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On contractions in probabilistic metric spaces

Ioan Goleţ (Romania)

Abstract. Two types of contractions are used for mappings defined
on probabilistic metric spaces. The first type was introduced by V.M.
Sehgal [15-16 ], the second type by T.L. Hicks [7]. Since then, many
fixed point results were obtained. In this paper we introduce the
concept of a probabilistic g−contraction, which is a generalization of
a probabilistic contraction of Hicks’ type and prove some fixed point
theorems.

1. Introduction

Throughout this paper R = (−∞, +∞), R+ = [0, +∞) and I = [0, 1]. A
mapping F : R→ R+ is called a distribution function if it is non decreasing
and left-continuous with inf F = 0 and sup F = 1.

In what follows we always denote by D the set of all distribution func-
tions. D+ = {F : F ∈ D, F (0) = 0} is the set of all distribution functions
associated to non–negative, one–dimensional random variables.

For every a ∈ R+, a specific distribution function is defined by Ha(t) = 0
if t ≤ a and Ha(t) = 1 if t > a.

A mapping T : I × I → I is called a t-norm if it satisfies the following
conditions:

(T1) T (a, 1) = a,
(T2) T (a, b) = T (b, a),
(T3) T (c, d) ≥ T (a, b) if c ≥ d and d ≥ b ,
(T4) T (T (a, b), c) = T (a, (T (b, c)).
The most used t−norms in probabilistic metric spaces theory are T =

Min, T = Prod and T = Tm, where Min(a, b) = min{a, b}, Prod(a, b) = a · b
and Tm(a, b) = max{a + b− 1, 0}.

Definition 1. A probabilistic metric space of Menger type (briefly a
Menger space) is an ordered triple (S,F , T ), where S is a nonempty set, F is
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a mapping from S×S into D+, T is a t−norm and the following conditions
are satisfied :

(M1) Fx,y(t) = H0(t) if and only if x = y.
(M2) Fx,y(t) = Fy,x(t), for all t ∈ R.
(M3) Fx,z(t1 + t2) ≥ T (Fx,y(t1), Fy,z(t2)), for all x, y, z ∈ S and t1, t2 ≥ 0.

F (x, y) is denoted by Fx,y, F is called a probabilistic metric and (M3)
is a probabilistic version of the triangle inequality.

The study of probabilistic metric spaces was introduced by K. Menger
in [10]. Since then, a lot of results were obtained in this area [1], [6], [13].

An important class of probabilistic metric spaces are the so called ran-
dom normed spaces. Let L be a linear space and let F be a mapping on L

with values in D+. (F (x) is denoted by Fx.)

Definition 2. The ordered triple (L,F , T ) is called a random normed
space if the following conditions are satisfied :

(N1) Fx = H0, if only if x = θ the null vector.
(N2) Fαx(t) = Fx( t

|α| ), for t ∈ R, α ∈ K, where K is the field of scalars.
(N3) Fx+y(t1 + t2) ≥ T (Fx(t1), Fy(t2)), for all x, y ∈ L and t1, t2 ∈ R+.

This notion was firstly studied in [17], [11]. For more details we refer
[1], [13].

A uniformity on a Menger space (S,F , T ) is defined by the family :

V = {V (ε, λ) = {(x, y) ∈ S × S : Fu,v(ε) > 1− λ}, ε > 0, λ ∈ (0, 1)}.

In the sequel we will consider a Menger space (S,F , T ) under a t−norm
T, which satisfies the weakest condition, sup{T (t, t) : t < 1} = 1, that ensures
the existence of a uniformity on S.

2. On probabilistic g−contraction mappings

Theorem 1. Let g be a injective mapping defined on a Menger space
(S,F , T ) into itself. Then the following statements are true :

(a) The mapping Fg defined on S × S with values in D+, by Fg(x, y) =
Fg(x),g(y) is a probabilistic metric on S, that is, (S,Fg, T ) is a Menger space
under the same t−norm T.

(b) If S1 = g(S) and (S1,F , T ) is a complete Menger space then (S,Fg, T )
is also a complete Menger space.

(c) If (S1,F , T ) is compact then (S,Fg, T ) is also compact.

Proof. We will prove only the statement (c). Let (xn)n≥1 be a sequence
in S. Then (un)n≥1 with un = g(xn) is a sequence in S1, which is a compact
Menger space. Now, we can find a subsequence {vn : n ≥ 1} ⊂ {un : n ≥ 1}
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convergent to an element v ∈ S1. This is equivalent to Fvn,v(t) → H0(t),
(n →∞), for every t > 0. If we set yn = g−1(vn) and y = g−1(v) then we have

F g
yn,y(t) = Fg(yn),g(y)(t) = Fvn,v(t) → H0(t), (n →∞),

for every t > 0. This show us that (S,Fg, T ) is a compact Menger space.

Definition 3. Let f, g be two mappings defined on a Menger space
(S,F , T ) with values into itself and let us suppose that g is bijective. The
mapping f is called a probabilistic g−contraction with a constant k ∈ (0, 1)
if

t > 0 and Fg(x),g(y)(t) > 1− t implies Ff(x),f(y)(kt) > 1− kt. (C)

The notion of g−contraction is justified because the images of two
points x, y under the function f are nearer than images of the same points
under the function g.

Theorem 2. If f is a probabilistic g−contraction, then we have :
(a) f is a continuous mapping on (S,Fg, T ) with values in (S,F , T ).
(b) g−1 ◦ f is a continuous mapping on (S,Fg, T ) with values into itself.

Proof. Let (xn)n≥1 be a sequence in S such that xn → x ∈ S, under
the probabilistic metric Fg. This implies that F g

xn,x(t) → H0(t),(n → ∞),
for every t > 0. From the g−contraction condition (C) it follows that
Ff(xn),f(x)(t) → H0(t), (n → ∞), for every t > 0. This show us that the
mapping f is continuous.

We observe that the above convergence implies Fgg−1fxn,gg−1fx(t) →
H0(t), (n → ∞), for every t > 0, that is, F g

g−1fxn,g−1fx(t) → H0(t), (n → ∞),
for every t > 0. This shows us that the mapping g−1 ◦ f defined on the
Menger space (S,Fg, T ) with values in itself is continuous.

Remark 1. The above concept of probabilistic g−contraction is a
generalization of Hikcs’ probabilistic contraction [8] which can be obtained
when g is the identity on the Menger space (S,F , T ).

Theorem 3. If f and g are two mappings defined on a complete
Menger space (S,F , T ) with values into itself, g is bijective and f is a
g−contraction, there exists a unique point p ∈ S such that f(p) = g(p), ( p

is considered a fixed point of the probabilistic g−contraction f). Moreover,
p = lim

n→∞
xn, where the sequence (xn)n>1 is defined by recurrence relation

g(xn+1) = f(xn).
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Proof. If t > 1 then clearly F g
x,y(t) > 1−t. By the definition of the proba-

bilistic metric Fg we have Fgx,gy(t) > 1−t. From the g−contraction condition
(C) one obtains Ffx,fy(kt) > 1−kt. This means that Fgg−1fx,gg−1fy(kt) > 1−kt.

or equivalently F g
g−1fx,g−1fy(kt) > 1− kt.

If we denote g−1 ◦ f = h, then by iterations it follows that

F g
hnx,hny(knt) > 1− knt.

Since k ∈ (0, 1), for every ε > 0, λ ∈ (0, 1) there exists a positive integer
n(ε, λ) such that knt 6 min(ε, λ), for every n > n(ε, λ). Now, if we take into
account that every distribution function is non decreasing we have

F g
hnx,hny(ε) > F g

hnx,hny(knt) > 1− knt > 1− λ.

Let x0 be fixed in X and let (xn)n>1 be the sequence of successive
approximations defined by xn+1 = h(xn), or equivalently, by g(xn+1) = f(xn).
If we take x = xm and y = x0 then, from the above inequalities one obtains

F g
xn+m,xn

(ε) = F g
hnxm,hnx0

(ε) > 1− λ,

for every n > n(ε, λ) and m > 1. Therefore (xn)n>1 is a Cauchy sequence.
Since (S,F , T ) is complete, then (S,Fg, T ) is complete and there exists a
point p ∈ S such that the sequence (xn)n>1 converges, under the proba-
bilistic metric Fg, to the point p. As the mapping h defined on the Menger
space (S,Fg, T ) with values in itself is continuous, it follows that h(p) = p,

that is, g−1 ◦ f(p) = p or equivalently, f(p) = g(p). The uniqueness of the
fixed point p also follows by the g−contraction condition (C).

Remark 2. When g is the identity on (S,F , T ) we obtain the known
results from [7].

If we take in account that every metric space (S, d) can be made into a
Menger space (S,F , T ), in a natural way, by setting Fx,y(t) = H0(t−d(x, y))),
for every x, y ∈ S, t ∈ R+ and T = Min then, by Theorem 3 one obtains the
following fixed point theorem for mappings defined on metric spaces.

Theorem 4. If f and g are two mappings defined on a complete metric
space (S, d) with values into itself, g is bijective and f is a g−contraction,
that is, there exists a constant k ∈ (0, 1) such that

d(f(x), f(y)) 6 kd(g(x), g(y)),

for every x, y ∈ S, then there exists a unique point p ∈ S such that f(p) =
g(p).
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Proof. We can suppose that d(x, y) ∈ [0, 1). If this is not true, we define
the mapping d1(x, y) = 1−e−d(x,y), then the pair (S, d1) is also a metric space
and the uniformities defined by the metrics d and d1 are equivalent.

Now, let us suppose that f is a g−contraction on (S, d) and t > 0,
Fgx,gy(t > 1−t. Then we have H0(t−d(gx, gy)) > 1−t. This implies d(gx, gy) <

t. So, we have d(fx, fy) < kt, which implies H0(kt − d(fx, fy)) = 1 > 1 − kt.

So, the mapping f is a g−contraction defined on (S,F , T ) with values into
itself and the conclusion follows by the Theorem 3.
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O kontrakcijama na vjerovatnostnim metričkim prostorima

Ioan Goleţ

Sadržaj

U radu se uvodi koncept vjerovatnostne g−kontrakcije, koji predstavlja
generalizaciju vjerovatnostne kontrakcije tipa Hick i dokazuju se neki teo-
remi fiksne tačke.


