On contractions in probabilistic metric spaces

Ioan Goleţ (Romania)

Abstract. Two types of contractions are used for mappings defined on probabilistic metric spaces. The first type was introduced by V.M. Sehgal [15-16], the second type by T.L. Hicks [7]. Since then, many fixed point results were obtained. In this paper we introduce the concept of a probabilistic g-contraction, which is a generalization of a probabilistic contraction of Hicks’ type and prove some fixed point theorems.

1. Introduction

Throughout this paper $\mathbb{R} = (-\infty, +\infty)$, $\mathbb{R}^+ = [0, +\infty)$ and $I = [0, 1]$. A mapping $F : \mathbb{R} \to \mathbb{R}^+$ is called a distribution function if it is non decreasing and left-continuous with $\inf F = 0$ and $\sup F = 1$.

In what follows we always denote by D the set of all distribution functions. $D^+ = \{F : F \in D, F(0) = 0\}$ is the set of all distribution functions associated to non-negative, one-dimensional random variables.

For every $a \in \mathbb{R}^+$, a specific distribution function is defined by $H_a(t) = 0$ if $t \leq a$ and $H_a(t) = 1$ if $t > a$.

A mapping $T : I \times I \to I$ is called a t-norm if it satisfies the following conditions:

\begin{enumerate}
 \item[(T1)] $T(a, 1) = a$,
 \item[(T2)] $T(a, b) = T(b, a)$,
 \item[(T3)] $T(c, d) \geq T(a, b)$ if $c \geq d$ and $d \geq b$,
 \item[(T4)] $T(T(a, b), c) = T(a, T(b, c))$.
\end{enumerate}

The most used t-norms in probabilistic metric spaces theory are $T = \text{Min}$, $T = \text{Prod}$ and $T = T_m$, where $\text{Min}(a, b) = \min\{a, b\}$, $\text{Prod}(a, b) = a \cdot b$ and $T_m(a, b) = \max\{a + b - 1, 0\}$.

Definition 1. A probabilistic metric space of Menger type (briefly a Menger space) is an ordered triple (S, F, T), where S is a nonempty set, F is

2000 Mathematics Subject Classification: 47H10, 60H10.

Keywords and phrases: Probabilistic metric space, fixed points.
a mapping from \(S \times S \) into \(D^+ \), \(T \) is a \(t \)-norm and the following conditions are satisfied:

\[
\begin{align*}
(M_1) \quad F_{x,y}(t) &= H_0(t) \text{ if and only if } x = y, \\
(M_2) \quad F_{x,y}(t) &= f_{y,x}(t), \text{ for all } t \in \mathbb{R}, \\
(M_3) \quad F_{x,z}(t_1 + t_2) &\geq T(F_{x,y}(t_1), F_{y,z}(t_2)), \text{ for all } x, y, z \in S \text{ and } t_1, t_2 \geq 0.
\end{align*}
\]

\(F(x, y) \) is denoted by \(F_{x,y} \), \(\mathcal{F} \) is called a probabilistic metric and \((M_3) \) is a probabilistic version of the triangle inequality.

The study of probabilistic metric spaces was introduced by K. Menger in [10]. Since then, a lot of results were obtained in this area [1], [6], [13]. An important class of probabilistic metric spaces are the so-called random normed spaces. Let \(L \) be a linear space and let \(\mathcal{F} \) be a mapping on \(L \) with values in \(D^+ \). \((F(x) \) is denoted by \(F_x \).

Definition 2. The ordered triple \((L, \mathcal{F}, T)\) is called a random normed space if the following conditions are satisfied:

\[
\begin{align*}
(N_1) \quad F_x &= H_0, \text{ if only if } x = \theta \text{ the null vector}, \\
(N_2) \quad F_{ax}(t) &= F_x\left(\frac{t}{|a|}\right), \text{ for } t \in \mathbb{R}, \alpha \in \mathbb{K}, \text{ where } \mathbb{K} \text{ is the field of scalars}, \\
(N_3) \quad F_{x+y}(t_1 + t_2) &\geq T(F_{x}(t_1), F_{y}(t_2)), \text{ for all } x, y \in L \text{ and } t_1, t_2 \in \mathbb{R}^+.
\end{align*}
\]

This notion was firstly studied in [17], [11]. For more details we refer [1], [13].

A uniformity on a Menger space \((S, \mathcal{F}, T)\) is defined by the family:

\[\mathcal{V} = \{ V(\epsilon, \lambda) = \{ (x, y) \in S \times S : F_{u,v}(\epsilon) > 1 - \lambda, \epsilon > 0, \lambda \in (0, 1) \} \}. \]

In the sequel we will consider a Menger space \((S, \mathcal{F}, T)\) under a \(t \)-norm \(T \), which satisfies the weakest condition, \(\sup\{ T(t, t) : t < 1 \} = 1 \), that ensures the existence of a uniformity on \(S \).

2. On probabilistic \(g \)-contraction mappings

Theorem 1. Let \(g \) be an injective mapping defined on a Menger space \((S, \mathcal{F}, T)\) into itself. Then the following statements are true:

(a) The mapping \(\mathcal{F}^g \) defined on \(S \times S \) with values in \(D^+ \), by \(\mathcal{F}^g(x, y) = F_{g(x); g(y)} \) is a probabilistic metric on \(S \), that is, \((S, \mathcal{F}^g, T)\) is a Menger space under the same \(t \)-norm \(T \).

(b) If \(S_1 = g(S) \) and \((S_1, \mathcal{F}, T)\) is a complete Menger space then \((S, \mathcal{F}^g, T)\) is also a complete Menger space.

(c) If \((S_1, \mathcal{F}, T)\) is compact then \((S, \mathcal{F}^g, T)\) is also compact.

Proof. We will prove only the statement (c). Let \((x_n)_{n \geq 1}\) be a sequence in \(S \). Then \((u_n)_{n \geq 1}\) with \(u_n = g(x_n) \) is a sequence in \(S_1 \), which is a compact Menger space. Now, we can find a subsequence \(\{v_n : n \geq 1\} \subset \{u_n : n \geq 1\} \)
convergent to an element $v \in S_1$. This is equivalent to $F_{v,v}(t) \rightarrow H_0(t)$, $(n \rightarrow \infty)$, for every $t > 0$. If we set $y_n = g^{-1}(v_n)$ and $y = g^{-1}(v)$ then we have

$$F_{y_n,y}(t) = F_{g(y_n),g(y)}(t) = F_{v,v}(t) \rightarrow H_0(t), (n \rightarrow \infty),$$

for every $t > 0$. This show us that (S,F^9,T) is a compact Menger space.

Definition 3. Let f,g be two mappings defined on a Menger space (S,F,T) with values into itself and let us suppose that g is bijective. The mapping f is called a probabilistic g–contraction with a constant $k \in (0,1)$ if

$$t > 0 \quad \text{and} \quad F_{g(x),g(y)}(t) > 1 - t \quad \text{implies} \quad F_{f(x),f(y)}(kt) > 1 - kt. \quad (C)$$

The notion of g–contraction is justified because the images of two points x,y under the function f are nearer than images of the same points under the function g.

Theorem 2. If f is a probabilistic g–contraction, then we have :

(a) $g^{-1} \circ f$ is a continuous mapping on (S,F^9,T) with values in (S,F,T).

(b) $g^{-1} \circ f$ is a continuous mapping on (S,F^9,T) with values into itself.

Proof. Let $(x_n)_{n \geq 1}$ be a sequence in S such that $x_n \rightarrow x \in S$, under the probabilistic metric F^9. This implies that $F_{x_n,x}(t) \rightarrow H_0(t), (n \rightarrow \infty)$, for every $t > 0$. From the g–contraction condition (C) it follows that $F_{f(x_n),f(x)}(t) \rightarrow H_0(t), (n \rightarrow \infty)$, for every $t > 0$. This show us that the mapping f is continuous.

We observe that the above convergence implies $F_{g^{-1} \circ f, g^{-1} \circ f}(t) \rightarrow H_0(t), (n \rightarrow \infty)$, for every $t > 0$, that is, $F_{g^{-1} \circ f, g^{-1} \circ f}(t) \rightarrow H_0(t), (n \rightarrow \infty)$, for every $t > 0$. This shows us that the mapping $g^{-1} \circ f$ defined on the Menger space (S,F^9,T) with values in itself is continuous.

Remark 1. The above concept of probabilistic g–contraction is a generalization of Hikcs’ probabilistic contraction [8] which can be obtained when g is the identity on the Menger space (S,F,T).

Theorem 3. If f and g are two mappings defined on a complete Menger space (S,F,T) with values into itself, g is bijective and f is a g–contraction, there exists a unique point $p \in S$ such that $f(p) = g(p)$, (p is considered a fixed point of the probabilistic g–contraction f). Moreover, $p = \lim_{n \rightarrow \infty} x_n$, where the sequence $(x_n)_{n \geq 1}$ is defined by recurrence relation $g(x_{n+1}) = f(x_n)$.
Proof. If \(t > 1 \) then clearly \(F^g_{x,y}(t) > 1 - t \). By the definition of the probabilistic metric \(\mathcal{F}^g \) we have \(F_{x,y}(t) > 1 - t \). From the \(g \)-contraction condition (C) one obtains \(F_{x,y}(kt) > 1 - kt \). This means that \(F_{g^{-1}f_{x,y}}(kt) > 1 - kt \).

If we denote \(g^{-1} \circ f = h \), then by iterations it follows that

\[
F^g_{h^n x, h^n y}(k^n t) > 1 - k^n t.
\]

Since \(k \in (0,1) \), for every \(\epsilon > 0 \), \(\lambda \in (0,1) \) there exists a positive integer \(n(\epsilon, \lambda) \) such that \(k^n t \leq \min(\epsilon, \lambda) \), for every \(n \geq n(\epsilon, \lambda) \). Now, if we take into account that every distribution function is non decreasing we have

\[
F^g_{h^n x, h^n y}(\epsilon) \geq F^g_{h^n x, h^n y}(k^n t) > 1 - k^n t > 1 - \lambda.
\]

Let \(x_0 \) be fixed in \(X \) and let \((x_n)_{n \geq 1} \) be the sequence of successive approximations defined by \(x_{n+1} = h(x_n) \), or equivalently, by \(g(x_{n+1}) = f(x_n) \). If we take \(x = x_m \) and \(y = x_0 \) then, from the above inequalities one obtains

\[
F^g_{x_{m+1}, x_0}(\epsilon) = F^g_{h^n x_m, h^n x_0}(\epsilon) > 1 - \lambda,
\]

for every \(n \geq n(\epsilon, \lambda) \) and \(m \geq 1 \). Therefore \((x_n)_{n \geq 1} \) is a Cauchy sequence. Since \((S, \mathcal{F}, T) \) is complete, then \((S, \mathcal{F}^g, T) \) is complete and there exists a point \(p \in S \) such that the sequence \((x_n)_{n \geq 1} \) converges, under the probabilistic metric \(\mathcal{F}^g \), to the point \(p \). As the mapping \(h \) defined on the Menger space \((S, \mathcal{F}^g, T) \) with values in itself is continuous, it follows that \(h(p) = p \), that is, \(g^{-1} \circ f(p) = p \) or equivalently, \(f(p) = g(p) \). The uniqueness of the fixed point \(p \) also follows by the \(g \)-contraction condition (C).

Remark 2. When \(g \) is the identity on \((S, \mathcal{F}, T) \) we obtain the known results from [7].

If we take in account that every metric space \((S,d) \) can be made into a Menger space \((S, \mathcal{F}, T) \), in a natural way, by setting \(F_{x,y}(t) = H_0(t - d(x,y)) \), for every \(x, y \in S \), \(t \in \mathbb{R}^+ \) and \(T = Min \) then, by Theorem 3 one obtains the following fixed point theorem for mappings defined on metric spaces.

Theorem 4. If \(f \) and \(g \) are two mappings defined on a complete metric space \((S,d) \) with values into itself, \(g \) is bijective and \(f \) is a \(g \)-contraction, that is, there exists a constant \(k \in (0,1) \) such that

\[
d(f(x), f(y)) \leq kd(g(x), g(y)),
\]

for every \(x, y \in S \), then there exists a unique point \(p \in S \) such that \(f(p) = g(p) \).
Proof. We can suppose that \(d(x, y) \in [0, 1) \). If this is not true, we define the mapping \(d_1(x, y) = 1 - e^{-d(x, y)} \), then the pair \((S, d_1)\) is also a metric space and the uniformities defined by the metrics \(d \) and \(d_1 \) are equivalent.

Now, let us suppose that \(f \) is a \(g \)-contraction on \((S, d)\) and \(t > 0 \), \(F_{gx, gy}(t > 1 - t) \). Then we have \(H_0(t - d(gx, gy)) > 1 - t \). This implies \(d(gx, gy) < t \). So, we have \(d(fx, fy) < kt \), which implies \(H_0(kt - d(fx, fy)) = 1 > 1 - kt \). So, the mapping \(f \) is a \(g \)-contraction defined on \((S, F, T)\) with values into itself and the conclusion follows by the Theorem 3.

REFERENCES

O kontrakcijama na vjerovatnostnim metričkim prostorima

Ioan Goleţ

Sadržaj

U radu se uvodi koncept vjerovatnostne g-kontrakcije, koji predstavlja generalizaciju vjerovatnostne kontrakcije tipa Hick i dokazuju se neki teoremi fiksne tačke.