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On a new index transformation related to the product
of Macdonald functions

Semyon B. Yakubovich (Portugal)

Abstract. In this manuscript we deal with an integral transforma-
tion, which is associated with the product of the Macdonald func-
tions Kiτ

(√
x2+y2−y

)
Kiτ

(√
x2+y2+y

)
, where (x, y) ∈ R+ × R+ and

iτ, τ ∈ R+ is a pure imaginary index. An integration process is
realized with respect to τ . In the limit case when y = 0 it gives the
Lebedev transformation with the square of Macdonald functions. The
Bochner type representation theorem, the Plancherel theorem and
Parseval’s equality are proved by using a relationship with the Mellin
and the Kontorovich–Lebedev transforms. An application of the in-
troduced transformation is given to find a solution of the Neumann
weighted problem for a second order partial differential equation.

1. Introduction and preliminary results

Let R+ = (0,∞) and (x, y) ∈ R+ × R+. Let f : R+ → C be a measurable
function. We consider the following transformation

[Gf ](x, y) ≡ [G; f(τ)](x, y) =

=
2√
π

∫ ∞

0

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
f(τ) dτ, (1.1)

where the integral is convergent in a definite sense, which we will clarify
below. Here Kν(z) is the modified Bessel function or the Macdonald func-
tion (cf. [1, Vol. II]) of the pure imaginary index ν = iτ . The function
Kν(z) satisfies the differential equation

z2 d2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0, (1.2)
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for which it is the solution that remains bounded as z tends to infinity on
the real line.

Our main goal in this paper is to study a relationship of the transfor-
mation (1.1) with other familiar transforms in order to prove the Bochner
representation theorem in a Banach space L∗(R+) related to the Fourier
transform and the Plancherel-type theorem in the weighted L2-spaces (see
below). Furthermore, we demonstrate an application of this transform to
solve the Neumann weighted problem for a second order partial differential
equation.

As it is known, the Macdonald function has the asymptotic behaviour
[1, Vol. II]

Kν(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (1.3)

and near the origin

z|ν|Kν(z) = 2|ν|−1Γ(|ν|) + o(1), z → 0, Re ν > 0, (1.4)

K0(z) = − log z + O(1), z → 0. (1.5)

It can be given by the following integral [1, Vol.II]

Kν(z) =
∫ ∞

0

e−z cosh u cosh ν u du, Rez > 0. (1.6)

It has another representation in terms of the inverse Mellin transform of
the product of the Euler gamma-functions [3], [6]. Precisely we find

Kν(2z) =
1

8πi

∫ γ+i∞

γ−i∞
Γ

(
s + ν

2

)
Γ

(
s− ν

2

)
z−sds, γ > 0. (1.7)

The product of functions Kiτ (x) of different arguments can be represented
in turn by the Macdonald formula (cf. [1, Vol.II], [6])

Kiτ (x)Kiτ (y) =
1
2

∫ ∞

0

e
− 1

2

(
u x2+y2

xy + xy
u

)
Kiτ (u)

du

u
. (1.8)

In particular, for the kernel of the transformation (1.1) we obtain the fol-
lowing representation

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
=

1
2

∫ ∞

0

e−2 y2

x2 u− x2
2u e−uKiτ (u)

du

u
.

(1.9)
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Meanwhile, the Mellin direct transform [1, Vol.I], [3]

fM(s) =
∫ ∞

0

f(x)xs−1dx, s = γ + it, (1.10)

is defined for the Lebesgue space L1(R+; xγ−1dx) with the norm

||f ||1 =
∫ ∞

0

|f(x)|xγ−1dx < +∞

and maps it into the space of bounded continuous functions on the ver-
tical line γ + it, t ∈ R vanishing at infinity |t| → +∞. However, if
f ∈ L2(R+;x2γ−1dx), which is normed by

||f ||2 =
(∫ ∞

0

|f(x)|2x2γ−1dx

)1/2

< +∞, (1.11)

then it forms a one-to-one correspondence and isomorphically maps on the
space L2((γ− i∞, γ + i∞); dt). Integral (1.10) in this case converges in mean
with respect to the norm of the latter L2-space. The inverse operator is
given by

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
fM(s)x−sds, s = γ + it, x > 0, (1.12)

where integral (1.12) is convergent in mean with respect to the norm (1.11).
Moreover, the operator fM is an isometric isomorphism between the two
mentioned Hilbert spaces and the following Parseval equality

∫ ∞

0

|f(x)|2x2γ−1dx =
1
2π

∫ ∞

−∞
|fM(γ + it)|2dt (1.13)

holds true.
We define now operators of the Kontorovich–Lebedev [6] and the Lebe-

dev [2], [7] transformations by the formulas

(KLf)(x) =
∫ ∞

0

Kiτ (x)f(τ) dτ, (1.14)

(Lef)(x) =
2√
π

∫ ∞

0

K2
iτ (x)f(τ) dτ, (1.15)

respectively. As it is easily seen, operator (1.15) is a limit case of the
transformation (1.1) when we put y = 0. A process of integration in formu-
las (1.1), (1.14), (1.15) is realized with respect to the index (a parameter)
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of the Macdonald function. Therefore we refer to such a class of integral
transforms as index transformations [6].

In order to prove the representation theorem for transformation (1.1) in
the next section we introduce here (cf. [8], [9]) the following Banach space
of functions f ∈ L∗(R+) or space of A-type, whose Fourier cosine transforms

(Fcf)(x) ≡ (Fc; f(t))(x) =

√
2
π

∫ ∞

0

f(t) cos tx dt (1.16)

lie in L1(R+). For the norm in L∗ we set

||f ||L∗(R+) =
∫ ∞

0

|(Fcf)(t)| dt. (1.17)

As follows from the theory of the Fourier transform, elements of the space L∗

are bounded, continuous functions, which vanish at infinity. As it is proved
in [8] the Kontorovich-Lebedev transform (1.14) is a bounded operator in
L∗(R+) and we have

||KLf ||L∗(R+) ≤
π

2
||f ||L∗(R+).

Moreover the following Bochner’s type representation theorem holds true.

Theorem 1. [8]. Any f ∈ L∗(R+) for all τ ∈ R+ is represented as

f(τ) = lim
ε→0+

2
π2

τ sinhπτ

∫ ∞

0

xε−1Kiτ (x)dx

∫ ∞

0

Kiµ(x)f(µ) dµ, (1.18)

where the convergence is pointwise.

Finally in this section we mention useful formula (2.16.33.10) in [4] for
the Mellin transform (1.10) with respect to x of the kernel (1.1)

∫ ∞

0

xs−1Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
dx

=
√

π

2
ys/2Ks/2(2y)

Γ
(

s
2 + iτ

)
Γ

(
s
2 − iτ

)

Γ((1 + s)/2)
, (1.19)

which is true for all y, τ > 0 and γ = Res > 0. Multiplying both sides
of (1.18) by yω−1, Reω > 0 we integrate with respect to y > 0. Then by
using formula (2.16.2.2) in [4] we arrive at the value of the double Mellin
transform [3] for the kernel (1.1) as

∫ ∞

0

∫ ∞

0

xs−1yω−1Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
dxdy
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=
√

π

8
Γ (ω) Γ

(
s + ω

2

)
Γ

(
s
2 + iτ

)
Γ

(
s
2 − iτ

)

Γ((1 + s)/2)
.

2. The representation theorem

In this section we prove an analog of Theorem 1 for the transformation
(1.1). Indeed, we have

Theorem 2. Let f ∈ L∗(R+). Then for all τ ∈ R+ the following expan-
sion holds true

f(τ) = lim
ε→0+

16
π4

τ sinh 2πτ

∫ ∞

0

∫ ∞

0

Kiτ

(√
x2 + y2 − y

)

×Kiτ

(√
x2 + y2 + y

)
xε−1dxdy

×
∫ ∞

0

Kiµ

(√
x2 + y2 − y

)
Kiµ

(√
x2 + y2 + y

)
f(µ) dµ, (2.1)

where the convergence with respect to ε > 0 is pointwise.

Proof. By taking integral (1.19) and applying the inversion formula
(1.12) for the Mellin transform with respect to x we immediately obtain that
for all positive x, y, µ the product of Macdonald functions is represented as
follows

Kiµ

(√
x2 + y2 − y

)
Kiµ

(√
x2 + y2 + y

)
=

1
2πi

√
π

2

∫ γ+i∞

γ−i∞
ys/2Ks/2(2y)

×Γ
(

s
2 + iµ

)
Γ

(
s
2 − iµ

)

Γ((1 + s)/2)
x−sds, (2.2)

where we may choose γ ∈ (0, ε). We substitute the integral with respect to
s from the right-hand side of (2.2) into the inner integral with respect to µ

in (2.1) and we change the order of integration. Hence we find

∫ ∞

0

Kiµ

(√
x2 + y2 − y

)
Kiµ

(√
x2 + y2 + y

)
f(µ) dµ

=
1

2πi

√
π

2

∫ γ+i∞

γ−i∞

ys/2Ks/2(2y)
Γ((1 + s)/2)

x−sds

∫ ∞

0

Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)
f(µ) dµ. (2.3)

The change of the order of integration in (2.3) is valid by the Fubini the-
orem. In fact, since f ∈ L∗(R+), then it belongs to the space of bounded
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continuous functions on R+. Consequently, the iterated integral in the
right-hand side of (2.3) is majorized by

∣∣∣∣∣
∫ γ+i∞

γ−i∞

ys/2Ks/2(2y)
Γ((1 + s)/2)

x−sds

∫ ∞

0

Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)
f(µ) dµ

∣∣∣∣∣

≤ const.yγ/2x−γ

∫ γ+i∞

γ−i∞

∣∣∣∣
Ks/2(2y)

Γ((1 + s)/2)
ds

∣∣∣∣
∫ ∞

0

∣∣∣Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)∣∣∣ dµ.

(2.4)
It is easily seen, that the product of gamma-functions in the latter integral
(2.4) is continuous with respect to µ ∈ R+. Furthermore, making use the
representation [10]

Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)
=

Γ(s)
2s−2

∫ ∞

0

cos(2µy)dy

coshs y

=
Γ(s + 1)
µ22s+1

∫ ∞

−∞

e2iµy(1− s sinh2 y)
coshs+2 y

dy, (2.5)

we deduce
∣∣∣Γ

(s

2
+ iµ

)
Γ

(s

2
− iµ

)∣∣∣ ≤ |Γ(s + 1)|
µ22γ

∫ ∞

0

1 + |s| sinh2 y

coshγ+2 y
dy

≤ |Γ(s + 1)|
µ22γ

[∫ ∞

0

dy

cosh2 y
+ |s|

∫ ∞

0

dy

coshγ y

]
, µ, γ > 0.

Now taking into account an inequality (cf. (1.6)) |Ks/2(2y)| ≤ Kγ/2(2y), the
Stirling asymptotic formula for gamma-functions [1, Vol. I], equalities (2.5)
and the latter estimate we majorize for each y > 0, γ ∈ (0, ε) the iterated
integral in the right-hand side of (2.4). This gives the chain of inequalities

∫ γ+i∞

γ−i∞

∣∣∣∣
Ks/2(2y)

Γ((1 + s)/2)
ds

∣∣∣∣
∫ ∞

0

∣∣∣Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)∣∣∣ dµ

≤ Kγ/2(2y)
∫ γ+i∞

γ−i∞

∣∣∣∣
ds

Γ((1 + s)/2)

∣∣∣∣
[∫ 1

0

+
∫ ∞

1

] ∣∣∣Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)∣∣∣ dµ

≤ Kγ/2(2y)
2γ−2

∫ γ+i∞

γ−i∞

∣∣∣∣
Γ(s)ds

Γ((1 + s)/2)

∣∣∣∣
∫ ∞

0

du

coshγ u

+
Kγ/2(2y)

2γ

[∫ γ+i∞

γ−i∞

∣∣∣∣
Γ(s + 1)ds

Γ((1 + s)/2)

∣∣∣∣
∫ ∞

0

du

cosh2 u

+
∫ γ+i∞

γ−i∞

∣∣∣∣
sΓ(s + 1)ds

Γ((1 + s)/2)

∣∣∣∣
∫ ∞

0

du

coshγ u

]
< ∞.
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Consequently, via the Fubini theorem we can change the order of integration
and equality (2.3) holds. Substituting the right-hand side of (2.3) in (2.1)
and denoting by Iε(τ) the corresponding iterated integral under the limit
sign we write it in the form

Iε(τ) =
1

2πi

8τ sinh 2πτ

π3
√

π

∞∫

0

∞∫

0

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
xε−1dxdy

×
∫ γ+i∞

γ−i∞

ys/2Ks/2(2y)
Γ((1 + s)/2)

x−sds

∫ ∞

0

Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)
f(µ) dµ. (2.6)

We note here, that in a similar manner invoking the previous estimates and
formulas of the asymptotic behaviour (1.3), (1.4), (1.5) for the Macdonald
function it is not difficult to realize via Fubini’s theorem an integration in
(2.6) in any order. Therefore calculating the inner integral with respect to
x by formula (1.19) we get

Iε(τ) =
4
π3

τ sinh 2πτ

2πi

∫ ∞

0

yε/2Ks/2(2y)K(ε−s)/2(2y)dy

×
∫ γ+i∞

γ−i∞

Γ
(

ε−s
2 + iτ

)
Γ

(
ε−s
2 − iτ

)

Γ((1 + ε− s)/2)Γ((1 + s)/2)
ds

∫ ∞

0

Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)
f(µ) dµ.

(2.7)
Hence we calculate the integral with respect to y by using relation 2.16.33.2
from [4], which gives

∫ ∞

0

yε/2Ks/2(2y)K(ε−s)/2(2y)dy

=
√

π

8Γ(1 + ε/2)
Γ

(
1 + ε

2

)
Γ

(
1 + s

2

)
Γ

(
1 + ε− s

2

)
.

Substituting this value into (2.7) we obtain

Iε(τ) =
Γ

(
1+ε
2

)

2π2
√

πΓ(1 + ε/2)
τ sinh 2πτ

2πi

∫ γ+i∞

γ−i∞
Γ

(
ε− s

2
+ iτ

)
Γ

(
ε− s

2
− iτ

)
ds

×
∫ ∞

0

Γ
(s

2
+ iµ

)
Γ

(s

2
− iµ

)
f(µ) dµ. (2.8)

The integral with respect to s in (2.8) can be treated by employing the
Mellin formula (1.7) and the generalized Parseval equality for the Mellin
transform (cf. [3], [5]). Thus we deduce

1
2πi

∫ γ+i∞

γ−i∞
Γ

(
ε− s

2
+ iτ

)
Γ

(
ε− s

2
− iτ

)
Γ

(s

2
+ iµ

)
Γ

(s

2
− iµ

)
ds
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= 16
∫ ∞

0

K2iτ (2x)K2iµ(2x)xε−1dx.

Consequently, after substitution this result in (2.8) using Theorem 1 we
can write (2.8) in the form

Iε(τ) =
8Γ

(
1+ε
2

)

π2
√

πΓ(1 + ε/2)
τ sinh 2πτ

∫ ∞

0

K2iτ (2x)xε−1dx

∫ ∞

0

K2iµ(2x)f(µ) dµ

=
22−εΓ

(
1+ε
2

)

π2
√

πΓ(1 + ε/2)
τ sinh 2πτ

∫ ∞

0

K2iτ (x)xε−1dx

∫ ∞

0

Kiµ(x)f
(µ

2

)
dµ. (2.9)

Finally, invoking (1.18) we pass to the limit through equality (2.9) and we
easily establish the pointwise convergence of Iε(τ) to f(τ) when ε → 0+
concluding the proof of Theorem 2.

3. The Plancherel theory

In this section we apply the theory of the modified Kontorovich–
Lebedev transformation [6] in order to prove an analog of the Plancherel
theorem for the transform [G; τf(τ)](x, y) (cf. (1.1)). Namely, we consider
the Kontorovich–Lebedev transform of the form

[KLf ](x) = 4
∫ ∞

0

τK2iτ (2x)f(τ) dτ. (3.1)

As it is known (cf. [6, Chapter 2]), the Kontorovich–Lebedev operator (3.1)
is the isometric isomorphism between Hilbert spaces

[KLf ] : L2

(
R+;

τdτ

sinh 2πτ

)
↔ L2

(
R+; x−1dx

)
, (3.2)

where the integral (3.1) converges in mean with respect to the norm

||f ||L2(R+;τ [sinh 2πτ ]−1dτ) =
(∫ ∞

0

τ

sinh 2πτ
|f(τ)|2dτ

)1/2

. (3.3)

Furthermore, we have the Parseval identity
∫ ∞

0

|[KLf ](x)|2 dx

x
= 2π2

∫ ∞

0

τ

sinh 2πτ
|f(τ)|2dτ. (3.4)

By using a relationship with the Mellin and Kontorovich–Lebedev trans-
forms we will prove that the operator [G; τf(τ)](x, y) is the one-to-one iso-
metric and isomorphic map:

G : L2

(
R+;

τdτ

sinh 2πτ

)
↔ L2

(
R+ × R+;

dxdy

x

)
, (3.5)
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where the norm in the space L2

(
R+ × R+; x−1dxdy

)
is defined by

||f ||L2(R+×R+;x−1dxdy) =
(∫ ∞

0

∫ ∞

0

|f(x, y)|2 dxdy

x

)1/2

. (3.6)

Thus we arrive at

Theorem 3. Let f ∈ L2(R+; τ [sinh 2πτ ]−1dτ). Then as N → ∞ the
integral

2√
π

∫ N

1/N

τKiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
f(τ) dτ (3.7)

converges in mean to [G; τf(τ)](x, y) with respect to the norm (3.6) and a
reciprocal integral

fN (τ) =
8 sinh 2πτ

π3
√

π

∫ N

1/N

∫ N

1/N

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)

×[G; τf(τ)](x, y)
dxdy

x
(3.8)

converges in mean to f(τ) with respect to the norm (3.3). Moreover, the
Parseval identity holds

∫ ∞

0

∫ ∞

0

|[G; τf(τ)](x, y)|2 dxdy

x
=

π3

4

∫ ∞

0

τ

sinh 2πτ
|f(τ)|2dτ. (3.9)

Proof. Setting by fN (τ) = f(τ) ∈ L2

(
R+; τ [sinh 2πτ ]−1dτ

)
, N =

1, 2, . . . , which vanishes outside of the interval (1/N,N), we consider the
transformation [G; τfN (τ)](x, y) (cf. (1.1)), which apparently coincides with
integral (3.7). Hence in view of the uniform estimate [6]

|Kiτ (u)| ≤ e−δ|τ |K0(u cos δ), u > 0, δ ∈
[
0,

π

2

)
, (3.10)

where K0(z) is the Macdonald function of the index zero, it follows that
integral (3.7) exists in the Lebesgue sense. Hence we can calculate its Mellin
transform (1.10) with respect to x. Changing the order of integration via
Fubini’s theorem and applying formula (1.19) we obtain

[G; τfN (τ)]M(s, y) =
ys/2Ks/2(2y)
Γ((1 + s)/2)

∫ ∞

0

τΓ
(s

2
+ iτ

)
Γ

(s

2
− iτ

)
fN (τ) dτ, (3.11)

where y > 0, s = γ + it, γ > 0. However, by using (1.7) we see that equality
(3.11) represents the composition of the Kontorovich–Lebedev and Mellin
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transforms (3.1) and (1.10), respectively. In fact, it can be verified by sub-
stituting instead of the product of Gamma functions the value of the Mellin
transform of the Macdonald function (cf. (2.16.2.2) in [4]). Then appeal-
ing to (3.10) and the Fubini theorem we invert the order of integration
in the obtained iterated integral and arrive at the following composition
representation

[G; τfN (τ)]M(s, y) =
ys/2Ks/2(2y)
Γ((1 + s)/2)

[KLfN ]M(s) (3.12)

with

[KLfN ]M(s) =
∫ N

1/N

τΓ
(s

2
+ iτ

)
Γ

(s

2
− iτ

)
f(τ)dτ, s = γ + it, γ > 0.

Further, we estimate the following double integral

IN (γ) =
1
2π

∫ ∞

−∞

∫ ∞

0

∣∣[G; τfN (τ)]M(γ + it, y)
∣∣2 dy dt. (3.13)

Making use the representation (3.12) we substitute it in (3.13). This leads
to the iterated integral in the form

IN (γ) =
1
2π

∫ ∞

−∞

∣∣∣∣
[KLfN ]M(γ + it)
Γ((1 + γ + it)/2)

∣∣∣∣
2

dt

∫ ∞

0

yγK(γ+it)/2(2y)K(γ−it)/2(2y)dy.

(3.14)
But the integral with respect to y in (3.14) can be calculated in view of
the formula (2.16.33.2) in [4] (cf. Section 1). Thus, we insert in (3.14)
the corresponding result and employ the Mellin–Parseval formula (1.13).
Consequently, the integral IN can be written as

IN (γ) =
√

πΓ(γ + 1/2)
8Γ(γ + 1)

∫ ∞

0

|[KLfN ](x)|2 x2γ−1dx. (3.15)

However on the other hand, IN can be represented in terms of the square
of norm of [G; τfN (τ)](x, y) in the space L2

(
R+ × R+;x2γ−1dxdy

)
. Indeed, by

use of (1.13) we have

IN (γ) =
∫ ∞

0

∫ ∞

0

|[G; τfN (τ)](x, y)|2 x2γ−1dxdy. (3.16)

Combining (3.15) and (3.16) we arrive at the equality
∞∫

0

∞∫

0

|[G; τfN (τ)](x, y)|2 x2γ−1dxdy =
√

πΓ(γ + 1/2)
8Γ(γ + 1)

∞∫

0

|[KLfN ](x)|2 x2γ−1dx.

(3.17)
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So the Parseval identity (3.9) for L2-sequence {fN} will follow from (3.17)
by formal substitution γ = 0 and using the equality (3.4). We show that this
is indeed possible. Appealing to inequality (3.10) we find that [KLfN ](x) ∈
L2(R+). Hence for all γ, 0 ≤ γ ≤ 1/2
∫ ∞

0

x2γ−1|[KLfN ](x)|2dx ≤
∫ ∞

0

[
χ[0,1](x) + xχ[1,∞)(x)

] |[KLfN ](x)|2 dx

x
< ∞,

where χ(a,b)(t) is the characteristic function of the respective interval.
Therefore, IN (γ) < ∞, 0 ≤ γ ≤ 1/2 and the limit γ → 0 on the right-
hand side of (3.17) can be taken under the integral sign because of the
Lebesgue dominated convergence theorem.

Analogously we treat the left-hand side of (3.17). We write
∫ ∞

0

∫ ∞

0

|[G; τfN (τ)](x, y)|2 x2γ−1dxdy =
∫ 1

0

∫ ∞

0

|[G; τfN (τ)](x, y)|2 x2γ−1dxdy

+
∫ ∞

1

∫ ∞

0

|[G; τfN (τ)](x, y)|2 x2γ−1dxdy.

Hence by virtue of the Levi’s theorem we can pass to the limit γ → 0 in the
first integral on the right-hand side of the latter equality. Then invoking
inequality (3.10) with δ = 0, formulas (1.3, (1.4), (1.5) of the asymptotic
behaviour of the Macdonald function near zero and infinity we majorize
the second integral as follows

∫ ∞

1

∫ ∞

0

|[G; τfN (τ)](x, y)|2 x2γ−1dxdy ≤ 4
π

(∫ N

1/N

τ |f(τ)|dτ

)2

×
∫ ∞

1

K0 (x) dx

∫ ∞

0

K2
0

(√
1 + y2 − y

)
K0 (y) dy < ∞.

Therefore the passage to the limit γ → 0 is possible in the second integral
due to the Lebesgue dominated convergence theorem. Finally we apply
equality (3.4) and we immediately establish the Parseval equality (3.9) from
(3.17) for a Cauchy sequence {fN}, which converges to f with respect to the
norm (3.3). It remains true for the whole space (3.3) due to the continuity
of norms. Indeed, from (3.9) we have

∫ ∞

0

∫ ∞

0

|[G; τfN (τ)](x, y)− [G; τfM (τ)](x, y)|2 dxdy

x

=
∫ ∞

0

∫ ∞

0

|[G; τ(fN (τ)− fM (τ))](x, y)|2 dxdy

x

=
π3

4

(∫ 1/N

1/M

+
∫ M

N

)
τ

sinh 2πτ
|f(τ)|2dτ. (3.18)
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Since the right-hand side of (3.18) tends to zero as M > N → ∞, so does
the left-hand side. This implies that [G; τfN (τ)](x, y) by integral (3.7) is
a Cauchy sequence and it converges in mean to a function, [G; τf(τ)](x, y)

say, of the class L2

(
R+ × R+; x−1dxdy

)
, which satisfies the Parseval equality

(3.9).
On the other hand, for two functions f, θ we have, as a consequence of

(3.9) and the parallelogram identity, that

∫ ∞

0

∫ ∞

0

[G; τf(τ)](x, y)[G; τθ(τ)](x, y)
dxdy

x
=

π3

4

∫ ∞

0

ξ

sinh 2πξ
f(ξ)θ(ξ) dξ.

(3.19)

Putting

θ(ξ) ≡ θτ (ξ) =
{

1, 0 ≤ ξ ≤ τ,
0, ξ > τ

and differentiating through with respect to τ in the equality (3.19) we obtain
for almost all τ ∈ R+ that

f(τ) =
8 sinh 2πτ

π3
√

πτ

d

dτ

∫ ∞

0

∫ ∞

0

∫ τ

0

ξKiξ

(√
x2 + y2 − y

)
Kiξ

(√
x2 + y2 + y

)

×[G; τf(τ)](x, y)
dξ dxdy

x
. (3.20)

Now, analogously we set GN (x, y) = [G; τf(τ)](x, y) and it is equal to zero
outside of the square [1/N,N ] × [1/N,N ]. Hence evidently it converges
to [G; τf(τ)](x, y) with respect to the norm (3.6). Moreover, substituting
GN (x, y) into (3.20) we may differentiate through the integral sign by virtue
of the uniform convergence by τ of the integral (3.8). Thus we arrive at
(3.8) and via the Parseval identity (3.9) it converges to the limit function
ψ(τ). We have to prove that ψ(τ) = f(τ) almost for all τ ∈ R+. For this it
suffices to show that

∫ τ

0

ξψ(ξ)
sinh 2πξ

dξ =
∫ τ

0

ξf(ξ)
sinh 2πξ

dξ, (3.21)

where both integrals are absolutely convergent. In fact, invoking (3.8) we
deduce ∫ τ

0

ξ

sinh 2πξ
ψ(ξ) dξ = lim

N→∞

∫ τ

0

ξ

sinh 2πξ
fN (ξ) dξ
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= lim
N→∞

8
π3
√

π

∫ τ

0

ξ dξ

∫ N

1/N

∫ N

1/N

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)

× [G; τf(τ)](x, y)
dxdy

x

= lim
N→∞

8
π3
√

π

∫ N

1/N

∫ N

1/N

∫ τ

0

ξKiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)

× [G; τf(τ)](x, y)
dξdxdy

x

=
8

π3
√

π

∫ ∞

0

∫ ∞

0

∫ τ

0

ξKiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)

× [G; τf(τ)](x, y)
dξdxdy

x
,

where as we will see below, the latter double integral with respect the
measure x−1dxdy exists in the sense of Lebesgue. Finally appealing to the
reciprocal formula (3.20) we prove (3.21) and we complete the proof of
Theorem 3.

Now we show that apart from sets of measure zero, there is a one-to-one
correspondence between [G; τf(τ)](x, y) and f(τ).

We have

Theorem 4. The operator (3.5) is an isomorphic map and for almost
all (x, y) ∈ R+ × R+ it can be represented in the form

[G; τf(τ)](x, y) =
2√
π

∂

∂x∂y

∫ ∞

0

∫ x

0

∫ y

0

τKiτ

(√
u2 + v2 − v

)

×Kiτ

(√
u2 + v2 + v

)
f(τ)du dv dτ.

(3.22)

Moreover, for almost all τ ∈ R+ the reciprocal formula (3.20) holds.

Proof. Indeed, for the sequence {fN (τ)} integral (3.7) has a finite
range of integration and converges absolutely and uniformly by (x, y) ∈
R+ × R+, 0 < r =

√
x2 + y2 ≤ R < ∞. Therefore, we integrate with respect

to x and y in (3.7) and inverting the order of integration we arrive at the
equality

∫ x

0

∫ y

0

[G; τfN (τ)](u, v)du dv =
2√
π

∫ ∞

0

τ

∫ x

0

∫ y

0

Kiτ

(√
u2 + v2 − v

)

×Kiτ

(√
u2 + v2 + v

)
fN (τ)du dv dτ.

(3.23)

If N →∞, then for each fixed x > 0, y > 0 the left-hand side of (3.23) tends
to the expression

∫ x

0

∫ y

0
[Gf ](u, v)dudv as a bounded linear functional. Thus
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if we prove that
∫ x

0

∫ y

0

Kiτ

(√
u2 + v2 − v

)
Kiτ

(√
u2 + v2 + v

)
du dv ∈ L2(R+; τ sinh 2πτ dτ),

(3.24)
then as it is easily seen via the Schwarz inequality the integral on the right-
hand side of (3.23) converges absolutely. Moreover, making N → ∞ for
almost all positive x and y after differentiation of both sides in (3.23) with
respect to x and y we obtain formula (3.22). So this correspondence is
unique in L2-sense.

Similarly, if we prove that for each τ > 0

Kτ (x, y) =
2√
π

∫ τ

0

ξKiξ

(√
x2 + y2 − y

)
Kiξ

(√
x2 + y2 + y

)
dξ

∈ L2

(
R+ × R+;

dxdy

x

)
(3.25)

then in the same manner we observe that integral (3.20) converges abso-
lutely and represents an inversion of the transformation (3.22).

We begin by proving relation (3.24). Indeed, since the integrand in
(3.24) is a continuous function with respect to τ , then it suffices to show
that for large ∆ > 0 the integral
∫ ∞

∆

τ sinh 2πτ

∣∣∣∣
∫ x

0

∫ y

0

Kiτ

(√
u2 + v2 − v

)
Kiτ

(√
u2 + v2 + v

)
du dv

∣∣∣∣
2

dτ < ∞.

(3.26)
To do this we apply the asymptotic formula for the Macdonald function
with respect to the index τ → +∞ and finite range of the argument (see,
for example [6, p. 20])

Kiτ (x) =

√
2π

τ
e−πτ/2 sin

(
τ log

2τ

x
− τ +

π

4
+

x2

4τ

)
[1 + O(1/τ)].

Then we substitute it in (3.26) and by employing simple trigonometric
relations and Minkowski’s inequality for the norms we obtain
(∫ ∞

∆

τ sinh 2πτ

∣∣∣∣
∫ x

0

∫ y

0

Kiτ

(√
u2 + v2 − v

)
Kiτ

(√
u2 + v2 + v

)
du dv

∣∣∣∣
2

dτ

)1/2

= O







∫ ∞

∆

dτ

τ

∣∣∣∣∣
∫ x

0

∫ y

0

e
i

(
τ log

√
u2+v2−v√
u2+v2+v

+ v
√

u2+v2
2τ

)
du dv

∣∣∣∣∣

2



1/2

+




∫ ∞

∆

dτ

τ

∣∣∣∣∣
∫ x

0

∫ y

0

e
i

(
2τ(log 2τ

u −1)+ u2+2v2

2τ

)
du dv

∣∣∣∣∣

2


1/2

 . (3.27)
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Further we make the substitution u = tv in the inner integral of the first
double integral on the right-hand side of (3.27). Hence we found that

∫ x

0

∫ y

0

e
i

(
τ log

√
u2+v2−v√
u2+v2+v

+
v
√

u2+v2
2τ

)
du dv

= O

(
1
2τ

∫ y

0

vdv

∫ x/v

0

√
t2 + 1e

i

(
τ log

√
t2+1−t√
t2+1+t

)
× d

(
τ log

√
t2 + 1− t√
t2 + 1 + t

))
,

(3.28)
where τ → +∞. Then using integration by parts, we see that the latter
iterated integral is O(1/τ), τ → +∞. Similarly, we treat the second double
integral on the right-hand side of (3.27). We have,

∣∣∣∣∣
∫ x

0

∫ y

0

e
i

(
2τ(log 2τ

u −1)+ u2+2v2

2τ

)
dudv

∣∣∣∣∣ =
∣∣∣∣
∫ y

0

e
iv2
τ dv

∫ x

0

ei(u2/2τ−2τ log u)

× uτ

u2 − 2τ2
d

(
−2τ log u +

u2

2τ

)∣∣∣∣ = O

(
1
τ

)
, τ → +∞. (3.29)

Thus, combining (3.28) and (3.29) we deduce that

(∫ ∞

∆

τ sinh 2πτ

∣∣∣∣
∫ x

0

∫ y

0

Kiτ

(√
u2 + v2 − v

)
Kiτ

(√
u2 + v2 + v

)
du dv

∣∣∣∣
2

dτ

)1/2

= O

[(∫ ∞

∆

dτ

τ3

)1/2
]

,

which guarantees (3.26).
In the case of (3.25) we derive (see (1.13), (3.1), (1.19), (3.15))

∫ ∞

0

∫ ∞

0

|Kτ (x, y)|2 dxdy

x
= lim

γ→0+

∫ ∞

0

∫ ∞

0

|Kτ (x, y)|2x2γ−1dxdy

= lim
γ→0+

1
2π

∫ ∞

−∞

∫ ∞

0

∣∣KMτ (γ + it, y)
∣∣2 dydt =

π

8

∫ ∞

0

|ϕ(x, τ)|2 dx

x
< ∞, (3.30)

where
ϕ(x, τ) = 4

∫ τ

0

ξK2iξ(2x) dξ. (3.31)

To verify that the latter integral in (3.30) is finite we split it into two
integrals over 0 < x < a, a < 1 and x ≥ a. Then we use the inequality
|K2iξ(2x)| ≤ K0(2x) for a ≤ x < ∞, which gives the convergence of the
corresponding integral. Indeed, the Macdonald function K0(2x) is contin-
uous there and according to (1.3) behaves as O(e−2x/

√
2x), x → +∞. For
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0 < x ≤ a we represent the Macdonald function by its definition (cf. [1,
Vol.II]) in terms of the combination of the modified Bessel functions

K2iξ(2x) =
π

2
I−2iξ(2x)− I2iξ(2x)

i sinh 2πξ
.

Then we employ the series representation for the modified Bessel func-
tions I±2iξ(2x). By substituting it in (3.31) and changing the order of
integration and summation we easily obtain that for each τ > 0, ϕ(x, τ) =
O([log x]−1), x → 0+. This fact guarantees the convergence of the integral∫ a

0
|ϕ(x, τ)|2 dx

x and completes the proof of Theorem 4.

4. A solution of the Neumann problem

In this final section we consider an application of the transformation
(1.1) to the Neumann problem for a second order partial differential equa-
tion. Let us deduce this equation and show that the kernel (1.9) is a fun-
damental solution. First by straightforward calculations it is not difficult
to observe that for each τ ≥ 0 integral (1.9) and its partial derivatives with
respect to x ∈ [x0, X0] ⊂ R+ and y ∈ [y0, Y0] ⊂ R+ converge absolutely and
uniformly in a region [x0, X0] × [y0, Y0]. Consequently, we can differentiate
under the integral sign in (1.9). Thus denoting by Siτ (x, y) the product of
Macdonald functions in (1.9) we easily find

∂Siτ

∂y
== −2y

x2

∫ ∞

0

e−2 y2

x2 u− x2
2u e−uKiτ (u) du.

Hence

∂

∂x

(
−x2

2y

∂Siτ

∂y

)
=

∫ ∞

0

e−2 y2

x2 u− x2
2u e−uKiτ (u)

(
−x

u
+

4y2u

x3

)
du

= −2xSiτ (x, y) +
4y2

x3

∫ ∞

0

e−2 y2

x2 u− x2
2u e−uKiτ (u)u du. (4.1)

However,

∂

∂y

(
−x2

2y

∂Siτ

∂y

)
= −4y

x2

∫ ∞

0

e−2 y2

x2 u− x2
2u e−uKiτ (u)u du. (4.2)

Therefore, combining (4.1) and (4.2) we arrive at the following second order
partial differential equation with rational coefficients

(
∂

∂x
+

y

x

∂

∂y

)(
x2

2y

∂Siτ

∂y

)
= 2xSiτ . (4.3)
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After simple manipulations it can be written in the form

y
∂2Siτ

∂y2
+ x

∂2Siτ

∂x∂y
+

∂Siτ

∂y
− 4ySiτ = 0. (4.4)

So we finally get that the function

Siτ (x, y) = Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)

is a fundamental solution of the equation (4.3)-(4.4) in the domain R+×R+.
Now we show that for any h(τ) = τf(τ) ∈ L∗(R+) the function

U(x, y) =
2√
π

∫ ∞

0

τSiτ (x, y)f(τ) dτ (4.5)

is a solution of the equation (4.4). Since h(τ) is a bounded continuous
function on R+ then invoking inequality (3.12) and integral (1.9) due to
Fubini’s theorem we establish the following representation

U(x, y) =
1√
π

∫ ∞

0

e−2 y2

x2 u− x2
2u e−u(KLh)(u)

du

u
, (4.6)

where (KLh)(u) is the Kontorovich–Lebedev operator (1.14). Meanwhile,
for any fixed δ ∈ (0, π/2) we have

|(KLh)(u)| ≤ K0(u cos δ)
∫ ∞

0

τe−δτ |f(τ)|dτ < CδK0(u cos δ), (4.7)

where Cδ > 0 is a constant, which depends on δ. Hence we use asymp-
totic formulas for the Macdonald function K0(u) (1.3), (1.5) and uniform
convergence of the corresponding integrals to verify by straightforward cal-
culations that we can differentiate under the integral sign in (4.6) for all
partial derivatives of the differential operator on the left-hand side of the
equation (4.4). Moreover this fact allows us to conclude that

Ax,yU =
2√
π

∫ ∞

0

τAx,ySiτf(τ) dτ = 0, (4.8)

where we denote by

Ax,y ≡ y
∂2

∂y2
+ x

∂2

∂x∂y
+

∂

∂y
− 4y. (4.9)

Thus (4.5) is a solution of the equation (4.4).
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Consider the following weighted Neumann problem for the differential
operator (4.9)

Ax,yU = 0, x
∂

∂x
U(x, 0) = g(x), x ∈ R+, (4.10)

where g(x) is a given bounded continuous function. Our goal now is to
demonstrate that integral (4.5) is a solution of this problem, where f(τ)
is expressed in terms of the Lebedev type transformation of the function
g (cf. [7]). Indeed, in order to satisfy the Neumann boundary condition
(4.10) we return to solution (4.5). Then taking into account representation
(4.6) and the above discussions we deduce

x
∂

∂x
U(x, y) =

2x√
π

∫ ∞

0

τ
∂

∂x
Siτ (x, y)f(τ)dτ =

1√
π

∫ ∞

0

e−2 y2

x2 u− x2
2u e−u

×(KLh)(u)
(
−x2

u
+

4y2u

x2

)
du

u
= − x2

√
π

∫ ∞

0

e−2 y2

x2 u− x2
2u e−u(KLh)(u)

du

u2

+
4y2

x2
√

π

∫ ∞

0

e−2 y2

x2 u− x2
2u e−u(KLh)(u)du. (4.11)

Appealing to inequality (4.7) it is easily seen that for all x > 0

lim
y→0+

4y2

x2
√

π

∫ ∞

0

e−2 y2

x2 u− x2
2u e−u(KLh)(u)du = 0. (4.12)

Meantime, since (see (4.7))
∣∣∣∣
∫ ∞

0

e−2 y2

x2 u− x2
2u e−u(KLh)(u)

du

u2

∣∣∣∣ ≤
∫ ∞

0

e−u− x2
2u |(KLh)(u)|du

u2

≤ Cδ

∫ ∞

0

e−u− x2
2u K0(u cos δ)

du

u2
< ∞, x > 0,

then by virtue of Lebesgue’s dominated convergence theorem we can pass
to a limit in (4.11) under the sign of the integral when y → 0+. Combining
with (4.12) we obtain

x
∂

∂x
U(x, 0) = − x2

√
π

∫ ∞

0

e−u− x2
2u (KLh)(u)

du

u2
=

2x√
π

∫ ∞

0

τ
∂

∂x
Siτ (x, 0)f(τ) dτ

=
2x√
π

∫ ∞

0

τ
∂

∂x
K2

iτ (x)f(τ) dτ = g(x), x > 0. (4.13)

The latter integral in (4.13) represents a modification of the Lebedev trans-
formation (1.15). We will now use the results from [7] to find an inversion
formula of the Lebedev transformation

g(x) =
2x√
π

∫ ∞

0

τ
∂

∂x
K2

iτ (x)f(τ) dτ (4.14)
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in order to express f in terms of a given bounded continuous function g.
Indeed, starting from the Mellin-Barnes representation [7]

2x√
π

∂

∂x
K2

iτ (x) = − 1
2πi

∫ γ+i∞

γ−i∞
Γ

(s

2
+ iτ

)
Γ

(s

2
− iτ

) Γ(1 + s/2)
Γ((1 + s)/2)

x−sds, γ > 0,

we substitute it in (4.14) and we change the order of integration by Fu-
bini’s theorem. This can be motivated in a similar manner as in the proof
of Theorem 2 since the corresponding iterated integral is absolutely and
uniformly convergent. Invoking (3.15) we get

g(x) = − 1
2πi

∫ γ+i∞

γ−i∞

Γ(1 + s/2)
Γ((1 + s)/2)

[KLf ]M(s)x−sds. (4.15)

Now we employ an auxiliary Lebedev’s operator [2] with a combination of
the modified Bessel functions

[KIψ](x) = 2
√

π

∫ ∞

0

Kiξ(x) [Iiξ(x) + I−iξ(x)] ψ(ξ)
ξ dξ

cosh ξ
, x > 0. (4.16)

According to [7], the kernel in (4.16) can be represented as

2
√

π

cosh ξ
Kiξ(x) [Iiξ(x) + I−iξ(x)]

=
1

2πi

∫ γ+i∞

γ−i∞
Γ

(s

2
+ iξ

)
Γ

(s

2
− iξ

) Γ((1− s)/2)
Γ(1− s/2)

x−sds.

Hence we substitute the latter Mellin-Barnes integral in (4.16) and we invert
the order of integration assuming that ξψ(ξ) ∈ L∗(R+). Taking into account
(3.15) we arrive at the formula

[KIψ](x) =
1

2πi

∫ γ+i∞

γ−i∞

Γ((1− s)/2)
Γ(1− s/2)

[KLψ]M(s)x−sds. (4.17)

As it is easily seen by virtue of the Stirling asymptotic formula for gamma-
functions [1, Vol.I] we have the estimates

∣∣∣∣
Γ((1− s)/2)
Γ(1− s/2)

∣∣∣∣
2

= O(|t|−1), s = γ + it, |t| → ∞,

∣∣∣∣
Γ(1 + s/2)

Γ((1 + s)/2)

∣∣∣∣
2

= O(|t|), s = γ + it, |t| → ∞.
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Moreover, since ξψ(ξ) ∈ L∗(R+), then it implies that ψ(ξ) ∈ L2(R+) ⊂
L2(R+; ξ[sinh 2πξ]−1dξ). Therefore due to Parseval equalities (1.13), (3.4)
we find from (3.20), (4.17) for γ ∈ [0, 1/2] that

∫ ∞

0

|[KIψ](x)|2x2γ−1dx =
1
2π

∫ ∞

−∞

∣∣∣∣
Γ((1− γ − it)/2)
Γ(1− (γ + it)/2)

[KLψ]M(γ + it)
∣∣∣∣
2

dt

≤ const.
∫ ∞

−∞

∣∣[KLψ]M(γ + it)
∣∣2 dt = const.

∫ ∞

0

[KLψ](x)|2x2γ−1dx

≤ const.
∫ ∞

0

τ

sinh 2πτ
|ψ(τ)|2dτ < ∞.

Thus the norm (1.11) of the Lebedev operator (4.1) is finite for any γ ∈
[0, 1/2] and in particular, for γ = 0. If we let ψ = θτ (see (3.29)), which
evidently satisfies the above conditions, then we consider the integral

∫ ∞

0

g(x)[KIθτ ](x)
dx

x
= 2

√
π

∫ ∞

0

g(x)
∫ τ

0

Kiξ(x) [Iiξ(x) + I−iξ(x)]
ξdξ

cosh ξ

dx

x
.

(4.18)
The left-hand side of (4.17) converges absolutely due to Schwarz’s inequality
if we show that g(x) ∈ L2(R+;x−1dx). Furthermore, by virtue of (1.13),
(3.4), (4.15), (4.16) and the parallelogram identity we will prove the equality

∫ ∞

0

g(x)
∫ τ

0

Kiξ(x) [Iiξ(x) + I−iξ(x)]
ξdξ

cosh ξ

dx

x
= −π

√
π

∫ τ

0

ξ

sinh 2πξ
f(ξ) dξ.

(4.19)
After differentiation with respect to τ in the latter equality we will arrive
at the desired inversion formula of the Lebedev transformation (4.14)

f(τ) = − sinh 2πτ

π
√

πτ

d

dτ

∫ ∞

0

g(x)
∫ τ

0

Kiξ(x) [Iiξ(x) + I−iξ(x)]
ξdξ

cosh ξ

dx

x
(4.20)

and establish a solution of the Neumann problem (4.10). If also g(x) ∈
L1((0, 1); x−3/2dx) then via the uniform estimate (see [2])

|Kiξ(x) [Iiξ(x) + I−iξ(x)] | = O(x−1/2), x > 0,

we can differentiate with respect to τ under the integral sign in (4.20) to
get after simple manipulations that

f(τ) = −2 sinh πτ

π
√

π

∫ ∞

0

Kiτ (x) [Iiτ (x) + I−iτ (x)] g(x)
dx

x
. (4.21)

So it remains to show that under the condition τf(τ) ∈ L∗(R+) the
Lebedev transform (4.14) is of the space L2(R+;x−1dx). In fact, employing
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(4.15), (1.13) and the above estimate of the ratio of gamma-functions we
have for each A > 0

∫ ∞

0

|g(x)|2x2γ−1dx =
1
2π

∫ ∞

−∞

∣∣∣∣
Γ(1 + (γ + it)/2)
Γ((1 + γ + it)/2)

[KLf ]M(γ + it)
∣∣∣∣
2

dt

=
1
2π

( ∫

|t|≤A

+
∫

|t|>A

)∣∣∣∣
Γ(1 + (γ + it)/2)
Γ((1 + γ + it)/2)

[KLf ]M(γ + it)
∣∣∣∣
2

dt, γ ∈
[
0,

1
2

]
. (4.22)

Further, since the gamma-ratio is continuous with respect to t we find with
(3.4) and (3.20) that
∫

|t|≤A

∣∣∣∣
Γ(1 + (γ + it)/2)
Γ((1 + γ + it)/2)

[KLf ]M(γ + it)
∣∣∣∣
2

dt ≤ const.
∫ ∞

−∞

∣∣[KLf ]M(γ + it)
∣∣2 dt

= const.
∫ ∞

0

|[KLf ](x)|2x2γ−1dx < ∞, γ ∈
[
0,

1
2

]
.

On the other hand, by using (2.5) and (3.15) it is not difficult to arrive at
the estimate

∣∣[KLf ]M(γ + it)
∣∣ ≤ const.|Γ(γ + it)|

∫ ∞

0

|(Fc; τf(τ))(2y)|
coshγ y

dy

≤ const.|Γ(γ + it)| ||τf(τ)||L∗ .
Consequently, the second integral on the right-hand side of (4.22) can be
treated as follows

∫

|t|>A

∣∣∣∣
Γ(1 + (γ + it)/2)
Γ((1 + γ + it)/2)

[KLf ]M(γ + it)
∣∣∣∣
2

dt

≤ const.
∫

|t|>A

|t|
∣∣[KLf ]M(γ + it)

∣∣2 dt

≤ const.
∫

|t|>A

|t| |Γ(γ + it)|2 dt < ∞, γ ∈
[
0,

1
2

]
.

Combining these estimates we immediately obtain that the left-hand side
of (4.22) is finite for all γ ∈ [0, 1/2] and in particular for γ = 0. Thus
g(x) ∈ L2(R+;x−1dx).

Hence, returning to the integral on the left-hand side of (4.18) and
invoking (1.13), (4.15), (4.17), (3.4) we deduce by straightforward calcula-
tions ∫ ∞

0

g(x)[KIθτ ](x)
dx

x
= − 1

2π

∫ ∞

−∞

Γ(1 + it/2)
Γ((1 + it)/2)

[KLf ]M(it)

×Γ((1 + it)/2)
Γ(1 + it/2)

[KLθτ ]M(it)dt = − 1
2π

∫ ∞

−∞
[KLf ]M(it)[KLθτ ]M(it)dt

= −
∫ ∞

0

[KLf ](x)[KLθτ ](x)
dx

x
= −π

√
π

∫ τ

0

ξ

sinh 2πξ
f(ξ) dξ.
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Combining with (4.18) we prove equality (4.19). Hence we get representa-
tions (4.20) and (4.21), respectively. We finally summarize the results of
this section by the following

Theorem 5. Integral (4.5) is a solution of the weighted Neumann
problem (4.10) with a bounded continuous function g(x), x > 0, which is
represented by the Lebedev integral (4.14) of an arbitrary function f(τ), such
that τf(τ) ∈ L∗(R+). A function f can be uniquely determined in terms of
the given function g by integrals (4.20) or (4.21) under additional condition
g ∈ L1((0, 1); x−3/2dx).
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O novom indeksu transformacije koji se odnosi
na produkt Macdonald funkcija

Semyon B. Yakubovich

Sadržaj

U radu se uzučava integralna transformacija, koja je vezana za produkt
Macdonald funkcija Kiτ

(√
x2+y2−y

)
Kiτ

(√
x2+y2+y

)
, gdje je (x, y) ∈ R+ × R+

i iτ, τ ∈ R+ je čisti imaginarni indeks. Proces integracije se realizira
u odnosu na τ. U graničnom slučaju, kada je y = 0, dobijena je Lebe-
dec transformacija s kvadratom Macdonald funkcija. Koristeći relacije
Mellin i Kontorovich–Lebedev transformacija dokazani su Bochner-ov teo-
rem reprezentacije, Plancherel teorem i jednakost Parseval-a. Data je prim-
jena predstavljenih transformacija kako bi se našlo rješenje tzv. “Neumann
weighted” problema za parcijalne diferencijalne jednadžbe drugog reda.


