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On weakly Ricci symmetric spacetime manifolds

U.C. De and Gopal Chandra Ghosh (India)

Abstract. The object of the present paper is to study weakly Ricci
symmetric spacetime manifolds. Among others it is proved that if in
a weakly Ricci symmetric spacetime of non–zero constant scalar cur-
vature the matter distribution is perfect fluid, then the acceleration
vector and the expansion scalar are zero and such a spacetime can
not admit heat flux. Finally a study of conformally flat perfect fluid
weakly Ricci symmetric spacetime manifold is made.

1. Introduction

The present paper is concerned with certain investigations in general
relativity by the coordinate free method of differential geometry. In this
method of study the spacetime of general relativity is regarded as a con-
nected four-dimensional semi–Riemannian manifold (M4, g) with Lorentz
metric g with signature (−, +, +, +). The geometry of the Lorentz mani-
fold begins with the study of the causal character of vectors of the manifold.
It is due to this causality that the Lorentz manifold becomes a convenient
choice for the study of general relativity.

Here we consider a special type of spacetime which is called weakly
Ricci symmetric spacetime. The notion of weakly symmetric manifold was
introduced by Tamassy and Binh [1]. A non-flat Riemannian manifold
(Mn, g) (n > 2) is called weakly symmetric if the curvature tensor R satisfies
the condition

(∇XR)(Y, Z)W = A(X)R(Y, Z)W + B(Y )R(X, Z)W + C(Z)R(Y,X)W

+D(W )R(Y, Z)X + g(R(Y,Z)W,X)ρ,
(1)
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where ∇ denote the Levi–Civita connection on (Mn, g) and A, B, C, D and
ρ are 1-forms and a vector field respectively, which are non-zero simultane-
ously. Such a manifold is denoted by (WS)n.

In 1993 Tamassy and Binh [2] introduced the notion of a weakly Ricci
symmetric manifold. A non–flat Riemannian manifold (Mn, g) (n > 2) is
called weakly Ricci symmetric if its Ricci tensor S is of type (0, 2) and is
not identically zero and satisfies the condition

(∇XS)(Y,Z) = A(X)S(Y, Z) + B(Y )S(X, Z) + D(Z)S(Y, X) (2)

where A,B, D are three non–zero 1–forms and ∇ denotes the operator of
covariant differentiation with respect to the metric tensor g. Such an n–
dimensional manifold was denoted by (WRS)n. If in (2) the 1–form A is
replaced by 2A,B and D are replaced by A, then the manifold is called a
pseudo Ricci symmetric manifold introduced by Chaki [3]. Also if in (2)
the 1–form A is replaced by 2A, then the manifold is called a generalized
pseudo Ricci symmetric manifold introduced by Chaki and Koley [4]. So the
defining condition of a (WRS)n is a little weaker than that of a generalized
pseudo Ricci symmetric manifold. The existence of a (WS)n is proved by
M. Prvanovic [5] and a concrete example of a (WS)n is given by De and
Banbyopadhyay [6] by a suitable metric. In a recent paper De and Ghosh
[7] cited an example of a (WRS)n. Also De and Sengupta [8] proved that
if a (WS)n admits a type of semi–symmetric connection then the (WS)n

reduces to

(∇XS)(Y, Z) = A(X)S(Y, Z) + B(Y )S(X, Z) + B(Z)S(X,Y ) (3)

i.e., the (WS)n reduces to a special type of (WRS)n.
In the study of a (WRS)n an important role is played by the 1–form δ

defined by
δ(X) = B(X)−D(X).

Lemma 1. [9] If δ 6=0, then the Ricci tensor is of the form

S(X, Y ) = rT (X)T (Y ) (4)

where T is a non–zero 1–form defined by

T (X) = g(X, ρ), (5)

r is the scalar curvature and ρ is called the basic vector field of (WRS)n.
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It is shown that if a general relativistic perfect fluid spacetime with cos-
mological constant λ and flow vector field ρ is a semi–Riemannian (WRS)4
with constant scalar curvature then the acceleration vector and the expan-
sion scalar of the fluid are zero and the cosmological constant λ satisfies
the inequality − r

6 < λ < 3r
2 .

Next we prove that if in a (WRS)4 spacetime the matter distribution
is fluid with ρ as the velocity vector field of the fluid, then such a fluid can
not admit heat flux.

Finally we consider conformally flat (WRS)4 and obtain some interest-
ing results.

2. Weakly Ricci symmetric perfect fluid spacetime

Lemma 2. In a (WRS)4, r 6=0 where r is the scalar curvature.
If r = 0 then we have from (4) S = 0 which is inadmissible by the

definition of (WRS)4.

A semi–Riemannian (WRS)4 may similarly be defined by taking a
Lorentz metric g with signature (−, +, +, +). All the above relations
will also hold in such (WRS)4.

Now we take ρ as a timelike vector field. Then we have from (4)

S(X,Y ) = rT (X)T (Y ) or
S(X, ρ) = −rT (X), since T (ρ) = g(ρ, ρ) = −1 or

S(X, ρ) = −rg(X, ρ). (6)

Now we write Einstein equation as follows:

S(X, Y )− r

2
g(X, Y ) + λg(X, Y ) = k[(σ + p)T (X)T (Y ) + pg(X, Y )] (7)

where λ is the cosmological constant, k is the gravitational constant, σ is
the energy density and p is the isotropic pressure of the fluid.
Putting Y = ρ in (7) we have

S(X, ρ)− r

2
g(X, ρ) + λg(X, ρ) = k[(σ + p)T (X)T (ρ) + pg(X, ρ)] or

−rT (X)− r

2
T (X) + λT (X) = k[−(σ + p)T (X) + pT (X)] or

−3r

2
+ λ = −kσ or

σ =
3r − 2λ

2k
. (8)
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Again contracting (7) we get

r − 2r + 4λ = k(3p− λ) or

−r + 4λ = 3kp− 3r

2
+ λ or

−2r + 8λ = 6kp− 3r + 2λ or
6kp = −2r + 3r + 8λ− 2λ or

p =
r + 6λ

6k
. (9)

If r is a constant, then it follows from (8) and (9) that σ and p are constant.
Since σ > 0, from (8) we have

3r − 2λ

2k
> 0 or

3r − 2λ > 0 or
3r > 2λ or

λ <
3r

2
. (10)

Since p > 0, similarly we have from (9)

λ > −r

6
. (11)

From (10) and (11) we obtain

−r

6
< λ <

3r

2
.

We assume that the scalar curvature r of a (WRS)4 is constant. Then from
(8) and (9) we see that σ and p are both constant.

Since div T = 0, we get the energy and force equations as follows [10]:

p σ = −(σ + p) div ρ [Energy equation] (12)
(σ + p)∇ρρ = −grad p− (ρp)ρ [Force equation]. (13)

In this case both σ and p are constant, it follows from (12) and (13) that

div ρ = 0 and ∇ρρ = 0.

It is known that div ρ represents the expansion scalar and ∇ρρ represents
the acceleration vector. Thus in this case both the expansion scalar and
the acceleration vector are zero.

Hence we can state the following:

Theorem 1. If in a weakly Ricci symmetric spacetime of non–zero con-
stant scalar curvature the matter distribution is perfect fluid whose velocity
vector field is the basic vector field ρ of the spacetime, then the acceleration
vector of the fluid must be zero and the expansion scalar also so. Moreover
the cosmological constant λ satisfies the relation − r

6 < λ < 3r
2 .
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3. Possibility of a fluid (WRS)4 spacetime admitting a heat
flux

In this section we discuss whether a fluid (WRS)4 spacetime with the
vector field ρ as the velocity vector field can admit a heat flux.

If this is possible, let the energy-momenttum tensor be of the following
form:

T (X, Y ) = (σ + p)T (X)T (Y ) + p g(X, Y ) + T (X)B(Y ) + T (Y )B(X) (14)

where g(X,W ) = B(X) ∀ X, W being the heat flux vector field, then since
W is spacelike, g(ρ, W ) = 0, or B(ρ) = 0.

In this case the Einstein equation can be written as

S(X, Y )− r

2
g(X, Y ) + λg(X, Y ) = [(σ + p)T (X)T (Y ) + p g(X, Y )

+T (X)B(Y ) + T (Y )B(X)].
(15)

Now from (15) we have

−rT (X)− r

2
T (X) + λT (X) = k[−(σ + p)T (X) + pT (X)−B(X)] or

(−3r

2
+ λ + kσ)T (X) = −kT (X) ∀ X. (16)

Putting X = ρ in (16) we have

−3r

2
+ λ + kσ = 0

which implies

kB(X) = 0

i.e., B(X) = 0, since k 6=0. (17)

Thus we can state the following:

Theorem 2. (WRS)4 spacetime can not admit a heat flux.

4. Conformally flat perfect fluid (WRS)4 spacetime

In this section we consider a conformally flat perfect fluid (WRS)4
spacetime obeying the Einstein equation without cosmological constant and
having the vector field ρ of (WRS)4 as the velocity of the fluid.
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It is known [11] that in a conformally flat (WRS)4 the 1–form T defined
by g(X, ρ) = T (X) is closed, i.e., dT (X, Y ) = 0. Hence it follows that

g(∇Xρ, Y ) = g(∇Y ρ, X) ∀ X, Y (18)

which means that the vector field ρ is non–rotational. Now putting Y = ρ

in (18) we get
g(∇Xρ, ρ) = g(∇ρρ,X). (19)

Since g(∇Xρ, ρ) = 0, from (19) it follows that

g(∇ρρ, X) = 0 ∀ X.

Hence ∇ρρ = 0. This means that the integral curves of the vector field ρ

are geodesics. Therefore we can state the following:

Theorem 3. In a conformally flat (WRS)4 spacetime the vector field
ρ defined by (5) is non–rotational and its integral curves are geodesic.

Again we have from Einsteins’ equations without cosmological constant

S(X,Y ) =
r

2
g(X, Y ) + k[(σ + p)T (X)T (Y ) + pg(X, Y )]

=
r

2
g(X, Y ) + k(

3r

2k
+

r

6k
)T (X)T (Y ) +

r

6
g(X, Y )

=
2r

3
g(X, Y ) +

5r

3
T (X)T (Y ) (20)

which implies

LX =
2r

3
X +

5r

3
T (X)ρ (21)

where L is the symmetric endomorphism given by S(X, Y ) = g(LX, Y ). Since
the spacetime is assumed to be conformally flat we have

R(X, Y )Z =
1
2
[S(X, Z)X − S(X, Z)Y + g(Y, Z)LX − g(X,Z)LY ]

−r

6
[g(Y,Z)X − g(X, Z)Y ].

(22)

Using (20) and (21) in (22) we have

R(X, Y )Z =
r

2
[g(Y, Z)X − g(X, Z)Y ] +

5r

6
[T (Y )T (Z)X − T (X)T (Z)Y

+g(Y, Z)T (X)ρ− g(X,Z)T (Y ) ρ ].
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Let ρ⊥ denote the 3–dimensional distribution in (WRS)4 spacetime
orthogonal to ρ, then

R(X, Y )Z =
r

2
[g(Y, Z)X − g(X, Z)Y ] ∀ X, Y, ∈ρ⊥ (23)

and
R(X, ρ, ρ) = 0 for every X ∈ρ⊥. (24)

Let X, Y ∈ρ⊥, and K1 denote sectional curvature of the plane deter-
mined by X, Y and K2 denote sectional curvature determined by X, ρ.
Then

K1 =
g(R(X,Y, Y ), X)

g(X, X)g(Y, Y )− {g(X, Y )}2

=
g[ r

2g(Y, Y )X − g(X,Y )Y, X]
g(X, X)g(Y, Y )− {g(X, Y )}2

=
r

2
and

K2 =
g(R(X, ρ, ρ), X)

g(X, X)g(ρ, ρ)− {g(X, ρ)}2

=
g(0, X)
−g(X, X)

= 0

Summing up we can state the following theorem:

Theorem 4. A conformally flat perfect fluid (WRS)4 spacetime obey-
ing the Einstein equation without cosmological constant and having the basic
vector field ρ as the velocity vector field has the following property:

All planes perpendicular to ρ have sectional curvature r
2 and all planes

containing ρ have sectional curvature 0.

By Karcher [12] a Lorentz manifold is called infinitesimally spatially
isotropic relative to a timelike unit vector field ρ if its Riemannina curvature
R satisfies the relations

R(X, Y )Z = l[g(Y, Z)X − g(X,Z)Y ] for X, Y, Z ∈ρ⊥

and
R(X, ρ, ρ) = mX for X ∈ ρ⊥

where l, m are real valued functions on the manifold. By virtue of (23) and
(24) we can state the following:
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Theorem 5. A conformally flat perfect fluid (WRS)4 spacetime obey-
ing the Einstein equation without cosmological constant and having the basic
vector field (WRS)4 as the velocity vector field of the fluid is infinitesimally
spatially isotropic relative to the velocity vector field.
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O slabo Ricci simetričnim prostor-vrijeme
mnogostrukostima

U.C. De i Gopal Chandra Ghosh

Sadržaj

Cilj ovog rada je izučavanje slabih Ricci simetričnih prostor–vrijeme
mnogostrukosti. Izmedju ostalog, dokazuje se da ako je u slabo Ricci
simetričnom prostor–vremenu nenulte konstantne skalarne zakrivljenosti
distribucija materije perfektno fluidna, onda su vektor ubrzanja i skalar
ekspanzije jednaki nuli, i takav prostor–vrijeme ne dopušta toplotni fluks.
Na kraju se izučava slabo Ricci simetrična prostor– vrijeme mnogostrukost
konformno ravnog perfektnog fluida.


