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APPROXIMATION BY GENERALIZED FABER SERIES IN
WEIGHTED BERGMAN SPACES ON INFINITE DOMAINS

WITH A QUASICONFORMAL BOUNDARY

DANIYAL M. ISRAFILOV AND YUNUS E. YILDIRIR

Abstract. Using an integral representation on infinite domains with a
quasiconformal boundary the generalized Faber series for the functions
in the weighted Bergman space A2(G, ω) are defined and its approxima-
tion properties are investigated.

1. Introduction and main results

Let G be a simply connected domain in the complex plane C an let ω be
a weight function given on G. For functions f analytic in G we set

A1(G) :=

{
f :

∫∫

G

|f(z)| dσz < ∞
}

and

A2(G,ω) :=

{
f :

∫∫

G

|f(z)|2 ω(z)dσz < ∞
}

,

where dσz denotes the Lebesgue measure in the complex plane C.
If ω = 1, we denote A2(G) := A2(G, 1). The space A2(G) is called the

Bergman space on G. We refer to the spaces A2(G,ω) as “weighted Bergman
spaces”. It becomes a normed spaces if we define

‖f‖A2(G,ω) :=

(∫∫

G

|f(z)|2 ω(z)dσz

)1/2

.

Now, let L be a finite quasiconformal curve in the complex plane C. We
recall that L is called a quasiconformal curve if there exists a quasiconformal
homeomorphism of the complex plane onto itself that maps a circle onto L.
We denote by G1 and G2 the bounded and unbounded components of C \L,
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respectively. It is clear that if f ∈ A2(G2), then it has a zero at ∞ of order
at least two. As in the bounded case [7, p. 5], A2(G2) is a Hilbert space
with the inner product

〈f, g〉 :=
∫∫

G2

f(z)g(z)dσz,

which can be easily verified. Moreover, the set of polynomials of 1/z are
dense in A2(G2) with respect to the norm

‖f‖A2(G2) := (〈f, f〉)1/2 .

Indeed, let f ∈ A2(G2). If we substitute z = 1/ζ and define

f(z) = f (1/ζ) =: f∗(ζ),

then G2 maps to a finite domain Gζ , and f∗ ∈ A2(Gζ), because
∫∫

Gζ

|f∗(ζ)|2 dσζ =
∫∫

G2

|f(z)|2 dσz

|z|4 ≤ c

∫∫

G2

|f(z)|2 dσz < ∞,

with some constant c > 0. Since f has a zero at ∞ of order at least two, the
point ζ = 0 is the zero of f∗ at least of second order and

∫∫

Gζ

∣∣∣∣
f∗(ζ)
ζ2

∣∣∣∣
2

dσζ =
∫∫

G2

|f(z)|2 dσz < ∞.

Hence f∗(ζ)/ζ2 ∈ A2(Gζ). If Pn(ζ) is a polynomial of ζ, then we have

∫∫

Gζ

∣∣∣∣Pn(ζ)− f∗(ζ)
ζ2

∣∣∣∣
2

dσζ =
∫∫

Gζ

∣∣Pn(ζ)ζ2 − f∗(ζ)
∣∣2 1
|ζ|4 dσζ

=
∫∫

G2

∣∣∣∣Pn (1/z)
1
z2
− f(z)

∣∣∣∣
2

dσz.

This implies that the set of polynomials of 1/z are dense in A2(G2), since
the set of polynomials Pn(ζ) are dense in A2(Gζ) with respect to the norm

‖f‖A2(Gζ) := (〈f, f〉)1/2 ,

(see, for example: [7, Ch. 1]). Also, for n = 1, 2, . . . there exists a polynomial
P ∗

n(1/z) of 1/z, of degree≤ n, such that En(f, G2) = ‖f − P ∗
n‖A2(G2) (see,

for example: [6, p. 59, Theorem 1.1.]), where

En(f, G2) := inf
{
‖f−P‖A2(G2) : P is a polynomial of 1/z, of degree ≤ n

}
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denotes the minimal error of approximation of f by polynomials of 1/z of
degree at most n. The polynomial P ∗

n(1/z) is called the best approximant
polynomial of 1/z to f ∈ A2(G2).

Let D be the open unit disc and w = ϕ(z) the conformal mapping of G1

onto CD := C \D, normalized by conditions

ϕ(0) = ∞ and lim
z→0

zϕ(z) > 0,

and let ψ be the inverse of ϕ. For an arbitrary fixed number R > 1 we put

LR := {z : |ϕ(z)| = R} , G2,R := {z : z ∈ G1, 1 < |ϕ(z)| < R} ∪G2.

If a function g(z) is analytic in G1 and having at z = 0 a zero of order
ν ≥ 2, then for every natural number m ≥ 1 the function g(z)ϕm+ν(z) has
a pole of order m at the origin, i.e. the following expansion holds

g(z)ϕm+ν(z) = Fm(1/z, g) + Qm(z, g) for z ∈ G1, (1)

where Fm(1/z, g) denotes the polynomial of negative powers of z and the
term Qm(z, g) contains non-negative powers of z. Hence Qm(z, g) is a func-
tion analytic in the domain G1. The polynomial Fm(1/z, g) of negative
powers of z is called the generalized Faber polynomial of order m for the
domain G2. If z ∈ G2, then integrating in the positive direction along L, we
have

Fm (1/z, g) = − 1
2πi

∫

L

g(ζ) [ϕ (ζ)]m+ν

ζ − z
dζ

= − 1
2πi

∫

|w|=1

wm+νg [ψ (w)]ψ′(w)
ψ(w)− z

dw.

This formula implies that the functions Fm (1/z, g) , m = 1, 2, . . . are the
Laurent coefficients in the expansion of the function

g [ψ (w)]ψ′(w)
ψ(w)− z

z ∈ G2, w ∈ CD

in the neighborhood of the point w = ∞, i. e. the following expansion holds

g [ψ(w)]ψ′(w)
ψ(w)− z

=
∞∑

m=1

Fm (1/z, g)
1

wm+ν+1
,

which converges absolutely and uniformly on compact subsets of G2 ×CD.
Differentiation of this equality with respect to z gives

g [ψ (w)]ψ′(w)
[ψ (w)− z]2

=
∞∑

m=1

F ′
m (1/z, g)

(
− 1

z2

)
1

wm+ν+1
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or
z2g [ψ (w)]ψ′(w)

[ψ (w)− z]2
=

∞∑

m=1

− F ′
m (1/z, g)

1
wm+ν+1

(2)

for every (z, w) ∈ G2× CD, where the series converges absolutely and uni-
formly on compact subsets of G2× CD. More information for Faber and
generalized Faber polynomials can be found in [12, p. 44 and p. 255] and
[7, p. 42].

In [4], V. I. Belyi gave the following integral representation for the func-
tions f analytic and bounded in the domain G1

f(z) = − 1
π

∫∫

G2

(f ◦ y)(ζ)
(ζ − z)2

yζ(ζ)dσζ , z ∈ G1. (3)

Here y(z) is a K-quasiconformal reflection across the boundary L, i.e., a
sense-reversing K-quasiconformal involution of the extended complex plane
keeping every point of L fixed, such that y(G1) = G2, y(G2) = G1, y(0) = ∞
and y(∞) = 0. Such a mapping of the plane does exist [11, p. 99]. As
follows from Ahlfors’ theorem [1, p. 80] the reflection y(z) can always be
chosen canonical in the sense that it is differentiable on C almost everywhere,
except possibly at the points of the curve L, and for any sufficiently small
fixed δ > 0 it satisfies the relations

|yς |+ |yς | ≤ c1, for δ < |ς| < 1/δ and ς /∈ L,

|yς |+ |yς | ≤ c2 |ς|−2 , for |ς| ≥ 1/δ and |ς| ≤ δ. (4)

with some constants c1 and c2, independent of ζ.
Let g be an analytic function in G1, non-vanishing in G1\{0} and having

in z = 0 a zero of order ν ≥ 2, and let
∫∫

G1

|g(z)|2 dσz < ∞. (5)

For every such g we define a weight function ω in the following manner.

ω(z) :=
1

|(g ◦ y) (z)|2 , z ∈ G2,

where y is a canonical reflection across the boundary L. We denote by
W 2(G2) the set all of weight functions ω defined as above.

In this work, for the first time, we obtain (Section 2, Lemma 1) an integral
representation on the domain G2 for a function f ∈ A1(G2). By means of
this integral representation in Section 2 we define a generalized Faber series
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of a function f ∈ A1(G2) to be of the form
∞∑

m=1

am(f, g)F ′
m (1/z, g) ,

with the generalized Faber coefficients am(f, g), m = 1, 2, . . . .
Our main results are presented in the following theorems, which are

proved in Section 3.

Theorem 1. Let f ∈ A2(G2, ω), ω ∈ W 2(G2). If
∞∑

m=1

am(f, g)F ′
m (1/z, g)

is a generalized Faber series of f, then this series converges uniformly to f
on the compact subsets of G2.

A uniqueness theorem for the series
∞∑

m=1

am(f, g)F ′
m (1/z, g)

which converges to f ∈ A2(G2, ω) with respect to the norm ‖·‖A2(G2,ω) is
given next.

Theorem 2. Let g be an analytic function, bounded in G1, non-vanishing
in G1\{0} and having at z = 0 a zero of order ν ≥ 2, and let {bm} be a
complex number sequence. If the series

∞∑

m=1

bmF ′
m (1/z, g)

converges to a function f ∈ A2(G2, ω) in the norm ‖·‖A2(G2,ω), then bm,

m = 1, 2, . . . , are the generalized Faber coefficients of f.

Let yR be KR-quasiconformal reflection across the boundary LR. The
following theorem estimates the error of the approximation of f ∈ A2(G2,R)
by the partial sums of the series

∞∑

m=1

am(f)F ′
m (1/z)

in the norm ‖·‖A2(G2,ω) with regard to En(f,G2,R) for the special case ω(z) =
1/ |z|4 of the weighted function ω given on G2.
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Theorem 3. Let R > 1. If f ∈ A2(G2,R), ω(z) := 1/ |z|4 and

Sn (f, 1/z) =
n+1∑

m=1

am(f)F ′
m (1/z)

is the nth partial sum of its generalized Faber series
∞∑

m=1

am(f)F ′
m (1/z) ,

then

‖f − Sn(f, ·)‖A2(G2,ω) ≤
c√(

1− k2
R

)
(R2 − 1)

En(f, G2,R)
Rn+1

,

for all natural numbers n and with a constant c independent of n, where
kR := (KR − 1) / (KR + 1) .

For bounded domains the problems considered here were investigated in
[8] and [10]. Similar results in the non-weighted case were stated and proved
in [9] and [5], respectively.

We shall use c, c1, c2 . . . to denote constants depending only on parame-
ters that are not important for the problem under consideration.

2. Auxiliary results

Considering only the canonical quasiconformal reflections, I. M. Batchaev
[3] generalized the integral representation (3) to functions f ∈ A1(G1). An
accurate proof of the Batchaev’s result is given in [2, p. 110, Th. 4.4]. Here
we prove an analog of this integral representation for unbounded domains.
Namely, the following result holds.

Lemma 1. Let f ∈ A1(G2). If y(z) is a canonical quasiconformal reflection
with respect to L, then we have

f(z) = − 1
π

∫∫

G1

(f ◦ y)(ζ)
(ζ − z)2[y(ζ)]2

yζ(ζ) dσζ , z ∈ G2. (6)

Proof. Let y(z) be a canonical quasiconformal reflection and f ∈ A1(G2). If
we substitute ζ = 1/u for ζ ∈ G2 and define

f(ζ) = f(1/u) =: f∗(u),

then G2 maps to a finite domain Gu and f∗ ∈ A1(Gu). If y∗(t) is a canonical
quasiconformal reflection with respect to ∂Gu, from Batchaev’s result we
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have

f∗(t) = − 1
π

∫∫

CGu

(f∗ ◦ y∗) (u)
(u− t)2

y∗u(u)dσu, t ∈ Gu,

where CGu := C\Gu. Substituting u = 1/ζ in this integral representation
we get

f(z) = f(1/t) = f∗(t) = − 1
π

∫∫

G1

(f∗ ◦ y∗) (1/ζ)
(1/ζ − 1/z)2

y∗u (1/ζ) Jdσζ

=
1
π

∫∫

G1

f [1/y∗ (1/ζ)] z2

(ζ − z)2
y∗

ζ
(1/ζ) dσζ , z ∈ G2.

If we define

y(ζ) :=
1

y∗ (1/ζ)
,

then y(ζ) becomes a canonical quasiconformal reflection with respect to L.
Consequently, for f ∈ A1(G2) we get

f(z) = − 1
π

∫∫

G1

(f ◦ y)(ζ)z2

(ζ − z)2[y(ζ)]2
yζ(ζ)dσζ , z ∈ G2.

¤

From now on, the reflection y(z) assumed to be a canonical K-quasicon-
formal reflection with respect to L.

Let f ∈ A1(G2). Substituting ζ = ψ(w) in (6), we get

f(z) = − 1
π

∫∫

CD

(f ◦ y) [ψ (w)]ψ′(w)yζ [ψ (w)]

[(y ◦ ψ) (w)]2
· z2ψ′(w)
[ψ (w)− z]2

dσw

= − 1
π

∫∫

CD

(f ◦ y) [ψ (w)]ψ′(w)yζ [ψ (w)]

[(y ◦ ψ) (w)]2g [ψ (w)]
· g [ψ (w)] z2ψ′(w)

[ψ (w)− z]2
dσw, z ∈ G2.

(7)
Thus, if we define the coefficients am(f, g) by

am(f, g) :=
1
π

∫∫

CD

(f ◦ y) [ψ (w)]ψ′(w)
wm+ν+1g [ψ (w)] [(y ◦ ψ) (w)]2

yζ [ψ (w)] dσw, m = 1, 2, . . .

(8)
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then, by (2) and (7), we can associate a formal series
∑∞

m=1 am(f, g)F ′
m

(1/z, g) with the function f ∈ A1(G2), i.e.,

f(z) ∼
∞∑

m=1

am(f, g)F ′
m (1/z, g) .

We call this formal series a generalized Faber series of f ∈ A1(G2) , and the
coefficients am(f, g) are called generalized Faber coefficients of f .

For R > 1 we set

G2,R := {z : z ∈ G1, 1 < |ϕ(z)| < R} ∪G2.

Lemma 2. Let g be an analytic function on G1 and let for some fixed
constant R0 ∈ (1,∞)

∫∫

G2,Ro\G2

|g(z)|2 dσz < ∞.

Then the series
∞∑

m=1

|F ′
m (1/z, g)|
m + 1

is convergent uniformly on compact subsets of G2.

Proof. Let z be a fixed point in G2. Then the power series
∞∑

m=1

F ′
m (1/z, g)
m + 1

wm+1

defines an analytic function

A(z, w) :=
∞∑

m=1

F ′
m (1/z, g)
m + 1

wm+1, w ∈ D (9)

in D. By taking the derivative of (9) with respect to w and considering (2)
we get

A′w(z, w) :=
∞∑

m=1

F ′
m (1/z, g) wm = −z2ψ′ (1/w) g [ψ (1/w)]

[ψ (1/w)− z]2 w2
, w ∈ D.

(10)
Let 0 < r < 1. Since

∞∑

m=1

F ′
m (1/z, g) wm
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is convergent uniformly and absolutely on the closed disc D(0, r) , the rela-
tion (10) implies that

∫∫

D(0,r)

∣∣A′w(z, w)
∣∣2 dσw = π

∞∑

m=1

|F ′
m (1/z, g)|2

m + 1
r2m+2. (11)

Hence by (10) and (11) we have

π
∞∑

m=1

|F ′
m (1/z, g)|2

m + 1
r2m+2 =

∫∫

D(0,r)

∣∣∣∣
z2ψ′ (1/w) g [ψ (1/w)]

[ψ (1/w)− z]2 w

∣∣∣∣
2

dσw. (12)

On the other hand, for the fixed constant R0 ∈ (1,∞) we get

S(z) : =
∫∫

D

∣∣∣∣
z2ψ′ (1/w) g [ψ (1/w)]

[ψ (1/w)− z]2 w2

∣∣∣∣
2

dσw

=

1∫

0

2π∫

0

∣∣∣∣∣
z2ψ′

(
e−iθ/r

)
g

[
ψ

(
e−iθ/r

)]

[ψ (e−iθ/r)− z]2 r2e2iθ

∣∣∣∣∣
2

r dr dθ

=

∞∫

1

2π∫

0

∣∣∣∣∣
z2ψ′

(
Re−iθ

)
g

[
ψ

(
Re−iθ

)]

[ψ (Re−iθ)− z]2 (1/R2)e2iθ

∣∣∣∣∣
2

1
R3

dR dθ

=

(R0∫

1

2π∫

0

+

∞∫

R0

2π∫

0

)
· · · =: J1 + J2. (13)

and

J1 =

R0∫

1

2π∫

0

|z|4 ∣∣ψ′ (Re−iθ
)∣∣2 ∣∣g [

ψ
(
Re−iθ

)]∣∣2

|[ψ (Re−iθ)− z]|4
R dR dθ

≤ c3

R0∫

1

2π∫

0

∣∣∣ψ′
(
Re−iθ

)∣∣∣
2 ∣∣∣g

[
ψ

(
Re−iθ

)]∣∣∣
2
dR dθ

= c3

∫∫

G2,Ro\G2

|g(z)|2 dσz < ∞.

Analogously one can establish the uniform boundedness of the integral
J2. Consequently, from (13) we have

S(z) < ∞.
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On the other hand, letting r → 1 in (12) we get

π
∞∑

m=1

|F ′
m (1/z, g)|2

m + 1
= S(z).

Since S(z) is continuous in G2 with respect to z, the Dini’s theorem implies
that the series

∞∑

m=1

|F ′
m (1/z, g)|2

m + 1

is convergent uniformly on compact subsets of G2. ¤

Lemma 3. If f ∈ A2(G2, ω) and y(ζ) a canonical K-quasiconformal reflec-
tion with respect to L, then

∫∫

G1

|(f ◦ y)(ζ)|2 ω [y (ζ)] |yζ (ζ)|2dσζ ≤
‖f‖2

A2(G2,ω)

1− k2
,

where k := (K − 1)/(K + 1).

Proof. Since y(ζ) is a canonical K-quasiconformal mapping of the extended
complex plane onto itself, we have |yζ |/|yζ | ≤ k and |yζ |2 − |yζ |2 > 0. Also,
it is known that |yζ | = |yζ | and |yζ | = |yζ |. Therefore, |yζ |/|yζ | ≤ k and
|yζ |2 − |yζ |2 > 0. Hence

∫∫

G1

|(f ◦ y)(ζ)|2 ω [y (ζ)] |yζ(ζ)|2dσζ

=
∫∫

G1

|(f ◦ y)(ζ)|2 ω [y (ζ)]
(
1− |yζ |2 /|yζ |2

)−1 (
|yζ |2 − |yζ |2

)
dσζ

≤ 1
1− k2

∫∫

G1

|(f ◦ y)(ζ)|2 ω [y (ζ)]
(
|yζ |2 − |yζ |2

)
dσζ .

Since
( |yζ |2 − |yζ |2

)
is the Jacobian of y(ζ), substituting ζ for y(ζ) in the

right side of the last inequality we get

∫∫

G1

|(f ◦ y)(ζ)|2 ω [y (ζ)] |yζ(ζ)|2dσζ ≤
‖f‖2

A2(G2,ω)

1− k2
.

¤
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Lemma 4. Let g be an analytic function, bounded in G1, non-vanishing in
G1\{0} and having at z = 0 a zero of order ν ≥ 2. Then

an

(
F ′

m, g
)

=

{
1, m = n− 1;
0, m 6= n− 1.

Proof. Since y(z) is identical on L, using Green’s formulae and the Cauchy
integral theorem, we have

an(F ′
m, g) =

1
π

∫∫

CD

F ′
m [1/y (ψ (w)) , g]ψ′(w)

wn+ν+1[y(ψ(w))]2g [ψ (w)]
yζ [ψ (w)] dσw

=
1
π

∫∫

CD

− ∂

∂w

(
Fm [1/y (ψ (w)) , g]
g [ψ (w)]wn+ν+1

)
dσw

=
1

2πi

∫

|w|=1

Fm [1/ψ (w) , g]
g [ψ (w)]wn+ν+1

dw

=
1

2πi

∫

|w|=R>1

Fm [1/ψ (w) , g]
g [ψ (w)]wn+ν+1

dw.

Since, by (1)

Fm (1/z, g) = g(z)ϕm+ν+1(z) + Em(z, g),

where Em(z, g) is analytic in G1 and Em(0, g) = const, we get

an(F ′
m, g) =

1
2πi

∫

|w|=R>1

wm−ndw +
1

2πi

∫

|w|=R>1

Em [ψ (w) , g]
g [ψ (w)]wn+ν+1

dw

=
1

2πi

∫

|w|=R>1

wm−ndw =

{
1, m = n− 1;
0, m 6= n− 1.

¤
Consider the expansion

ϕm(z) = Fm(1/z) + Qm(z), m = 1, 2, . . . .

It is easily to verify that Fm(1/z) is a polynomial of order m with respect
to 1/z. The following lemma holds.

Lemma 5. For every natural numbers n, the following estimation holds
∞∑

m=n+2

∥∥F ′
m,z

∥∥2

A2(G2)

mR2m
≤ π

R2(n+1)(R2 − 1)
, m = 1, 2, . . . .
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Proof. Let Sm(G2) be the area of the image of G2 under Fm(1/z) on the
Riemann surface of Fm(1/z). Since

[Fm (1/z) ◦ ψ (w)] = wm +
∞∑

υ=1

bυw−υ, |w| > 1

(see [12, p. 255]) by means of a theorem due to Lebedev-Millin (given in
[12, p. 170]), we have

Sm(G2) = π

(
m−

∞∑

υ=1

υ |bυ|2
)
≤ mπ. (14)

On the other hand

Sm(G2) =
∫∫

G2

∣∣F ′
m,z

∣∣2 dσz =
∥∥F ′

m,z

∥∥2

A2(G2)
. (15)

From (14) and (15), it follows that

∞∑

m=n+2

‖F ′
m,z‖2

A2(G2)

mR2m
≤ π

∞∑

m=n+2

1
R2m

=
π

R2(n+1)(R2 − 1)
.

¤

In general, we can not reduce

π

R2(n+1)(R2 − 1)

in the inequality above. In fact, if we consider the unit disc D, then
Fm(1/z) = 1/zm and

∞∑

m=n+2

‖F ′
m,z‖2

A2(G2)

mR2m
=

π

R2(n+1)(R2 − 1)
.

3. Proof of the new results

Proof of Theorem 1. Let f ∈ A2(G2, ω), ω ∈ W 2(G2). First of all we prove
that f ∈ A1(G2). Taking into account that g has at z = 0 a zero of order
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ν ≥ 2, and using the relations (5) and (4) we get
∫∫

G2

|(g ◦ y)(z)|2 dσz =
∫∫

G1

|g(z)|2
(
|yz|2 − |yz|2

)
dσz

≤
∫∫

G1

|g(z)|2 |yz|2 dσz =
∫∫

G2,R\G2

|g(z)|2 |yz|2 dσz +
∫∫

CG2,R

|g(z)|2 |yz|2 dσz

≤ c4

∫∫

G2,R\G2

|g(z)|2 dσz + c5 < ∞.

Hence, by virtue of Hölder’s inequality
(∫∫

G2

|f(z)| dσz

)2

≤
(∫∫

G2

|f(z)|2 ω(z)dσz

)(∫∫

G2

|(g ◦ y)(z)|2 dσz

)
< ∞.

Then by means of (7), (8) and Hölder’s inequality we obtain
∣∣∣∣∣f(z)−

n∑

m=1

am(f, g)F ′
m (1/z, g)

∣∣∣∣∣
2

≤ 1
π

∫∫

CD

∣∣∣∣∣
f [y(ψ(w))]ψ′(w)yζ [ψ(w)]

[y(ψ(w))]2g [ψ (w)]

∣∣∣∣∣
2

dσw

×
∫∫

CD

∣∣∣∣∣
g [ψ (w)] z2ψ′(w)

[ψ (w)− z]2
+

n∑

m=1

F ′
m (1/z, g)
wm+ν+1

∣∣∣∣∣
2

dσw

=
1
π

J1 · J2

(16)

for every z ∈ G2.
Since

max
z∈G1

|y (z)| ≥ const > 0,

by virtue of Lemma 3 we have

J1 =
∫∫

G1

∣∣∣∣
f [y (z)] yz(z)
[y (z)]2 g(z)

∣∣∣∣
2

dσz ≤ c6

∫∫

G1

|f [y (z)]|2 ω [y (z)] |yz(z)|2 dσz

≤ c6

‖f‖2
A2(G2,ω)

1− k2
< ∞, (17)
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where the constant c6 depends only on L. We now estimate the integral J2.
Let 1 < r < R < ∞. In view of (2)

∫∫

r<|w|<R

∣∣∣∣∣
z2ψ′(w)g [ψ (w)]

[ψ (w)− z]2
+

n∑

m=1

F ′
m (1/z, g)
wm+ν+1

∣∣∣∣∣
2

dσw

=
∫∫

r<|w|<R

∣∣∣∣∣
∞∑

m=n+1

F ′
m (1/z, g)
wm+ν+1

∣∣∣∣∣
2

dσw

= π

∞∑

m=n+1

1
m + ν

(
1

r2(m+ν)
− 1

R2(m+ν)

) ∣∣F ′
m (1/z, g)

∣∣2

≤ π
∞∑

m=n+1

|F ′
m (1/z, g)|2
m + ν

,

and by letting r → 1 and R →∞, we get

J2 ≤ π
∞∑

m=n+1

|F ′
m (1/z, g)|2
m + ν

. (18)

Therefore, by (16), (17) and (18), the following estimate holds
∣∣∣∣∣f(z)−

n∑

m=1

am(f, g)F ′
m (1/z, g)

∣∣∣∣∣
2

≤ c7

∞∑

m=n+1

|F ′
m (1/z, g)|2
m + ν

,

and then Lemma 2 completes the proof. ¤

Proof of Theorem 2. Let

S̃n (1/z) :=
n+1∑

m=1

bmF ′
m (1/z, g)

be the nth partial sum of
∞∑

m=1

bmF ′
m (1/z, g) .

Using Lemma 4 we get

lim
n→∞

1
π

∫∫

CD

(S̃n ◦ y)[ψ(w)]ψ′(w)
wm+ν+1g[ψ(w)][y(ψ(w))]2

yζ [ψ (w)] dσw = bm, m = 1, 2, . . . .

(19)
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On the other hand, by using Hölder’s inequality and Lemma 3 we have

|am(f, g)− bm|

≤ 1
π

∣∣∣∣∣
∫∫

CD

[
(f ◦ y) (ψ(w))− (S̃n ◦ y) (ψ(w))

]
ψ′(w)

wm+ν+1g (ψ(w)) [y(ψ(w))]2
yζ (ψ (w)) dσw

∣∣∣∣∣

+

∣∣∣∣∣
1
π

∫∫

CD

(S̃n ◦ y)[ψ(w)]ψ′(w)
wm+ν+1g (ψ(w)) [y(ψ(w))]2

yζ (ψ (w)) dσw − bm

∣∣∣∣∣

≤ 1
π

(∫∫

CD

dσw

|w|2(m+ν+1)

)1/2

×
(∫∫

CD

∣∣∣(f ◦ y) (ψ(w))− (S̃n ◦ y) (ψ(w))
∣∣∣
2
|ψ′(w)|2

∣∣∣yζ (ψ (w))
∣∣∣
2

|g (ψ(w))|2 |y(ψ(w))|4 dσw

)1/2

+

∣∣∣∣∣
1
π

∫∫

CD

(S̃n ◦ y)[ψ(w)]ψ′(w)
wm+ν+1g (ψ(w)) [y(ψ(w))]2

yζ (ψ (w)) dσw − bm

∣∣∣∣∣

≤ c8√
m + ν

(∫∫

G1

∣∣∣∣∣

[(
f − S̃n

)
◦ y

]
(ζ)

g(ζ)

∣∣∣∣∣
2 ∣∣∣yζ (ζ)

∣∣∣
2
dσζ

)1/2

+

∣∣∣∣∣
1
π

∫∫

CD

(S̃n ◦ y)[ψ(w)]ψ′(w)
wm+ν+1g (ψ(w)) [y(ψ(w))]2

yζ (ψ (w)) dσw − bm

∣∣∣∣∣

≤
c8

∥∥∥f − S̃n

∥∥∥
A2(G2,ω)√

(m + ν) (1− k2)

+

∣∣∣∣∣
1
π

∫∫

CD

(S̃n ◦ y)[ψ(w)]ψ′(w)
wm+ν+1g (ψ(w)) [y(ψ(w))]2

yζ (ψ (w)) dσw − bm

∣∣∣∣∣ (20)

for every natural number n. Since lim
n→∞

∥∥∥f − S̃n

∥∥∥
A2(G2,ω)

= 0, (19) and (20)

show that am(f, g) = bm, m = 1, 2, . . . . ¤

Proof of Theorem 3. Let P ∗
n be the best approximant polynomial to f ∈

A2(G2,R) in the norm ‖·‖A2(G2,R) , i.e.,

‖f − P ∗
n‖A2(G2,R) = En(f, G2,R).
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In a manner similar to the proof of Theorem 1 we can prove that the sequence
{Sn} of the partial sums Sn(f, 1/z), n = 1, 2, . . . , converges uniformly to
f ∈ A2(G2,R) on compact subsets of G2,R, which implies that

|f(z)− Sn(f, 1/z)| =
∣∣∣∣∣

∞∑

m=n+2

am(f)F ′
m(1/z)

∣∣∣∣∣

=
1
π

∣∣∣∣∣
∞∑

m=n+2

∫∫

|w|>R

((f − P ∗
n) ◦ yR) (ψ(w))ψ′(w)yRζ

(ψ (w))

[yR(ψ(w))]2
· F ′

m(1/z)
wm+1

dσw

∣∣∣∣∣

for every z ∈ G2. Applying now Hölder’s inequality and Lemma 3, we obtain

|f(z)− Sn(f, 1/z)|2 ≤ c9E
2
n(f, G2,R)

π
(
1− k2

R

)
∞∑

m=n+2

|F ′
m(1/z)|2
mR2m

.

Multiplying both sides of this inequality by 1/ |z|4 we have

|f(z)− Sn(f, 1/z)|2 1
|z|4 ≤

c9E
2
n(f, G2,R)

π
(
1− k2

R

)
∞∑

m=n+2

∣∣F ′
m,z(1/z)

∣∣2
mR2m

.

Now, integrating both sides over G2 and using Lemma 5, we conclude that

‖f(z)− Sn(f, ·)‖2
A2(G2,ω) ≤

c9E
2
n(f, G2,R)(

1− k2
R

)
(R2 − 1)R2(n+1)

,

i.e.,

‖f(z)− Sn(f, ·)‖A2(G2,ω) ≤
cEn(f,G2,R)√(

1− k2
R

)
(R2 − 1)R(n+1)

.

for all natural numbers n. ¤
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