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REGULAR HEPTAGON’S MIDPOINTS CIRCLE

ZVONKO ČERIN

Abstract. This paper explores the geometry of the regular heptagon
ABCDEFG. We start from a classical result by Thébault and Demir
that six midpoints of sides and diagonals lie on a cirlce m with di-
ameter equal to the side of the square inscribed in the circumcircle of
ABCDEFG. Then we discover eight more midpoints of segments on m

and show that they are vertices of two regular heptagons inscribed in the
circle m. Extending further this idea we show that midpoints of many
other segments also lie on the circle m so that it deserves the name –
the midpoints circle of ABCDEFG. In the proofs we use the complex
numbers and perform our calculations with the help of computers in
Maple V.

The regular heptagon (i. e., the planar regular convex polygon with seven
vertices) has not been studied extensively like its cousins the equilateral
triangle, the square, the regular pentagon, and the regular hexagon. Per-
haps the reason is because this is the first regular polygon that cannot be
constructed only with compass and straightedge. The few sporadic known
results on regular heptagons were reviewed 30 years ago by Leon Bankoff
and Jack Garfunkel in the reference [1]. One of the simplest is the following
result by Victor Thébault and Hüseyin Demir [1, p. 10] which shows that
the midpoints of several segments in the regular heptagon are related to the
inscribed square.

Theorem 1. Let ABCDEFG be a regular heptagon inscribed in a circle k

of radius R and center O. If P is the midpoint of the shorter arc BC and

U and V are midpoints of the segments AB and OP then |UV | =
√

2
2 R. In

other words, 2|UV | is equal to the side of the square inscribed in the circle k.
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14Q05.
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Figure 1: Selection of affixes of points in the proof of Theorem 1.

Moreover, the midpoints of the segments BG, AE, DG, CE, and CD share
this property with the point U .

Proof. Without loss of generality we can assume that R = 1 and that the
vertices F , G, A, B, C, D, and E correspond to 7th roots 1, e, e2, e3, e4, e5,
and e6 of unity. Then the points O, P , U , and V are at complex numbers

0, −1, e2+e3

2 , and −1
2 (see Figure 1). Hence,

|UV |2 = (U − V )(U − V ) = (U − V )(U − V ) =
(

e2 + e3

2
+

1

2

)(

e5 + e4

2
+

1

2

)

=
2 + 1 + e + e2 + · · · + e6

4
=

1

2

because 1 + e + e2 + · · · + e6 = 0. The proofs for the other five midpoints
are similar. �

The above proof is indeed simple. It uses the well-known identification of
points and complex numbers in the Gauss plane, the fact that X+Y

2 is the
midpoint of the segment XY , that the square of the distance between points
X and Y is the product (X − Y )(X − Y ) of X − Y and its conjugate X − Y ,
that the conjugation satisfies X − Y = X − Y , some algebraic simplification
and the special property of the 7th root of unity at the end.
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With so many computers around us and their profound influence on our
lives one can wonder if we can discover and prove Theorem 1 with some help
from computers.

Our figures are made in the software The Geometer’s Sketchpad, the tool
that can be used for approximate verification of statements and in the dis-
covery of new theorems in geometry.

For example, to make Figure 1, we draw the points O and A, the circle k

from them and mark O as a center (of a rotation). Then we rotate for 360
7

degrees the point A six times in succession to get the vertices of ABCDEFG.
For the point P we rotate F about O for 180 degrees. The points V , U , U ′,
W , W ′, L and L′ are midpoints of segments OP , AB, CD, BG, CE, AE

and DG. We see that the circle m constructed from the points V (as the
center) and U goes through these midpoints. This is only an indication that
Theorem 1 is true and it is not its proof because The Geometer’s Sketchpad
has maximal precision of hundred thousandths that falls short of absolute
correctness.

Looking back at the above proof of Theorem 1 we see that the key step
was the algebraic simplification. The software like Derive, Mathematica and
Maple V excel in this task so that they will easily do this part provided we
make some preparation.

We will now make this in Maple V first for Theorem 1 and then build up
the necessary functions that will be used to discover and prove all our other
results.

We give points as ordered pairs [p, q] of the complex number p and its
conjugate q. The complex number e is the 7th root of unity, i. e., e7 − 1 = 0.
From e7 − 1 = (e − 1)(e6 + e5 + e4 + e3 + e2 + e + 1) and e 6= 1 we get σ =
e6 + e5 + e4 + e3 + e2 + e + 1 = 0. Hence, we input:

hF:=[1,1]: hG:=[e,eˆ6]: hA:=[eˆ2,eˆ5]: hB:=[eˆ3,eˆ4]:

hC:=[eˆ4,eˆ3]: hD:=[eˆ5,eˆ2]: hE:=[eˆ6,e]: hP:=[-1,-1]:

hV:=[-1/2,-1/2]:

Here we use hA instead of A as a name of the first vertex because with plain
letters we run into problems as some letters are reserved in Maple V (for
example D).

In order to cut down typing we introduce the shortening FS for the simul-
taneous use of commands factor and simplify that will be used frequently.

FS:=x->factor(simplify(x)):

The following procedures dis and mid compute the square of the distance
between two points a and x and their midpoint. The letters b, c, y, and
z denote local variables. They are the first and the second coordinates of
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the given points. The square of the distance is the product of the difference
b − y and its conjugate c − z. The midpoint is b+y

2 and its conjugate is c+z
2 .

dis:=proc(a,x) local b,c,y,z; b:=a[1]: c:=a[2]:

y:=x[1]: z:=x[2]: FS((b-y)*(c-z)): end:

mid:=proc(a,x) local b,c,y,z; b:=a[1]: c:=a[2]:

y:=x[1]: z:=x[2]: FS([b/2+y/2, c/2+z/2]): end:

The circle m is the locus of all points whose square of distance to the point V

is equal to 1
2 . The following function hm associates to a point the difference

of the square of its distance from V and 1
2 . A point T will lie on the circle

m if and only if the value hm(T ) is zero.

hm:=x->FS(dis(x,hV)-1/2):

The proof of Theorem 1 amounts to check whether the values of the function
hm in the points U , U ′, W , W ′, L and L′ are zero.

hU:=mid(hA,hB): hUp:=mid(hC,hD): hW:=mid(hB,hG):

hWp:=mid(hC,hE): hL:=mid(hA,hE): hLp:=mid(hD,hG):

hm(hU); hm(hUp); hm(hW); hm(hWp); hm(hL); hm(hLp);

The outputs are α σ
4 , α σ

4 , β σ
4 , β σ

4 , γ σ
4 and γ σ

4 , where α = e2 + e − 1, β =

e3−e2 +2e−1 and γ = e5 − e4 + 2e − 1. Since they all contain σ as a factor
and σ = 0 we conclude that these midpoints are on the circle m and the
proof of Theorem 1 in Maple V is accomplished.

In this note we shall first add six new segments whose midpoints also

lie on the circle m with the center at the point V and the radius R
√

2
2 .

The discovery of these new points was by chance while playing with the
Sketchpad. However, the symmetry of Figure 1 in the line FO and the fact
that the intersections H, I, J of the lines AE, AB, BG with their reflections
DG, CD, CE are on FO make these intersections obvious candidates for
endpoints of such segments.

Theorem 2. Let ABCDEFG be a regular heptagon inscribed in a cir-
cle k of radius R and center O. Let H = AE ∩ DG, I = AB ∩ CD, and
J = BG ∩ CE. If P is the midpoint of the shorter arc BC and V is the
midpoint of the segment OP then the midpoints X, Y , U , W , K, L, L′,
K ′, W ′, U ′, Y ′, and X ′ of the segments BI, GJ , AB, BG, AH, AE, DG,
DH, CE, CD, CI, and EJ , respectively, all lie on the circle m. The line
joining the intersections Q and Q′ of the circles k and m is the perpendicular
bisector of the segment PV .
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Figure 2: The circle m is passing through 14 midpoints.

Proof. Let the assumptions of the proof of Theorem 1 hold. Then the
equation of the circle m is

[

z − (−1
2)

] [

z − (−1
2)

]

= 1
2 which simplifies to

4 z z̄ + 2 z + 2 z̄ − 1 = 0. The method of proof is to find the complex coordi-
nate of each point and check that they satisfy this equation. For example, in
order to do this for the point X (the midpoint of the segment joining the ver-
tex B with the intersection I of lines AB and CD), we determine equations

of lines AB and CD and solve them to get I = (e+1)e4

e2+1
and X =

e3(2 e2+e+1)
2(e2+1)

.

Let δ denote 2 e5 + e4 + 3 e3 − 2 e2 + e − 1. Since 4X X̄ + 2X + 2 X̄ − 1
factors as δ σ

(e2+1)2
, we conclude that the point X is on the circle m.

The last claim is true because the circles m and k (whose equation is

z z̄ = 1) intersect in points Q = −3
4 + i

√
7

4 and Q′ = −3
4 − i

√
7

4 . �

In order to implement the above proof in Maple V we need the functions
for lines and their intersections.

We represent lines as ordered triples [u, v, w] of coefficients of their equa-
tions u z + v z̄ + w = 0. The procedure lin gives the line through two dif-
ferent points.

lin:=proc(m,n) local a,b,c,x,y,z; a:=m[1]: b:=m[2]:

x:=n[1]: y:=n[2]: FS([b-y, x-a, a*y-b*x]): end:

That the coefficients u, v, and w are indeed b − y, x − a, and ay − bx follows
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easily by substituting the coordinates of the points m and n and solving in
u and v.

solve({u*a+v*b+w,u*x+v*y+w},{u,v});

The output is {u = w (b−y)
a y−b x

, v = w (x−a)
a y−x b

}. If we substitute this into the equa-

tion of the line and multiply with ay − xb and divide with w we get the
above form.

In a similar way we derive the important procedure which gives the inter-
section of two lines. When its usage results in the error message

Error, numeric exception: division by zero

this means that ay − xb = 0 so that the lines are parallel (when they do not
have an intersection).

inter:=proc(m,n) local a,b,c,x,y,z; a:=m[1]:

b:=m[2]: c:=m[3]: x:=n[1]: y:=n[2]: z:=n[3]:

FS([(b*z-c*y)/(a*y-b*x),(c*x-a*z)/(a*y-b*x)]): end:

The verification of Theorem 2 is done with the following input:

fp:=(a,b,c,d)->inter(lin(a,b),lin(c,d)):

hH:=fp(hA,hE,hD,hG): hI:=fp(hA,hB,hC,hD): hX:=mid(hI,hB):

hJ:=fp(hB,hG,hC,hE)): hY:=mid(hJ,hG): hK:=mid(hH,hA):

hKp:=mid(hH,hD): hYp:=mid(hJ,hE): hXp:=mid(hI,hC):

hm(hX);hm(hY);hm(hK);hm(hKp);hm(hYp);hm(hXp);

The first output is δ σ
(e2+1)2

. This completes the proof for the point X.

Next we prove that the intersections Q and Q′ of the circles k and m

are also midpoints of segments. This observation is a consequence of our
desire to have points Q and Q′ as midpoints of some segments related to the
regular heptagon as other twelve points from Theorem 2 are. The search
for the points M and M ′ in the Sketchpad begins with any point S and its
reflection S′ in the point Q. We move S into various positions (for example,
into the point H) and look carefully on what lines the point S′ will be. Of
course, a bit of luck is needed here but if you are patient the reward will
come.

Theorem 3. Let M and M ′ be the intersections of the lines AG and DE

with the tangents to the circle k at the points C and B. Then Q and Q′ are
the midpoints of the segments HM and HM ′ (see Figure 2).

Proof. The line AG has the equation e5 z + e z − e6 − 1 = 0 and the equation
of the tangent to the circle k at C is e3 z + e4 z − 2 = 0. They intersect in
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the point M = e4(e2+2 e+2)
e4+e3+e2+e+1

. Now we can show that the midpoint of the
segment HM is the complex number

5 e6 + 5 e5 + 3 e4 + 2 e3 + 2 e2 + e + 2

4(e4 + e3 + e2 + e + 1)(e + 1)

and agrees with the point Q by finding that their distance is zero or by
checking that it satisfies the equations of k and m. �

In Maple V the above proof begins with the procedure for the perpendic-
ular through a given point to a given line:

per:=(t,p)->FS([p[1],-p[2],t[2]*p[2]-t[1]*p[1]]):

The following input defines the point M and verifies if the midpoint of HM

is Q.

hM:=inter(lin(hA,hG),per(hC,lin(hC,hO))):

sQ:=solve({4*p*q+2*p+2*q-1, p*q-1}, {p,q}):

hQ:=subs(sQ[1],[p,q]): hQp:=subs(sQ[2],[p,q]):

dis(hQ,mid(hH,hM));

The output is λ µ ν2

64(e4+e3+e2+e+1)2(e+1)2
, where λ and µ are polynomials of order

7 in e and ν = 2e3 + e2 − e − 2 − e(e + 1)k with k = i
√

7. But, the expres-

sion
[

2e3+e2−e−2
e(e+1)

]2
+ 7 factors as 4 σ

e2(e+1)2
. This implies that 2e3+e2−e−2 =

±e(e + 1)k. The minus sign is eliminated be looking at close enough numer-
ical values. Hence, ν = 0 and Q is the midpoint of HM . More rigorous is
the following direct proof that ν = 0.

hn:=2eˆ3+eˆ2-e-2-e(e+1)*I*sqrt(7): t:=2*Pi/7:

FS(numer(convert(FS(subs(e=cos(t)+I*sin(t),hn)),exp)));

In the statement of Theorems 2 and 3 we described fourteen points on the
circle m. These points are rather special because in the next result we will
show that they are vertices of two regular heptagons.

In the proof of the first part of Theorem 4 we will use the following lemma.

Lemma 1. Let ϑ = π
14 . Then 8 cos3 ϑ − 4

√
7 cos2 ϑ +

√
7 = 0.

Proof. Let u = sinϑ and v = cos ϑ. From sin x = sin (π − x) for x = 5ϑ we
get sin 5ϑ = sin 9ϑ. The left hand side is sin 5ϑ = u(16 v4 − 12 v2 + 1) while
the right hand side is

sin 9ϑ = u(256 v8 − 448 v6 + 240 v4 − 40 v2 + 1).

Now divide both sides by u and move all terms on one side to get 4 v2(64 v6−
112 v4 + 56 v2 − 7) = 0. It follows that the polynomial in the parenthesis is
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equal to zero. However, it is the product

64 v6 − 112 v4 + 56 v2 − 7 = (8 v3 − 4
√

7 v2 +
√

7)(8 v3 + 4
√

7 v2 −
√

7).

Since the second parenthesis is not zero (because v ∈ [34 , 1]), the first will be
zero. �

The two lines of input for the proof of Lemma 1 in Maple V are:

t:=cos(Pi/14): s:=sqrt(7):

FS(numer(convert(8*tˆ3-4*s*tˆ2+s,exp))):

Theorem 4. (a) The polygons XQWLK ′U ′Y ′ and Y UKL′W ′Q′X ′ are reg-
ular heptagons inscribed in the circle m (see Figure 3).

(b) If X ′′, Q′′, W ′′, L′′, K ′′, U ′′, and Y ′′ denote midpoints of the shorter
arcs XY , QU , WK, LL′, K ′W ′, U ′Q′, and Y ′X ′ then the regular heptagon
Q′′W ′′L′′K ′′U ′′Y ′′X ′′ has sides parallel to the corresponding sides of the hep-
tagon ABCDEFG (see Figure 4).
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Figure 3: Two regular heptagons of midpoints inscribed in m.

Proof of Theorem 4(a). Since the vertices of heptagons XQWLK ′U ′Y ′ and
Y UKL′W ′Q′X ′ are on the circle m, it suffices to show that all sides of
these heptagons have the same length. When we compute the six differen-
ces of squares of distances |Y U |2 − |UK|2, |Y U |2 − |KL′|2, |Y U |2 − |L′W ′|2,
|Y U |2 − |W ′Q′|2, |Y U |2 − |Q′X ′|2, |Y U |2 − |X ′Y |2 for the second heptagon,
we shall always get zero. For the two differences involving Q′ we do not get
zero directly. In fact, we obtain expressions in sine and cosine functions
which could be reduced so that they have 8 (cos π

14 )3 − 4
√

7 (cos π
14)2 +

√
7

as a factor. However, by Lemma 1, this factor is equal to zero too. The
proof for the first heptagon is similar. �
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Figure 4: The regular heptagon of midpoints of small arcs.

Proof of Theorem 4(a) in Maple V. The six differences are computed with
the following input:

fq:=(a,b)->FS(dis(hY,hU)-dis(a,b)): fq(hU,hK);fq(hK,hLp);

fq(hLp,hWp); fq(hWp,hQp); fq(hQp,hXp); fq(hXp,hY);

The output of op(3,fq(hWp,hQp)); is the expression ν that we already
noted is equal to zero. �

Proof of Theorem 4(b). The composition of the dilation D(O,
√

2
2 ) with the

translation by the vector
−→
OV transforms the heptagon ABCDEFG into

the unique heptagon inscribed in the circle m whose sides are parallel to
the corresponding sides of ABCDEFG. Hence, it suffices to show that the

midpoint of the shorter arc LL′ is precisely the intersection
√

2−1
2 of m and

the segment FO. This follows from the observation that L = e2(e4+1)
2 and

L′ = e(e4+1)
2 are conjugates. �

In the rest of this note we wish to show that midpoints of many other
segments also lie on the circle m.

In order to simplify our statements we use the following notation. The
midpoint of points P1 and P2 is [P1, P2] while [P1, ℓ], r(P1, ℓ), and r(P1, P2)
are the perpendicular to the line ℓ through the point P1 and the reflections
of P1 in the line ℓ and in the point P2, respectively.
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The following are the results on other midpoints that lie on the circle m.
The proofs of all of them are left to the reader because they are similar to
the proof of Theorems 2 and 3, namely we identify the complex coordinate
of the point and check that it satisfies the equation of m.

Theorem 5. Let T = [F, Q] and T ′ = [F, Q′]. Let S = [O, N ] and S′ =
[O, N ′], where N = OT ′ ∩ [V, OP ] and N ′ = OT ∩ [V, OP ]. Then the points
T , T ′, S and S′ are on the circle m. Moreover, S and S′ are antipodal to Q′

and Q (see Figure 5).
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Figure 5: The midpoints T , T ′, S and S′ lie on the circle m.

The following input into Maple V is checking Theorem 5:

hT:=mid(hF,hQ):hTp:=mid(hF,hQp):hm(hT);hm(hTp); ft:=

x->inter(lin(hO,x),per(hV,lin(hO,hP))): hN:=ft(hTp):

hNp:=ft(hT):hS:=mid(hO,hN):hSp:=mid(heO,hNp):hm(hS);

hm(hSp); dis(hV,mid(hQ,hSp)); dis(hV,mid(hQp,hS));

Theorem 6. Midpoints [A, r(O, BC)], [H, r(O, AB)], [I, r(O, FG)], [C,

r(O, EG)], [B, r(O, DE)], [I, r(O, CE)], and [D, r(O, Y )] are the vertices
of the regular heptagon A1A2A3A4A5A6A7 inscribed in the circle m (see
Figure 6).

The following Maple V procedures give the reflection of a point in a line
and in a point, respectively.

ref:=proc(t,p) local x,y,a,b,c; x:=t[1]:y:=t[2]:a:=p[1]:
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b:=p[2]: c:=p[3]: FS([-(b*y+c)/a, -(a*x+c)/b]): end:

rep:=proc(t,p) local x,y,a,b; x:=t[1]:y:=t[2]:

a:=p[1]: b:=p[2]: FS([-x+2*a, -y+2*b]): end:

The points A1, . . . , A7 are:

fu:=(a,b,c,d)->mid(a,ref(b,lin(c,d))):hA1:=fu(hA,hO,hB,hC):

fv:=(a,b,c)->mid(a,rep(b,c)): hA2:=fu(hH,hO,hA,hB):

hA3:=fu(hI,hO,hF,hG): hA4:=fu(hC,hO,hE,hG): hA5:=

fu(hB,hO,hD,hE): hA6:=fu(hI,hO,hC,hE): hA7:=fv(hD,hO,hY):
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Figure 6: The first regular heptagon of the midpoints inscribed in
the circle m (Theorem 6).

Now we check that these points are on m and that by rotating the vertex
A7 for k 2 π

7 radians for k = 1, . . . , 6 we get points A1, . . . , A6.

for i from 1 to 7 do hm(hA||i); od; for i from 1 to 6 do

FS(eˆi*(hA7[1]-hV[1])+hV[1]-hA||i[1]); od;

Theorem 7. Midpoints [D, r(O, BC)], [H, r(O, CD)], [I, r(O, EF )], [B,

r(O, EG)], [C, r(O, AG)], [I, r(O, BG)], and [A, r(O, Y ′)] are the vertices
of the regular heptagon B1B2B3B4B5B6B7 inscribed in the circle m (see
Figure 7).
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Figure 7: The second regular heptagon also of the midpoints of
the segments connecting the reflected points (Theorem 7).

This time in Maple V, the points B1, . . . , B7 are:

hB1:=fu(hD,hO,hB,hC): hB2:=fu(hH,hO,hC,hD): hB3:=

fu(hI,hO,hE,hF): hB4:=fu(hB,hO,hE,hG): hB5:=

fu(hC,hO,hA,hG):hB6:=fu(hI,hO,hB,hG):hB7:=fv(hA,hO,hYp):

Now we check that these points are on m and that by rotating the vertex
B1 for k 2 π

7 radians for k = 1, . . . , 6 we get points B2, . . . , B7.

for i from 1 to 7 do hm(hB||i); od; for i from 2 to 7 do

FS(eˆ(i-1)*(hB1[1]-hV[1])+hV[1]-hB||i[1]); od;

Theorem 8. Midpoints C1, C2, C3, C4, C5, C6 and C7 of the shorter arcs
B1A6, B2A5, B3A4, B4A3, B5A2, B6A1 and B7A7 of the circle m are the
vertices of the regular heptagon. The sides of C1C2C3C4C5C6C7 are parallel
with corresponding sides of the heptagon GABCDEF . A1A2A3A4A5A6A7,
B1B2B3B4B5B6B7 and C1C2C3C4C5C6C7 are the images of K ′U ′Y ′XQWL,
KUY X ′Q′W ′L′ and W ′′Q′′X ′′Y ′′U ′′K ′′L′′ under the homothety H(V, −1)
(see Figure 8).

The point C7 is −1−
√

2
2 . We check that it is on m and that it has the same

distance from A7 and B7. The rest is a routine verification that we leave to
the reader as an exercise.
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Figure 8: The third regular heptagon of the midpoints of the
shorter arcs (Theorem 8).
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