(i) \(d_{\text{diam}}(\Gamma) \neq 1 \).

(ii) \(d_{\text{diam}}(\Gamma) = 2 \) if and only if \(R_i = Z(R_i) \) for some \(i \in \{1, 2, \ldots, n\} \).

(iii) \(d_{\text{diam}}(\Gamma) = 3 \) if and only if \(R_i \neq Z(R_i) \) for every \(i \in \{1, 2, \ldots, n\} \).

Proof. (i) Is clear.

(ii) Let \(R_i = Z(R_i) \) for some \(i \in \{1, 2, \ldots, n\} \). By (i), there are elements \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) of \(Z^*(R) \) such that \(x \neq y \) and \(xy \neq 0 \). Since \(x_i, y_i \in R_i \), Lemma 2.3 gives \(x_i z_i = 0 = y_i z_i \) for some non-zero element \(z_i \) of \(Z(R_i) \). Let \(z = (0, \ldots, z_i, 0, \ldots, 0) \). Since \(xz = 0 = yz \), we must have \(x = z - y \) is a path; hence a path of length two can be found between any two vertices of \(\Gamma(R) \) by way of \(z \). So, \(d_{\text{diam}}(\Gamma) = 2 \). Conversely, assume that \(d_{\text{diam}}(\Gamma) = 2 \) and let \(R_i \neq Z(R_i) \) for each \(i \in \{1, 2, \ldots, n\} \). Let for each \(i \), \(e_i \in Z^*(R_i) \) and \(m_i \in R_i - Z(R_i) \). So there is an element \(e_i' \) of \(Z^*(R_i) \) such that \(e_i e_i' = 0 \) for all \(i \). If \(a = (e_1, m_2, \ldots, m_n) \) and \(b = (m_1, e_2, m_3, \ldots, m_n) \), then \(a(e_1', 0, \ldots, 0) = 0 \) and \(b(0, e_2', 0, \ldots, 0) = 0 \), so \(ab \neq 0 \), the distance between the vertices is greater than one. Since \(d_{\text{diam}}(\Gamma) = 2 \), there must be some \(c = (c_1, \ldots, c_n) \in Z^*(R) \) such that \(ac = 0 = bc \). Then \(c = 0 \), which is a contradiction. Thus \(R_i \neq Z(R_i) \) for some \(i \in \{1, 2, \ldots, n\} \).

(iii) This follows from (i) and (ii).
Theorem 2.5. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\text{diam}(\Gamma(R_1)) = \cdots = \text{diam}(\Gamma(R_{n-1})) = 3$, and let $R = R_1 \times R_2 \times \cdots \times R_n$ ($n > 2$). Then $\text{diam}(\Gamma(R)) = 3$.

Proof. Since for each $i \in \{1, 2, \ldots, n\}$, $\text{diam}(\Gamma(R_i)) = 3$, there exist $x_i, y_i \in Z^*(R_i)$ with $x_i \neq y_i, x_iy_i \neq 0$ such that there is no $z_i \in Z^*(R_i)$ with $x_iz_i = 0 = y_iz_i$. Consider $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$. For each $i \in \{1, 2, \ldots, n\}$, there are elements $x'_i, y'_i \in Z^*(R_i)$ such that $x_ix'_i = 0$ and $y iy'_i = 0$, so $x, y \in Z^*(R)$. As $xy \neq 0$, we must have $\text{diam}(\Gamma(R)) \neq 1$. If $\text{diam}(\Gamma(R)) = 2$, then $d(x, y) \neq 1$ implies there is an element $a = (a_1, \ldots, a_n) \in Z^*(R)$ with $xa = 0 = ya$; hence $a = 0$ by our assumption which is a contradiction, so $\text{diam}(\Gamma(R)) = 3$ must hold.

Theorem 2.6. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\text{diam}(\Gamma(R(i))) = 1$, $\text{diam}(\Gamma(R(j))) = 2$ for some $i, j \in \{1, 2, \ldots, n\}$ and there is no $k \in \{1, 2, \ldots, n\}$ with $\text{diam}(\Gamma(R_k)) = 3$, and let $R = R_1 \times R_2 \times \cdots \times R_n$ ($n > 2$). Then the following hold:

1. $\text{diam}(\Gamma(R)) \neq 1$.
2. $\text{diam}(\Gamma(R)) = 2$ if and only if $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$.
3. $\text{diam}(\Gamma(R)) = 3$ if and only if $R_i \neq Z(R_i)$ for every $i \in \{1, 2, \ldots, n\}$.

Proof. (i) Is clear.

(ii) First, assume that $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$; we show that $\text{diam}(\Gamma(R)) = 2$. By hypothesis, we divided the proof into two cases.

Case 1. $\text{diam}(\Gamma(R_i)) = 1$. It then follows from Lemma 2.2 that $xy = 0$ for all $x, y \in Z(R_i)$. By (i), there must exist $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in Z^*(R)$ with $xy \neq 0$. If $z_i \in Z^*(R_i)$, then $x(0, \ldots, z_i, \ldots, 0) = 0$, so $z = (0, \ldots, z_i, \ldots, 0)$ is an element of $Z^*(R)$. Clearly, $x - z - y$ is a path. Hence, a path of length two can be found between any two vertices of $\Gamma(R)$ by way of z. So, $\text{diam}(\Gamma(R)) = 2$.

Case 2. $\text{diam}(\Gamma(R_i)) = 2$. By (i), there must exist $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in Z^*(R)$ with $xy \neq 0$. By Lemma 2.3, there is an element z_i of $Z^*(R_i)$ such that $x_iz_i = y_iz_i = 0$. Set $z = (0, \ldots, z_i, 0, \ldots, 0)$. Then $x - z - y$ is a path, and hence a path of length two can be found between any two vertices of $\Gamma(R)$ by way of z. So, $\text{diam}(\Gamma(R)) = 2$.

Next assume that $\text{diam}(\Gamma(R)) = 2$; we show that $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$. Suppose that for each $i \in \{1, 2, \ldots, n\}$, $R_i \neq Z(R_i)$. Let for each i, $x_i \in Z^*(R_i)$ and $m_i \in R_i - Z(R_i)$. So there is an element x'_i of $Z^*(R_i)$ such that $x_ix'_i = 0$ for all i. If $a = (x_1, m_2, \ldots, m_n)$ and $b = (m_1, x_2, m_3, \ldots, m_n)$, then $a(x'_1, 0, \ldots, 0) = 0$ and $b(0, x'_2, 0, \ldots, 0) = 0$, so $a, b \in Z^*(R)$. As $ab \neq 0$, the distance between the vertices is greater than one. Since $\text{diam}(\Gamma(R)) = 2$, there must be some $c = (c_1, \ldots, c_n) \in Z^*(R)$
such that $ac = 0 = bc$. Then $c = 0$, which is a contradiction. Thus $R_i \neq Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$.

(iii) This follows from (i) and (ii).

Theorem 2.7. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\text{diam}(\Gamma(R_i)) = 1$, $\text{diam}(\Gamma(R_j)) = 3$ for some $i, j \in \{1, 2, \ldots, n\}$ and there is no $k \in \{1, 2, \ldots, n\}$ with $\text{diam}(\Gamma(R_k)) = 2$, and let $R = R_1 \times R_2 \cdots \times R_n$ ($n > 2$). Then the following hold:

(i) $\text{diam}(\Gamma(R)) \neq 1$.

(ii) $\text{diam}(\Gamma(R)) = 2$ if and only if $\text{diam}(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$.

(iii) $\text{diam}(\Gamma(R)) = 3$ if and only if there is no $i \in \{1, 2, \ldots, n\}$ with $\text{diam}(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$.

Proof. (i) Is clear.

(ii) Let i be such that $\text{diam}(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$; we show that $\text{diam}(\Gamma(R)) = 2$. It follows from [1, Theorem 2.8] that $a_i b_i = 0$ for every $a_i, b_i \in Z(R_i)$. By (i), there must exist $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in Z^*(R)$ such that $xy \neq 0$. Assume that $a_i \in Z^*(R_i)$ and set $a = (0, 0, \ldots, a_i, 0, 0)$. Then $ax = 0 = ay$, so $a \in Z^*(R)$. Therefore, $x - a - y$ is a path, and hence a path of length two can be found between any two vertices of $\Gamma(R)$ by way of a. So $\text{diam}(\Gamma(R)) = 2$. Conversely, assume that $\text{diam}(\Gamma(R)) = 2$; we show that $\text{diam}(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some i. Suppose not. Let i_1, \ldots, i_k be such that $\text{diam}(\Gamma(R_{i_r})) = 1$ ($1 \leq r \leq k$), and let j_1, \ldots, j_t be such that $\text{diam}(\Gamma(R_{j_s})) = 3$ ($1 \leq s \leq t$). Since for each s ($1 \leq s \leq t$), $\text{diam}(\Gamma(R_{j_s})) = 3$, there exist $x_{j_s}, y_{j_s} \in Z^*(R_{j_s})$ with $x_{j_s} \neq y_{j_s}, x_{j_s}y_{j_s} = 0$ such that there is no $z_{j_s} \in Z^*(R_{j_s})$ with $x_{j_s}z_{j_s} = y_{j_s}z_{j_s} = 0$. Moreover, for each s ($1 \leq s \leq t$), there must exist $x_{j_s}'_{j_s}, y_{j_s}'_{j_s} \in Z^*(R_{j_s})$ with $x_{j_s}'_{j_s}y_{j_s}'_{j_s} = 0$ and $y_{j_s}'_{j_s} = 0$. Now for each r ($1 \leq r \leq k$), let $m_{i_r} \in R_{i_r} - Z(R_{i_r})$. Set $c = (m_{i_1}, \ldots, x_{j_1}, \ldots, x_{j_t}, \ldots)$ and $d = (m_{i_1}, \ldots, y_{j_1}, \ldots, y_{j_t}, \ldots)$. Then $c(0, \ldots, x_{j_1}'_{j_1}, 0, \ldots, 0) = 0$, so $c \in Z^*(R_i)$. Similarly, $d \in Z^*(R_i)$. As $cd \neq 0$ and $\text{diam}(\Gamma(R)) = 2$, there must be some $e = (e_1, \ldots, e_n) \in Z^*(R)$ such that $ce = de = 0$. Then $e = 0$, which is a contradiction. Thus $\text{diam}(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$.

(iii) Since $\Gamma(R)$ is connected and $\text{diam}(\Gamma(R)) \leq 3$, we must have the diameter of $\Gamma(R)$ is either 2 or 3 by (i). If $\text{diam}(\Gamma(R)) = 2$, then by (ii), $\text{diam}(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$ which is a contradiction. Thus $\text{diam}(\Gamma(R)) = 3$. The proof of the other implication is clear.

Theorem 2.8. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings such that $\text{diam}(\Gamma(R_i)) = 2$, $\text{diam}(\Gamma(R_j)) = 3$ for some $i, j \in \{1, 2, \ldots, n\}$ and there is
no \(k \in \{1, 2, \ldots, n\} \) with \(\text{diam}(\Gamma(R_k)) = 1 \), and let \(R = R_1 \times R_2 \cdots \times R_n \) \((n > 2)\). Then the following hold:

(i) \(\text{diam}(\Gamma(R)) \neq 1 \).

(ii) \(\text{diam}(\Gamma(R)) = 2 \) if and only if \(\text{diam}(\Gamma(R_i)) = 2 \) and \(R_i = Z(R_i) \) for some \(i \in \{1, 2, \ldots, n\} \).

(iii) \(\text{diam}(\Gamma(R)) = 3 \) if and only if there is no \(i \in \{1, 2, \ldots, n\} \) with \(\text{diam}(\Gamma(R_i)) \leq 2 \) and \(R_i = Z(R_i) \).

Proof. (i) Is clear.

(ii) Let \(i \) be such that \(\text{diam}(\Gamma(R_i)) = 2 \) and \(R_i = Z(R_i) \); we show that \(\text{diam}(\Gamma(R)) = 2 \). Then by Lemma 2.3, \(a_i b_i = 0 \) for every \(a_i, b_i \in Z(R_i) = R_i \). By (i), there must exist \(x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in Z^*(R) \) such that \(xy \neq 0 \). Assume that \(a_i \in Z^*(R_i) \) and set \(a = (0, 0, \ldots, a_i, 0, \ldots, 0) \). Then \(ax = 0 = ay \), so \(a \in Z^*(R) \). Therefore \(x - a - y \) is a path, and hence a path of length two can be found between any two vertices of \(\Gamma(R) \) by way of \(a \). So, \(\text{diam}(\Gamma(R)) = 2 \). Conversely, assume that \(\text{diam}(\Gamma(R)) = 2 \); we show that \(\text{diam}(\Gamma(R_i)) = 2 \) and \(R_i = Z(R_i) \) for some \(i \). Suppose that for each \(i \) \((1 \leq i \leq n)\), if \(\text{diam}(\Gamma(R_i)) = 2 \), then \(R_i \neq Z(R_i) \). Let \(i_1, \ldots, i_k \) be such that \(\text{diam}(\Gamma(R_{i_1})) = 2 \) \((1 \leq i \leq k)\), and let \(j_1, \ldots, j_l \) be such that \(\text{diam}(\Gamma(R_{j_s}))(1 \leq s \leq t) \). By assumption, for each \(r \) \((1 \leq r \leq k)\), \(R_{i_r} \neq Z(R_{i_r}) \). For each \(r \) \((1 \leq r \leq k)\), let \(m_{i_r} \in R_{i_r} - Z(R_{i_r}) \). Since for each \(s \) \((1 \leq s \leq t)\), \(\text{diam}(\Gamma(R_{j_s})) = 2 \), there exist \(x_{j_s}, y_{j_s} \in Z^*(R_{j_s}) \) with \(x_{j_s} \neq y_{j_s}, x_{j_s}y_{j_s} = 0 \) such that there is no \(z_{j_s} \in Z^*(R_{j_s}) \) with \(x_{j_s}z_{j_s} = 0 = y_{j_s}z_{j_s} \). Moreover, for each \(s \) \((1 \leq s \leq t)\), there must exist \(x_{j_s}, y_{j_s} \in Z^*(R_{j_s}) \) with \(x_{j_s}x_{j_s}' = 0 \) and \(y_{j_s}y_{j_s}' = 0 \). Set \(c = (m_{i_1}, \ldots, x_{j_1}, \ldots, x_{j_l}, \ldots) \) and \(cd = (m_{i_1}, \ldots, y_{j_1}, \ldots, y_{j_l}, \ldots) \). Then \(c(0, \ldots, x_{j_1}, 0, \ldots, 0) = 0 \), so \(c \in Z^*(R) \). Similarly, \(d \in Z^*(R) \). As \(cd \neq 0 \) and \(\text{diam}(\Gamma(R)) = 2 \), there must be some \(e = (e_1, \ldots, e_n) \in Z^*(R) \) such that \(ce = 0 = de \). Then \(e = 0 \), which is a contradiction. Thus \(\text{diam}(\Gamma(R_i)) = 2 \) and \(R_i = Z(R_i) \) for some \(i \in \{1, 2, \ldots, n\} \).

(iii) This follow from (i) and (ii). \(\square\)

Theorem 2.9. Let \(R_1, R_2, \ldots, R_{n-1} \) and \(R_n \) be commutative rings such that \(\text{diam}(\Gamma(R_i)) = 1 \), \(\text{diam}(\Gamma(R_j)) = 2 \) and \(\text{diam}(\Gamma(R_k)) = 3 \) for some elements \(i, j \) and \(k \) of the set \(\{1, 2, \ldots, n\} \), and let \(R = R_1 \times R_2 \cdots \times R_n \) \((n > 2)\). Then the following hold:

(i) \(\text{diam}(\Gamma(R)) \neq 1 \).

(ii) \(\text{diam}(\Gamma(R)) = 2 \) if and only if \(\text{diam}(\Gamma(R_i)) \leq 2 \) and \(R_i = Z(R_i) \) for some \(i \in \{1, 2, \ldots, n\} \).

(iii) \(\text{diam}(\Gamma(R)) = 3 \) if and only if there is no \(i \in \{1, 2, \ldots, n\} \) with \(\text{diam}(\Gamma(R_i)) \leq 2 \) and \(R_i = Z(R_i) \).

Proof. (i) Is clear.
(ii) Let $\text{diam}(\Gamma(R_i)) \leq 2$ and $R_i = Z(R_i)$ for some $i \in \{1, 2, \ldots, n\}$; we show that $\text{diam}(\Gamma(R)) = 2$. We divided the proof into two cases.

Case 1. $\text{diam}(\Gamma(R_i)) = 1$ and $R_i = Z(R_i)$ for some i. By a similar argument as in Theorem 2.7 (ii), we get $\text{diam}(\Gamma(R)) = 2$.

Case 2. $\text{diam}(\Gamma(R_i)) = 2$ and $R_i = Z(R_i)$ for some i. By a similar argument as in Theorem 2.8 (ii), we get $\text{diam}(\Gamma(R)) = 2$. Conversely, suppose that $\text{diam}(\Gamma(R)) = 2$. It is easy to see from Theorem 2.8 (ii) that $\text{diam}(\Gamma(R_i)) \leq 2$ and $R_i = Z(R_i)$ for some i.

(iii) This follow from (i) and (ii).

Corollary 2.10. Let $R_1, R_2, \ldots, R_{n-1}$ and R_n be commutative rings with identity, and let $R = R_1 \times \cdots \times R_n$ ($n > 2$). Then $\text{diam}(\Gamma(R)) = 3$.

Proof. For each $i \in \{1, 2, \ldots, n\}$, $R_i \neq Z(R_i)$ since $1_{R_i} \notin Z(R_i)$. Now the assertion follows from Theorem 2.2, Theorem 2.4 and Theorem 2.6 (for an alternative proof see [3, 2.6 (4)]).

Example 1. (i) Assume that R is a commutative ring (not necessary with 1) and let $S = \text{Mat}(R)$ be the set of all 2×2 matrices of the form

\[
A = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}
\]

where $a \in R$. It is easy to see that if A, B are non-zero elements of S, then $AB = 0$; hence $Z(S) = S$ and $\text{diam}(\Gamma(S)) = 1$.

(ii) Let Z_{25} denote the ring of integers modulo 25. Then $Z^*(Z_{25}) = \{5, 10, 15, 20\}$, $Z_{25} \neq Z(Z_{25})$ and $\text{diam}(\Gamma(Z_{25})) = 1$. Clearly, $Z(Z_2 \times Z_4) \neq Z_2 \times Z_4$ and $\text{diam}(\Gamma(Z_2 \times Z_4)) = 3$.

(iii) If $R_1 = R_2 = \cdots = R_n = S$ and $R = R_1 \times \cdots \times R_n$, then $\text{diam}(\Gamma(R)) = 1$ by Theorem 2.2 (i).

(iv) If $R_1 = Z_{25}$, $R_2 = \cdots = R_n = S$ and $R = R_1 \times \cdots \times R_n$, then $\text{diam}(\Gamma(R)) = 2$ by Theorem 2.2 (ii).

(v) If $R_1 = Z_{25}$, $R_2 = \cdots = R_n$ and $R = R_1 \times \cdots \times R_n$, then $\text{diam}(\Gamma(R)) = 3$ by Theorem 2.2 (iii).

(vi) If $R_1 = Z_2 \times Z_4$, $R_2 = \cdots = R_n$ and $R = R_1 \times \cdots \times R_n$, then $\text{diam}(\Gamma(R)) = 3$ by Theorem 2.5 (or Corollary 2.10).

References

(Received: October 19, 2006) Department of Mathematics
(Revised: June 3, 2007) University of Guilan
P.O. Box 1914, Rasht
Iran