APPROXIMATION BY GENERALIZED FABER SERIES IN WEIGHTED BERGMAN SPACES ON INFINITE DOMAINS WITH A QUASICONFORMAL BOUNDARY

DANIYAL M. ISRAFILOV AND YUNUS E. YILDIRIR

Abstract

Using an integral representation on infinite domains with a quasiconformal boundary the generalized Faber series for the functions in the weighted Bergman space $A^{2}(G, \omega)$ are defined and its approximation properties are investigated.

1. Introduction and main results

Let G be a simply connected domain in the complex plane \mathbb{C} an let ω be a weight function given on G. For functions f analytic in G we set

$$
A^{1}(G):=\left\{f: \iint_{G}|f(z)| d \sigma_{z}<\infty\right\}
$$

and

$$
A^{2}(G, \omega):=\left\{f: \iint_{G}|f(z)|^{2} \omega(z) d \sigma_{z}<\infty\right\}
$$

where $d \sigma_{z}$ denotes the Lebesgue measure in the complex plane \mathbb{C}.
If $\omega=1$, we denote $A^{2}(G):=A^{2}(G, 1)$. The space $A^{2}(G)$ is called the Bergman space on G. We refer to the spaces $A^{2}(G, \omega)$ as "weighted Bergman spaces". It becomes a normed spaces if we define

$$
\|f\|_{A^{2}(G, \omega)}:=\left(\iint_{G}|f(z)|^{2} \omega(z) d \sigma_{z}\right)^{1 / 2}
$$

Now, let L be a finite quasiconformal curve in the complex plane \mathbb{C}. We recall that L is called a quasiconformal curve if there exists a quasiconformal homeomorphism of the complex plane onto itself that maps a circle onto L. We denote by G_{1} and G_{2} the bounded and unbounded components of $\mathbb{C} \backslash L$,

[^0]respectively. It is clear that if $f \in A^{2}\left(G_{2}\right)$, then it has a zero at ∞ of order at least two. As in the bounded case [7, p. 5], $A^{2}\left(G_{2}\right)$ is a Hilbert space with the inner product
$$
\langle f, g\rangle:=\iint_{G_{2}} f(z) \overline{g(z)} d \sigma_{z}
$$
which can be easily verified. Moreover, the set of polynomials of $1 / z$ are dense in $A^{2}\left(G_{2}\right)$ with respect to the norm
$$
\|f\|_{A^{2}\left(G_{2}\right)}:=(\langle f, f\rangle)^{1 / 2}
$$

Indeed, let $f \in A^{2}\left(G_{2}\right)$. If we substitute $z=1 / \zeta$ and define

$$
f(z)=f(1 / \zeta)=: f_{*}(\zeta)
$$

then G_{2} maps to a finite domain G_{ζ}, and $f_{*} \in A^{2}\left(G_{\zeta}\right)$, because

$$
\iint_{G_{\zeta}}\left|f_{*}(\zeta)\right|^{2} d \sigma_{\zeta}=\iint_{G_{2}}|f(z)|^{2} \frac{d \sigma_{z}}{|z|^{4}} \leq c \iint_{G_{2}}|f(z)|^{2} d \sigma_{z}<\infty
$$

with some constant $c>0$. Since f has a zero at ∞ of order at least two, the point $\zeta=0$ is the zero of f_{*} at least of second order and

$$
\iint_{G_{\zeta}}\left|\frac{f_{*}(\zeta)}{\zeta^{2}}\right|^{2} d \sigma_{\zeta}=\iint_{G_{2}}|f(z)|^{2} d \sigma_{z}<\infty
$$

Hence $f_{*}(\zeta) / \zeta^{2} \in A^{2}\left(G_{\zeta}\right)$. If $P_{n}(\zeta)$ is a polynomial of ζ, then we have

$$
\begin{aligned}
\iint_{G_{\zeta}}\left|P_{n}(\zeta)-\frac{f_{*}(\zeta)}{\zeta^{2}}\right|^{2} d \sigma_{\zeta} & =\iint_{G_{\zeta}}\left|P_{n}(\zeta) \zeta^{2}-f_{*}(\zeta)\right|^{2} \frac{1}{|\zeta|^{4}} d \sigma_{\zeta} \\
& =\iint_{G_{2}}\left|P_{n}(1 / z) \frac{1}{z^{2}}-f(z)\right|^{2} d \sigma_{z}
\end{aligned}
$$

This implies that the set of polynomials of $1 / z$ are dense in $A^{2}\left(G_{2}\right)$, since the set of polynomials $P_{n}(\zeta)$ are dense in $A^{2}\left(G_{\zeta}\right)$ with respect to the norm

$$
\|f\|_{A^{2}\left(G_{\zeta}\right)}:=(\langle f, f\rangle)^{1 / 2}
$$

(see, for example: [7, Ch. 1]). Also, for $n=1,2, \ldots$ there exists a polynomial $P_{n}^{*}(1 / z)$ of $1 / z$, of degree $\leq n$, such that $E_{n}\left(f, G_{2}\right)=\left\|f-P_{n}^{*}\right\|_{A^{2}\left(G_{2}\right)}$ (see, for example: [6, p. 59, Theorem 1.1.]), where
$E_{n}\left(f, G_{2}\right):=\inf \left\{\|f-P\|_{A^{2}\left(G_{2}\right)}: P\right.$ is a polynomial of $1 / z$, of degree $\left.\leq n\right\}$
denotes the minimal error of approximation of f by polynomials of $1 / z$ of degree at most n. The polynomial $P_{n}^{*}(1 / z)$ is called the best approximant polynomial of $1 / z$ to $f \in A^{2}\left(G_{2}\right)$.

Let D be the open unit disc and $w=\varphi(z)$ the conformal mapping of G_{1} onto $C \bar{D}:=\mathbb{C} \backslash \bar{D}$, normalized by conditions

$$
\varphi(0)=\infty \quad \text { and } \quad \lim _{z \rightarrow 0} z \varphi(z)>0
$$

and let ψ be the inverse of φ. For an arbitrary fixed number $R>1$ we put

$$
L_{R}:=\{z:|\varphi(z)|=R\}, \quad G_{2, R}:=\left\{z: z \in G_{1}, 1<|\varphi(z)|<R\right\} \cup \overline{G_{2}}
$$

If a function $g(z)$ is analytic in G_{1} and having at $z=0$ a zero of order $\nu \geq 2$, then for every natural number $m \geq 1$ the function $g(z) \varphi^{m+\nu}(z)$ has a pole of order m at the origin, i.e. the following expansion holds

$$
\begin{equation*}
g(z) \varphi^{m+\nu}(z)=F_{m}(1 / z, g)+Q_{m}(z, g) \quad \text { for } z \in G_{1} \tag{1}
\end{equation*}
$$

where $F_{m}(1 / z, g)$ denotes the polynomial of negative powers of z and the term $Q_{m}(z, g)$ contains non-negative powers of z. Hence $Q_{m}(z, g)$ is a function analytic in the domain G_{1}. The polynomial $F_{m}(1 / z, g)$ of negative powers of z is called the generalized Faber polynomial of order m for the domain G_{2}. If $z \in G_{2}$, then integrating in the positive direction along L, we have

$$
\begin{aligned}
F_{m}(1 / z, g) & =-\frac{1}{2 \pi i} \int_{L} \frac{g(\zeta)[\varphi(\zeta)]^{m+\nu}}{\zeta-z} d \zeta \\
& =-\frac{1}{2 \pi i} \int_{|w|=1} \frac{w^{m+\nu} g[\psi(w)] \psi^{\prime}(w)}{\psi(w)-z} d w
\end{aligned}
$$

This formula implies that the functions $F_{m}(1 / z, g), m=1,2, \ldots$ are the Laurent coefficients in the expansion of the function

$$
\frac{g[\psi(w)] \psi^{\prime}(w)}{\psi(w)-z} \quad z \in G_{2}, \quad w \in C \bar{D}
$$

in the neighborhood of the point $w=\infty$, i. e. the following expansion holds

$$
\frac{g[\psi(w)] \psi^{\prime}(w)}{\psi(w)-z}=\sum_{m=1}^{\infty} F_{m}(1 / z, g) \frac{1}{w^{m+\nu+1}}
$$

which converges absolutely and uniformly on compact subsets of $G_{2} \times C \bar{D}$. Differentiation of this equality with respect to z gives

$$
\frac{g[\psi(w)] \psi^{\prime}(w)}{[\psi(w)-z]^{2}}=\sum_{m=1}^{\infty} F_{m}^{\prime}(1 / z, g)\left(-\frac{1}{z^{2}}\right) \frac{1}{w^{m+\nu+1}}
$$

or

$$
\begin{equation*}
\frac{z^{2} g[\psi(w)] \psi^{\prime}(w)}{[\psi(w)-z]^{2}}=\sum_{m=1}^{\infty}-F_{m}^{\prime}(1 / z, g) \frac{1}{w^{m+\nu+1}} \tag{2}
\end{equation*}
$$

for every $(z, w) \in G_{2} \times C \bar{D}$, where the series converges absolutely and uniformly on compact subsets of $G_{2} \times C \bar{D}$. More information for Faber and generalized Faber polynomials can be found in [12, p. 44 and p. 255] and [7, p. 42].

In [4], V. I. Belyi gave the following integral representation for the functions f analytic and bounded in the domain G_{1}

$$
\begin{equation*}
f(z)=-\frac{1}{\pi} \iint_{G_{2}} \frac{(f \circ y)(\zeta)}{(\zeta-z)^{2}} y_{\bar{\zeta}}(\zeta) d \sigma_{\zeta}, \quad z \in G_{1} \tag{3}
\end{equation*}
$$

Here $y(z)$ is a K-quasiconformal reflection across the boundary L, i.e., a sense-reversing K-quasiconformal involution of the extended complex plane keeping every point of L fixed, such that $y\left(G_{1}\right)=G_{2}, y\left(G_{2}\right)=G_{1}, y(0)=\infty$ and $y(\infty)=0$. Such a mapping of the plane does exist [11, p. 99]. As follows from Ahlfors' theorem [1, p. 80] the reflection $y(z)$ can always be chosen canonical in the sense that it is differentiable on \mathbb{C} almost everywhere, except possibly at the points of the curve L, and for any sufficiently small fixed $\delta>0$ it satisfies the relations

$$
\begin{align*}
\left|y_{\varsigma}\right|+\left|y_{\varsigma}\right| \leq c_{1}, & \text { for } \quad \delta<|\varsigma|<1 / \delta \text { and } \varsigma \notin L, \\
\left|y_{\varsigma}\right|+\left|y_{\varsigma}\right| \leq c_{2}|\varsigma|^{-2}, & \text { for } \quad|\varsigma| \geq 1 / \delta \text { and }|\varsigma| \leq \delta . \tag{4}
\end{align*}
$$

with some constants c_{1} and c_{2}, independent of ζ.
Let g be an analytic function in G_{1}, non-vanishing in $G_{1} \backslash\{0\}$ and having in $z=0$ a zero of order $\nu \geq 2$, and let

$$
\begin{equation*}
\iint_{G_{1}}|g(z)|^{2} d \sigma_{z}<\infty . \tag{5}
\end{equation*}
$$

For every such g we define a weight function ω in the following manner.

$$
\omega(z):=\frac{1}{|(g \circ y)(z)|^{2}}, \quad z \in G_{2},
$$

where y is a canonical reflection across the boundary L. We denote by $W^{2}\left(G_{2}\right)$ the set all of weight functions ω defined as above.

In this work, for the first time, we obtain (Section 2, Lemma 1) an integral representation on the domain G_{2} for a function $f \in A^{1}\left(G_{2}\right)$. By means of this integral representation in Section 2 we define a generalized Faber series
of a function $f \in A^{1}\left(G_{2}\right)$ to be of the form

$$
\sum_{m=1}^{\infty} a_{m}(f, g) F_{m}^{\prime}(1 / z, g)
$$

with the generalized Faber coefficients $a_{m}(f, g), m=1,2, \ldots$
Our main results are presented in the following theorems, which are proved in Section 3.

Theorem 1. Let $f \in A^{2}\left(G_{2}, \omega\right), \omega \in W^{2}\left(G_{2}\right)$. If

$$
\sum_{m=1}^{\infty} a_{m}(f, g) F_{m}^{\prime}(1 / z, g)
$$

is a generalized Faber series of f, then this series converges uniformly to f on the compact subsets of G_{2}.

A uniqueness theorem for the series

$$
\sum_{m=1}^{\infty} a_{m}(f, g) F_{m}^{\prime}(1 / z, g)
$$

which converges to $f \in A^{2}\left(G_{2}, \omega\right)$ with respect to the norm $\|\cdot\|_{A^{2}\left(G_{2}, \omega\right)}$ is given next.

Theorem 2. Let g be an analytic function, bounded in G_{1}, non-vanishing in $G_{1} \backslash\{0\}$ and having at $z=0$ a zero of order $\nu \geq 2$, and let $\left\{b_{m}\right\}$ be a complex number sequence. If the series

$$
\sum_{m=1}^{\infty} b_{m} F_{m}^{\prime}(1 / z, g)
$$

converges to a function $f \in A^{2}\left(G_{2}, \omega\right)$ in the norm $\|\cdot\|_{A^{2}\left(G_{2}, \omega\right)}$, then b_{m}, $m=1,2, \ldots$, are the generalized Faber coefficients of f.

Let y_{R} be $K_{R^{-}}$quasiconformal reflection across the boundary L_{R}. The following theorem estimates the error of the approximation of $f \in A^{2}\left(G_{2, R}\right)$ by the partial sums of the series

$$
\sum_{m=1}^{\infty} a_{m}(f) F_{m}^{\prime}(1 / z)
$$

in the norm $\|\cdot\|_{A^{2}\left(G_{2}, \omega\right)}$ with regard to $E_{n}\left(f, G_{2, R}\right)$ for the special case $\omega(z)=$ $1 /|z|^{4}$ of the weighted function ω given on G_{2}.

Theorem 3. Let $R>1$. If $f \in A^{2}\left(G_{2, R}\right), \omega(z):=1 /|z|^{4}$ and

$$
S_{n}(f, 1 / z)=\sum_{m=1}^{n+1} a_{m}(f) F_{m}^{\prime}(1 / z)
$$

is the nth partial sum of its generalized Faber series

$$
\sum_{m=1}^{\infty} a_{m}(f) F_{m}^{\prime}(1 / z)
$$

then

$$
\left\|f-S_{n}(f, \cdot)\right\|_{A^{2}\left(G_{2}, \omega\right)} \leq \frac{c}{\sqrt{\left(1-k_{R}^{2}\right)\left(R^{2}-1\right)}} \frac{E_{n}\left(f, G_{2, R}\right)}{R^{n+1}}
$$

for all natural numbers n and with a constant c independent of n, where $k_{R}:=\left(K_{R}-1\right) /\left(K_{R}+1\right)$.

For bounded domains the problems considered here were investigated in [8] and [10]. Similar results in the non-weighted case were stated and proved in [9] and [5], respectively.

We shall use $c, c_{1}, c_{2} \ldots$ to denote constants depending only on parameters that are not important for the problem under consideration.

2. Auxiliary results

Considering only the canonical quasiconformal reflections, I. M. Batchaev [3] generalized the integral representation (3) to functions $f \in A^{1}\left(G_{1}\right)$. An accurate proof of the Batchaev's result is given in [2, p. 110, Th. 4.4]. Here we prove an analog of this integral representation for unbounded domains. Namely, the following result holds.

Lemma 1. Let $f \in A^{1}\left(G_{2}\right)$. If $y(z)$ is a canonical quasiconformal reflection with respect to L, then we have

$$
\begin{equation*}
f(z)=-\frac{1}{\pi} \iint_{G_{1}} \frac{(f \circ y)(\zeta)}{(\zeta-z)^{2}[y(\zeta)]^{2}} y_{\bar{\zeta}}(\zeta) d \sigma_{\zeta}, \quad z \in G_{2} \tag{6}
\end{equation*}
$$

Proof. Let $y(z)$ be a canonical quasiconformal reflection and $f \in A^{1}\left(G_{2}\right)$. If we substitute $\zeta=1 / u$ for $\zeta \in G_{2}$ and define

$$
f(\zeta)=f(1 / u)=: f_{*}(u)
$$

then G_{2} maps to a finite domain G_{u} and $f_{*} \in A^{1}\left(G_{u}\right)$. If $y^{*}(t)$ is a canonical quasiconformal reflection with respect to ∂G_{u}, from Batchaev's result we
have

$$
f_{*}(t)=-\frac{1}{\pi} \iint_{C \overline{G_{u}}} \frac{\left(f_{*} \circ y^{*}\right)(u)}{(u-t)^{2}} y_{\bar{u}}^{*}(u) d \sigma_{u}, \quad t \in G_{u}
$$

where $C \overline{G_{u}}:=\mathbb{C} \backslash \overline{G_{u}}$. Substituting $u=1 / \zeta$ in this integral representation we get

$$
\begin{aligned}
f(z) & =f(1 / t)=f_{*}(t)=-\frac{1}{\pi} \iint_{G_{1}} \frac{\left(f_{*} \circ y^{*}\right)(1 / \zeta)}{(1 / \zeta-1 / z)^{2}} y_{\bar{u}}^{*}(1 / \zeta) J d \sigma_{\zeta} \\
& =\frac{1}{\pi} \iint_{G_{1}} \frac{f\left[1 / y^{*}(1 / \zeta)\right] z^{2}}{(\zeta-z)^{2}} y_{\bar{\zeta}}^{*}(1 / \zeta) d \sigma_{\zeta}, \quad z \in G_{2}
\end{aligned}
$$

If we define

$$
y(\zeta):=\frac{1}{y^{*}(1 / \zeta)}
$$

then $y(\zeta)$ becomes a canonical quasiconformal reflection with respect to L. Consequently, for $f \in A^{1}\left(G_{2}\right)$ we get

$$
f(z)=-\frac{1}{\pi} \iint_{G_{1}} \frac{(f \circ y)(\zeta) z^{2}}{(\zeta-z)^{2}[y(\zeta)]^{2}} y_{\bar{\zeta}}(\zeta) d \sigma_{\zeta}, \quad z \in G_{2}
$$

From now on, the reflection $y(z)$ assumed to be a canonical K-quasiconformal reflection with respect to L.

Let $f \in A^{1}\left(G_{2}\right)$. Substituting $\zeta=\psi(w)$ in (6), we get

$$
\begin{gather*}
f(z)=-\frac{1}{\pi} \iint_{C \bar{D}} \frac{(f \circ y)[\psi(w)] \overline{\psi^{\prime}}(w) y_{\bar{\zeta}}[\psi(w)]}{[(y \circ \psi)(w)]^{2}} \cdot \frac{z^{2} \psi^{\prime}(w)}{[\psi(w)-z]^{2}} d \sigma_{w} \\
=-\frac{1}{\pi} \iint_{C \bar{D}} \frac{(f \circ y)[\psi(w)] \overline{\psi^{\prime}}(w) y_{\bar{\zeta}}[\psi(w)]}{[(y \circ \psi)(w)]^{2} g[\psi(w)]} \cdot \frac{g[\psi(w)] z^{2} \psi^{\prime}(w)}{[\psi(w)-z]^{2}} d \sigma_{w}, \quad z \in G_{2} . \tag{7}
\end{gather*}
$$

Thus, if we define the coefficients $a_{m}(f, g)$ by

$$
\begin{equation*}
a_{m}(f, g):=\frac{1}{\pi} \iint_{C \bar{D}} \frac{(f \circ y)[\psi(w)] \overline{\psi^{\prime}}(w)}{w^{m+\nu+1} g[\psi(w)][(y \circ \psi)(w)]^{2}} y_{\bar{\zeta}}[\psi(w)] d \sigma_{w,} m=1,2, \ldots \tag{8}
\end{equation*}
$$

then, by (2) and (7), we can associate a formal series $\sum_{m=1}^{\infty} a_{m}(f, g) F_{m}^{\prime}$ $(1 / z, g)$ with the function $f \in A^{1}\left(G_{2}\right)$, i.e.,

$$
f(z) \sim \sum_{m=1}^{\infty} a_{m}(f, g) F_{m}^{\prime}(1 / z, g)
$$

We call this formal series a generalized Faber series of $f \in A^{1}\left(G_{2}\right)$, and the coefficients $a_{m}(f, g)$ are called generalized Faber coefficients of f.

For $R>1$ we set

$$
G_{2, R}:=\left\{z: z \in G_{1}, 1<|\varphi(z)|<R\right\} \cup \overline{G_{2}} .
$$

Lemma 2. Let g be an analytic function on G_{1} and let for some fixed constant $R_{0} \in(1, \infty)$

$$
\iint_{G_{2, R_{o} \backslash G_{2}}}|g(z)|^{2} d \sigma_{z}<\infty .
$$

Then the series

$$
\sum_{m=1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|}{m+1}
$$

is convergent uniformly on compact subsets of G_{2}.
Proof. Let z be a fixed point in G_{2}. Then the power series

$$
\sum_{m=1}^{\infty} \frac{F_{m}^{\prime}(1 / z, g)}{m+1} w^{m+1}
$$

defines an analytic function

$$
\begin{equation*}
A(z, w):=\sum_{m=1}^{\infty} \frac{F_{m}^{\prime}(1 / z, g)}{m+1} w^{m+1}, \quad w \in D \tag{9}
\end{equation*}
$$

in D. By taking the derivative of (9) with respect to w and considering (2) we get

$$
\begin{equation*}
A_{w}^{\prime}(z, w):=\sum_{m=1}^{\infty} F_{m}^{\prime}(1 / z, g) w^{m}=-\frac{z^{2} \psi^{\prime}(1 / w) g[\psi(1 / w)]}{[\psi(1 / w)-z]^{2} w^{2}}, \quad w \in D \tag{10}
\end{equation*}
$$

Let $0<r<1$. Since

$$
\sum_{m=1}^{\infty} F_{m}^{\prime}(1 / z, g) w^{m}
$$

is convergent uniformly and absolutely on the closed disc $\bar{D}(0, r)$, the relation (10) implies that

$$
\begin{equation*}
\iint_{\bar{D}(0, r)}\left|A_{w}^{\prime}(z, w)\right|^{2} d \sigma_{w}=\pi \sum_{m=1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|^{2}}{m+1} r^{2 m+2} \tag{11}
\end{equation*}
$$

Hence by (10) and (11) we have

$$
\begin{equation*}
\pi \sum_{m=1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|^{2}}{m+1} r^{2 m+2}=\iint_{\bar{D}(0, r)}\left|\frac{z^{2} \psi^{\prime}(1 / w) g[\psi(1 / w)]}{[\psi(1 / w)-z]^{2} w}\right|^{2} d \sigma_{w} \tag{12}
\end{equation*}
$$

On the other hand, for the fixed constant $R_{0} \in(1, \infty)$ we get

$$
\begin{align*}
S(z): & =\iint_{D}\left|\frac{z^{2} \psi^{\prime}(1 / w) g[\psi(1 / w)]}{[\psi(1 / w)-z]^{2} w^{2}}\right|^{2} d \sigma_{w} \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left|\frac{z^{2} \psi^{\prime}\left(e^{-i \theta} / r\right) g\left[\psi\left(e^{-i \theta} / r\right)\right]}{\left[\psi\left(e^{-i \theta} / r\right)-z\right]^{2} r^{2} e^{2 i \theta}}\right|^{2} r d r d \theta \\
& =\int_{1}^{\infty} \int_{0}^{2 \pi}\left|\frac{z^{2} \psi^{\prime}\left(R e^{-i \theta}\right) g\left[\psi\left(R e^{-i \theta}\right)\right]}{\left[\psi\left(R e^{-i \theta}\right)-z\right]^{2}\left(1 / R^{2}\right) e^{2 i \theta}}\right|^{2} \frac{1}{R^{3}} d R d \theta \\
& =\left(\int_{1}^{R_{0}} \int_{0}^{2 \pi}+\int_{R_{0}}^{\infty} \int_{0}^{2 \pi}\right) \cdots=: J_{1}+J_{2} . \tag{13}
\end{align*}
$$

and

$$
\begin{aligned}
J_{1} & =\int_{1}^{R_{0}} \int_{0}^{2 \pi} \frac{|z|^{4}\left|\psi^{\prime}\left(R e^{-i \theta}\right)\right|^{2}\left|g\left[\psi\left(R e^{-i \theta}\right)\right]\right|^{2}}{\left|\left[\psi\left(R e^{-i \theta}\right)-z\right]\right|^{4}} R d R d \theta \\
\leq & c_{3} \int_{1}^{R_{0}} \int_{0}^{2 \pi}\left|\psi^{\prime}\left(R e^{-i \theta}\right)\right|^{2}\left|g\left[\psi\left(R e^{-i \theta}\right)\right]\right|^{2} d R d \theta \\
& =c_{3} \iint|g(z)|^{2} d \sigma_{z}<\infty \\
& G_{2, R_{o}} \backslash \overline{G_{2}}
\end{aligned}
$$

Analogously one can establish the uniform boundedness of the integral J_{2}. Consequently, from (13) we have

$$
S(z)<\infty
$$

On the other hand, letting $r \rightarrow 1$ in (12) we get

$$
\pi \sum_{m=1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|^{2}}{m+1}=S(z)
$$

Since $S(z)$ is continuous in G_{2} with respect to z, the Dini's theorem implies that the series

$$
\sum_{m=1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|^{2}}{m+1}
$$

is convergent uniformly on compact subsets of G_{2}.
Lemma 3. If $f \in A^{2}\left(G_{2}, \omega\right)$ and $y(\zeta)$ a canonical K-quasiconformal reflection with respect to L, then

$$
\iint_{G_{1}}|(f \circ y)(\zeta)|^{2} \omega[y(\zeta)]\left|y_{\bar{\zeta}}(\zeta)\right|^{2} d \sigma_{\zeta} \leq \frac{\|f\|_{A^{2}\left(G_{2}, \omega\right)}^{2}}{1-k^{2}}
$$

where $k:=(K-1) /(K+1)$.
Proof. Since $\bar{y}(\zeta)$ is a canonical K-quasiconformal mapping of the extended complex plane onto itself, we have $\left|\bar{y}_{\bar{\zeta}}\right| /\left|\bar{y}_{\zeta}\right| \leq k$ and $\left|\bar{y}_{\zeta}\right|^{2}-\left|\bar{y}_{\bar{\zeta}}\right|^{2}>0$. Also, it is known that $\left|\bar{y}_{\bar{\zeta}}\right|=\left|y_{\zeta}\right|$ and $\left|\bar{y}_{\zeta}\right|=\left|y_{\bar{\zeta}}\right|$. Therefore, $\left|y_{\zeta}\right| /\left|y_{\bar{\zeta}}\right| \leq k$ and $\left|y_{\bar{\zeta}}\right|^{2}-\left|y_{\zeta}\right|^{2}>0$. Hence

$$
\begin{aligned}
& \iint_{G_{1}}|(f \circ y)(\zeta)|^{2} \omega[y(\zeta)]\left|y_{\bar{\zeta}}(\zeta)\right|^{2} d \sigma_{\zeta} \\
= & \iint_{G_{1}}|(f \circ y)(\zeta)|^{2} \omega[y(\zeta)]\left(1-\left|y_{\zeta}\right|^{2} /\left|y_{\bar{\zeta}}\right|^{2}\right)^{-1}\left(\left|y_{\bar{\zeta}}\right|^{2}-\left|y_{\zeta}\right|^{2}\right) d \sigma_{\zeta} \\
\leq & \frac{1}{1-k^{2}} \iint_{G_{1}}|(f \circ y)(\zeta)|^{2} \omega[y(\zeta)]\left(\left|y_{\bar{\zeta}}\right|^{2}-\left|y_{\zeta}\right|^{2}\right) d \sigma_{\zeta}
\end{aligned}
$$

Since $\left(\left|y_{\zeta}\right|^{2}-\left|y_{\bar{\zeta}}\right|^{2}\right)$ is the Jacobian of $y(\zeta)$, substituting ζ for $y(\zeta)$ in the right side of the last inequality we get

$$
\iint_{G_{1}}|(f \circ y)(\zeta)|^{2} \omega[y(\zeta)]\left|y_{\bar{\zeta}}(\zeta)\right|^{2} d \sigma_{\zeta} \leq \frac{\|f\|_{A^{2}\left(G_{2}, \omega\right)}^{2}}{1-k^{2}}
$$

Lemma 4. Let g be an analytic function, bounded in G_{1}, non-vanishing in $G_{1} \backslash\{0\}$ and having at $z=0$ a zero of order $\nu \geq 2$. Then

$$
a_{n}\left(F_{m}^{\prime}, g\right)= \begin{cases}1, & m=n-1 \\ 0, & m \neq n-1\end{cases}
$$

Proof. Since $y(z)$ is identical on L, using Green's formulae and the Cauchy integral theorem, we have

$$
\begin{aligned}
a_{n}\left(F_{m}^{\prime}, g\right) & =\frac{1}{\pi} \iint_{C \bar{D}} \frac{F_{m}^{\prime}[1 / y(\psi(w)), g] \overline{\psi^{\prime}}(w)}{w^{n+\nu+1}[y(\psi(w))]^{2} g[\psi(w)]} y_{\bar{\zeta}}[\psi(w)] d \sigma_{w} \\
& =\frac{1}{\pi} \iint_{C \bar{D}}-\frac{\partial}{\partial \bar{w}}\left(\frac{F_{m}[1 / y(\psi(w)), g]}{g[\psi(w)] w^{n+\nu+1}}\right) d \sigma_{w} \\
& =\frac{1}{2 \pi i} \int_{|w|=1} \frac{F_{m}[1 / \psi(w), g]}{g[\psi(w)] w^{n+\nu+1}} d w \\
& =\frac{1}{2 \pi i} \int_{|w|=R>1} \frac{F_{m}[1 / \psi(w), g]}{g[\psi(w)] w^{n+\nu+1}} d w
\end{aligned}
$$

Since, by (1)

$$
F_{m}(1 / z, g)=g(z) \varphi^{m+\nu+1}(z)+E_{m}(z, g)
$$

where $E_{m}(z, g)$ is analytic in G_{1} and $E_{m}(0, g)=$ const, we get

$$
\begin{aligned}
a_{n}\left(F_{m}^{\prime}, g\right) & =\frac{1}{2 \pi i} \int_{|w|=R>1} w^{m-n} d w+\frac{1}{2 \pi i} \int_{|w|=R>1} \frac{E_{m}[\psi(w), g]}{g[\psi(w)] w^{n+\nu+1}} d w \\
& =\frac{1}{2 \pi i} \int_{|w|=R>1} w^{m-n} d w= \begin{cases}1, & m=n-1 \\
0, & m \neq n-1\end{cases}
\end{aligned}
$$

Consider the expansion

$$
\varphi^{m}(z)=F_{m}(1 / z)+Q_{m}(z), \quad m=1,2, \ldots
$$

It is easily to verify that $F_{m}(1 / z)$ is a polynomial of order m with respect to $1 / z$. The following lemma holds.

Lemma 5. For every natural numbers n, the following estimation holds

$$
\sum_{m=n+2}^{\infty} \frac{\left\|F_{m, z}^{\prime}\right\|_{A^{2}\left(G_{2}\right)}^{2}}{m R^{2 m}} \leq \frac{\pi}{R^{2(n+1)}\left(R^{2}-1\right)}, \quad m=1,2, \ldots
$$

Proof. Let $S_{m}\left(G_{2}\right)$ be the area of the image of G_{2} under $F_{m}(1 / z)$ on the Riemann surface of $F_{m}(1 / z)$. Since

$$
\left[F_{m}(1 / z) \circ \psi(w)\right]=w^{m}+\sum_{v=1}^{\infty} b_{v} w^{-v}, \quad|w|>1
$$

(see [12, p. 255]) by means of a theorem due to Lebedev-Millin (given in [12, p. 170]), we have

$$
\begin{equation*}
S_{m}\left(G_{2}\right)=\pi\left(m-\sum_{v=1}^{\infty} v\left|b_{v}\right|^{2}\right) \leq m \pi . \tag{14}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
S_{m}\left(G_{2}\right)=\iint_{G_{2}}\left|F_{m, z}^{\prime}\right|^{2} d \sigma_{z}=\left\|F_{m, z}^{\prime}\right\|_{A^{2}\left(G_{2}\right)}^{2} \tag{15}
\end{equation*}
$$

From (14) and (15), it follows that

$$
\sum_{m=n+2}^{\infty} \frac{\left\|F_{m, z}^{\prime}\right\|_{A^{2}\left(G_{2}\right)}^{2}}{m R^{2 m}} \leq \pi \sum_{m=n+2}^{\infty} \frac{1}{R^{2 m}}=\frac{\pi}{R^{2(n+1)}\left(R^{2}-1\right)}
$$

In general, we can not reduce

$$
\frac{\pi}{R^{2(n+1)}\left(R^{2}-1\right)}
$$

in the inequality above. In fact, if we consider the unit disc D, then $F_{m}(1 / z)=1 / z^{m}$ and

$$
\sum_{m=n+2}^{\infty} \frac{\left\|F_{m, z}^{\prime}\right\|_{A^{2}\left(G_{2}\right)}^{2}}{m R^{2 m}}=\frac{\pi}{R^{2(n+1)}\left(R^{2}-1\right)}
$$

3. Proof of the new results

Proof of Theorem 1. Let $f \in A^{2}\left(G_{2}, \omega\right), \omega \in W^{2}\left(G_{2}\right)$. First of all we prove that $f \in A^{1}\left(G_{2}\right)$. Taking into account that g has at $z=0$ a zero of order
$\nu \geq 2$, and using the relations (5) and (4) we get

$$
\begin{aligned}
& \iint_{G_{2}}|(g \circ y)(z)|^{2} d \sigma_{z}=\iint_{G_{1}}|g(z)|^{2}\left(\left|y_{\bar{z}}\right|^{2}-\left|y_{z}\right|^{2}\right) d \sigma_{z} \\
\leq & \iint_{G_{1}}|g(z)|^{2}\left|y_{\bar{z}}\right|^{2} d \sigma_{z}=\iint_{G_{2, R} \backslash \overline{G_{2}}}|g(z)|^{2}\left|y_{\bar{z}}\right|^{2} d \sigma_{z}+\iint_{C G_{2, R}}|g(z)|^{2}\left|y_{\bar{z}}\right|^{2} d \sigma_{z} \\
\leq & c_{4} \iint_{G_{2, R} \backslash \overline{G_{2}}}|g(z)|^{2} d \sigma_{z}+c_{5}<\infty .
\end{aligned}
$$

Hence, by virtue of Hölder's inequality

$$
\left(\iint_{G_{2}}|f(z)| d \sigma_{z}\right)^{2} \leq\left(\iint_{G_{2}}|f(z)|^{2} \omega(z) d \sigma_{z}\right)\left(\iint_{G_{2}}|(g \circ y)(z)|^{2} d \sigma_{z}\right)<\infty
$$

Then by means of (7), (8) and Hölder's inequality we obtain

$$
\begin{align*}
& \quad\left|f(z)-\sum_{m=1}^{n} a_{m}(f, g) F_{m}^{\prime}(1 / z, g)\right|^{2} \\
& \leq \frac{1}{\pi} \iint_{C \bar{D}}\left|\frac{f[y(\psi(w))] \overline{\psi^{\prime}}(w) y_{\bar{\zeta}}[\psi(w)]}{[y(\psi(w))]^{2} g[\psi(w)]}\right|^{2} d \sigma_{w} \tag{16}\\
& \quad \times \iint_{C \bar{D}}\left|\frac{g[\psi(w)] z^{2} \psi^{\prime}(w)}{[\psi(w)-z]^{2}}+\sum_{m=1}^{n} \frac{F_{m}^{\prime}(1 / z, g)}{w^{m+\nu+1}}\right|^{2} d \sigma_{w} \\
& =\frac{1}{\pi} J_{1} \cdot J_{2}
\end{align*}
$$

for every $z \in G_{2}$.
Since

$$
\max _{z \in \overline{G_{1}}}|y(z)| \geq \text { const }>0
$$

by virtue of Lemma 3 we have

$$
\begin{align*}
J_{1}=\iint_{G_{1}}\left|\frac{f[y(z)] y_{\bar{z}}(z)}{[y(z)]^{2} g(z)}\right|^{2} d \sigma_{z} & \leq c_{6} \iint_{G_{1}}|f[y(z)]|^{2} \omega[y(z)]\left|y_{\bar{z}}(z)\right|^{2} d \sigma_{z} \\
& \leq c_{6} \frac{\|f\|_{A^{2}\left(G_{2}, \omega\right)}^{2}}{1-k^{2}}<\infty \tag{17}
\end{align*}
$$

where the constant c_{6} depends only on L. We now estimate the integral J_{2}.
Let $1<r<R<\infty$. In view of (2)

$$
\begin{aligned}
& \iint_{r<|w|<R}\left|\frac{z^{2} \psi^{\prime}(w) g[\psi(w)]}{[\psi(w)-z]^{2}}+\sum_{m=1}^{n} \frac{F_{m}^{\prime}(1 / z, g)}{w^{m+\nu+1}}\right|^{2} d \sigma_{w} \\
= & \iint_{r<|w|<R}\left|\sum_{m=n+1}^{\infty} \frac{F_{m}^{\prime}(1 / z, g)}{w^{m+\nu+1}}\right|^{2} d \sigma_{w} \\
= & \pi \sum_{m=n+1}^{\infty} \frac{1}{m+\nu}\left(\frac{1}{r^{2(m+\nu)}}-\frac{1}{R^{2(m+\nu)}}\right)\left|F_{m}^{\prime}(1 / z, g)\right|^{2} \\
\leq & \pi \sum_{m=n+1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|^{2}}{m+\nu}
\end{aligned}
$$

and by letting $r \rightarrow 1$ and $R \rightarrow \infty$, we get

$$
\begin{equation*}
J_{2} \leq \pi \sum_{m=n+1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|^{2}}{m+\nu} \tag{18}
\end{equation*}
$$

Therefore, by (16), (17) and (18), the following estimate holds

$$
\left|f(z)-\sum_{m=1}^{n} a_{m}(f, g) F_{m}^{\prime}(1 / z, g)\right|^{2} \leq c_{7} \sum_{m=n+1}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z, g)\right|^{2}}{m+\nu}
$$

and then Lemma 2 completes the proof.
Proof of Theorem 2. Let

$$
\widetilde{S_{n}}(1 / z):=\sum_{m=1}^{n+1} b_{m} F_{m}^{\prime}(1 / z, g)
$$

be the nth partial sum of

$$
\sum_{m=1}^{\infty} b_{m} F_{m}^{\prime}(1 / z, g)
$$

Using Lemma 4 we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\pi} \iint_{C \bar{D}} \frac{\left(\widetilde{S_{n}} \circ y\right)[\psi(w)] \overline{\psi^{\prime}}(w)}{w^{m+\nu+1} g[\psi(w)][y(\psi(w))]^{2}} y_{\bar{\zeta}}[\psi(w)] d \sigma_{w}=b_{m}, \quad m=1,2, \ldots \tag{19}
\end{equation*}
$$

On the other hand, by using Hölder's inequality and Lemma 3 we have

$$
\begin{align*}
& \left|a_{m}(f, g)-b_{m}\right| \\
& \leq \frac{1}{\pi}\left|\iint_{C \bar{D}} \frac{\left[(f \circ y)(\psi(w))-\left(\widetilde{S_{n}} \circ y\right)(\psi(w))\right] \overline{\psi^{\prime}}(w)}{w^{m+\nu+1} g(\psi(w))[y(\psi(w))]^{2}} y_{\bar{\zeta}}(\psi(w)) d \sigma_{w}\right| \\
& +\left|\frac{1}{\pi} \iint_{C \bar{D}} \frac{\left(\widetilde{S_{n}} \circ y\right)[\psi(w)] \overline{\psi^{\prime}}(w)}{w^{m+\nu+1} g(\psi(w))[y(\psi(w))]^{2}} y_{\bar{\zeta}}(\psi(w)) d \sigma_{w}-b_{m}\right| \\
& \leq \frac{1}{\pi}\left(\iint_{C \bar{D}} \frac{d \sigma_{w}}{|w|^{2(m+\nu+1)}}\right)^{1 / 2} \\
& \times\left(\iint_{C \bar{D}} \frac{\left|(f \circ y)(\psi(w))-\left(\widetilde{S_{n}} \circ y\right)(\psi(w))\right|^{2}\left|\psi^{\prime}(w)\right|^{2}\left|y_{\bar{\zeta}}(\psi(w))\right|^{2}}{|g(\psi(w))|^{2}|y(\psi(w))|^{4}} d \sigma_{w}\right)^{1 / 2} \\
& +\left|\frac{1}{\pi} \iint_{C \bar{D}} \frac{\left(\widetilde{S_{n}} \circ y\right)[\psi(w)] \overline{\psi^{\prime}}(w)}{w^{m+\nu+1} g(\psi(w))[y(\psi(w))]^{2}} y_{\bar{\zeta}}(\psi(w)) d \sigma_{w}-b_{m}\right| \\
& \leq \frac{c_{8}}{\sqrt{m+\nu}}\left(\iint_{G_{1}}\left|\frac{\left[\left(f-\widetilde{S_{n}}\right) \circ y\right](\zeta)}{g(\zeta)}\right|^{2}\left|y_{\bar{\zeta}}(\zeta)\right|^{2} d \sigma_{\zeta}\right)^{1 / 2} \\
& +\left|\frac{1}{\pi} \iint_{C \bar{D}} \frac{\left(\widetilde{S_{n}} \circ y\right)[\psi(w)] \overline{\psi^{\prime}}(w)}{w^{m+\nu+1} g(\psi(w))[y(\psi(w))]^{2}} y_{\bar{\zeta}}(\psi(w)) d \sigma_{w}-b_{m}\right| \\
& \leq \frac{c_{8}\left\|f-\widetilde{S_{n}}\right\|_{A^{2}\left(G_{2}, \omega\right)}}{\sqrt{(m+\nu)\left(1-k^{2}\right)}} \\
& +\left|\frac{1}{\pi} \iint_{C \bar{D}} \frac{\left(\widetilde{S_{n}} \circ y\right)[\psi(w)] \overline{\psi^{\prime}}(w)}{w^{m+\nu+1} g(\psi(w))[y(\psi(w))]^{2}} y_{\bar{\zeta}}(\psi(w)) d \sigma_{w}-b_{m}\right| \tag{20}
\end{align*}
$$

for every natural number n. Since $\lim _{n \rightarrow \infty}\left\|f-\widetilde{S_{n}}\right\|_{A^{2}\left(G_{2}, \omega\right)}=0,(19)$ and (20) show that $a_{m}(f, g)=b_{m}, m=1,2, \ldots$

Proof of Theorem 3. Let P_{n}^{*} be the best approximant polynomial to $f \in$ $A^{2}\left(G_{2, R}\right)$ in the norm $\|\cdot\|_{A^{2}\left(G_{2, R}\right)}$, i.e.,

$$
\left\|f-P_{n}^{*}\right\|_{A^{2}\left(G_{2, R}\right)}=E_{n}\left(f, G_{2, R}\right)
$$

In a manner similar to the proof of Theorem 1 we can prove that the sequence $\left\{S_{n}\right\}$ of the partial sums $S_{n}(f, 1 / z), n=1,2, \ldots$, converges uniformly to $f \in A^{2}\left(G_{2, R}\right)$ on compact subsets of $G_{2, R}$, which implies that

$$
\begin{gathered}
\left|f(z)-S_{n}(f, 1 / z)\right|=\left|\sum_{m=n+2}^{\infty} a_{m}(f) F_{m}^{\prime}(1 / z)\right| \\
=\frac{1}{\pi}\left|\sum_{m=n+2}^{\infty} \iint_{|w|>R} \frac{\left(\left(f-P_{n}^{*}\right) \circ y_{R}\right)(\psi(w)) \overline{\psi^{\prime}}(w) y_{R_{\bar{\zeta}}}(\psi(w))}{\left[y_{R}(\psi(w))\right]^{2}} \cdot \frac{F_{m}^{\prime}(1 / z)}{w^{m+1}} d \sigma_{w}\right|
\end{gathered}
$$

for every $z \in G_{2}$. Applying now Hölder's inequality and Lemma 3, we obtain

$$
\left|f(z)-S_{n}(f, 1 / z)\right|^{2} \leq \frac{c_{9} E_{n}^{2}\left(f, G_{2, R}\right)}{\pi\left(1-k_{R}^{2}\right)} \sum_{m=n+2}^{\infty} \frac{\left|F_{m}^{\prime}(1 / z)\right|^{2}}{m R^{2 m}}
$$

Multiplying both sides of this inequality by $1 /|z|^{4}$ we have

$$
\left|f(z)-S_{n}(f, 1 / z)\right|^{2} \frac{1}{|z|^{4}} \leq \frac{c_{9} E_{n}^{2}\left(f, G_{2, R}\right)}{\pi\left(1-k_{R}^{2}\right)} \sum_{m=n+2}^{\infty} \frac{\left|F_{m, z}^{\prime}(1 / z)\right|^{2}}{m R^{2 m}}
$$

Now, integrating both sides over G_{2} and using Lemma 5 , we conclude that

$$
\left\|f(z)-S_{n}(f, \cdot)\right\|_{A^{2}\left(G_{2}, \omega\right)}^{2} \leq \frac{c_{9} E_{n}^{2}\left(f, G_{2, R}\right)}{\left(1-k_{R}^{2}\right)\left(R^{2}-1\right) R^{2(n+1)}},
$$

i.e.,

$$
\left\|f(z)-S_{n}(f, \cdot)\right\|_{A^{2}\left(G_{2}, \omega\right)} \leq \frac{c E_{n}\left(f, G_{2, R}\right)}{\sqrt{\left(1-k_{R}^{2}\right)\left(R^{2}-1\right)} R^{(n+1)}}
$$

for all natural numbers n.
Acknowledgement. The authors are indebted to the referee for valuable suggestions.

References

[1] L. Ahlfors, Lectures on Quasiconformal Mapping, Wadsworth, Belmont, CA, 1987.
[2] V. V. Andrievski, V. I. Belyi and V. K. Dzyadyk, Conformal Invariants in constructive Theory of Functions of Complex Variable, Adv. Series in Math. Sciences and Engineer., WEP Co., Atlanta, Georgia, 1995.
[3] I. M. Batchaev, Integral Representations in a Region with Quasiconformal Boundary and Some Applications, Doctoral dissertation, Baku, 1980.
[4] V. I. Belyi, Conformal mappings and approximation of analytic functions in domains with quasiconformal boundary, USSR-Sb. 31 (1997), 289-317.
[5] A. Çavuş, Approximation by generalized Faber series in Bergman spaces on finite regions with a qusiconformal boundary, J. Approx. Theory, 87 (1996), 25-35.
[6] R. A. De Vore, G. G. Lorentz, Constructive Approximation, Spriger-Verlag, New York/Berlin, 1993.
[7] D. Gaier, Lectures on Complex Approximation, Birkhäuser, Boston/Basel/Stutgart, 1987.
[8] D. M. Israfilov, Approximation by generalized Faber series in weighted Bergman spaces on finite domains with quasiconformal boundary, East Journal on Approx., 4 (1998), 1-13.
[9] D. M. Israfilov, Approximative properties of generalized Faber series, In: Proc. AllUnion Scholl on Approximative Theory, Baku, May, 1989.
[10] D. M. Israfilov, Faber series in weighted Bergman spaces, Complex Variables, 45 (2001), 167-181.
[11] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer- Verlag, New York/Berlin, 1973.
[12] P. K. Suetin, Series of Faber Polynomials, Gordon and Breach Science Publishers, Amsterdam, 1998.
(Received: February 10, 2005)
(Revised: October 27, 2005)

Daniyal M. Israfilov
Institute of Math. and Mech.
NAS Azerbaijan, F. Agayev Str. 9
Baku, Azerbaijan
E-mail: mdaniyal@balikesir.edu.tr
Yunus E. Yildirir
Department of Mathematics
Faculty of Art-Science
Balikesir University
10100 Balikesir Turkey
E- mail: yildirir@balikesir.edu.tr

[^0]: 2000 Mathematics Subject Classification. 30E10, 41A10, 41A25, 41A58.
 Key words and phrases. Weighted Bergman spaces, quasiconformal curves, Faber series.

