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Oscillatory behavior of solutions of three-dimensional delay
difference systems

E. Thandapani and B. Selvaraj (India)

Abstract. The authors study the oscillatory behavior of solutions
of third order delay difference system of the form

∆xn = anyα
n−k

∆yn = bnzβ
n−`

∆zn = −cnxγ
n−m,

where {an} , {bn} and {cn} are real sequences, k, ` and m are non-
negative integers and α, β and γ are ratios of odd positive integers.
Examples are provided to illustrate the results.

1. Introduction

In this paper, we are concerned with the delay difference system of the
form

∆xn = anyα
n−k

∆yn = bnzβ
n−`

∆zn = −cnxγ
n−m,

(1)

where n ∈ N(n0) = {n0, n0 + 1, n0 + 2, · · ·} , n0 is a nonnegative integer and
∆ is the forward difference operator defined by ∆un = un+1 − un subject to
the following conditions:

(C1) {an}, {bn} and {cn} are nonnegative real sequences such that
∞∑

n=n0

an =∞,

∞∑
n=n0

bn = ∞, and cn 6≡ 0 for infinitely many values of n;

(C2) k, ` and m are nonnegative integers and α, β and γ are ratio of odd
positive integers.
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Let θ = max{k, `, m} . By a solution of the system (1), we mean a real
sequence {(xn, yn, zn)} defined for all n ≥ n0− θ that satisfies the system (1)
for all n ∈ N(n0). A solution ({xn} , {yn} , {zn}) of the system (1) is nonoscil-
latory if each of its component is either eventually positive or eventually
negative and oscillatory otherwise.

If {an} and {bn} are positive then the system (1) can be reduced to a
third order difference equation whose oscillatory behavior has been studied
extensively in the literature. See for example [1, 2, 3, 9] and the references
cited therein. However for the system (1), the oscillatory behavior is studied
in [11] without delay arguments. All the results obtained in this paper state
that “ every solution {(xn, yn, zn)} of the system (1) is either oscillatory or
lim

n→∞
inf |xn| = 0 and lim

n→∞
yn = lim

n→∞
zn = 0.”

The purpose of this paper is to obtain conditions under which all so-
lutions of the system (1) are oscillatory. For related results corresponding
to two-dimensional system one can refer to [4, 6, 7, 8, 10] and the refer-
ences cited therein. Examples are provided to illustrate the relevance of
the results discussed.

2. Some preliminary lemmas

In this section we state and prove some lemmas, which will be used in
establishing our main results.

Lemma 2.1. Let {(xn, yn, zn)} be a solution of the system (1) with
{xn} nonoscillatory for n ∈ N(n0). Then {(xn, yn, zn)} is nonoscillatory and
{xn},{yn}, {zn} are monotone for n ∈ N(n0).

Proof. Let {(xn, yn, zn)} be a solution of the system (1) with {xn} be
nonoscillatory for n ∈ N(n0). Then without loss of generality assume that
xn > 0 for n ∈ N(n0) and hence from the third equation of the system (1)
we have ∆zn < 0 for n ≥ N . Thus {zn} is nonincreasing sequence for n ≥ N

and therefore eventually of one sign for n ≥ N . Since {an} and {bn} have
positive subsequences in view of condition (C1), applying similar arguments
to the second and the first equation of (1), we see that {yn} and {xn} are
monotone for n ≥ N. Hence {(xn, yn, zn)} is nonoscillatory and the proof is
complete. ¤

Lemma 2.2. Let {(xn, yn, zn)} be a nonoscillatory solution of the sys-
tem (1), then there are only the following two cases for n ∈ N(n0) sufficiently
large:
(I) sgnxn = sgn yn = sgn zn,

(II) sgnxn = sgn zn 6= sgn yn.
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Proof. The proof is similar to that of Lemma 2.2 in [11] and hence
the details are omitted. ¤

Lemma 2.3. [5] If X and Y are nonnegative, then

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0, λ > 1

where equality holds if and only if X = Y.

3. Oscillation results

In this section we establish conditions for the oscillation of all solutions
of the system (1). We begin with the following theorem.

Theorem 3.1. Consider the difference system (1), subject to the con-
ditions

α = β = γ = 1, (2)
∞∑

n=n0

cn = ∞, (3)

and
n+m∑
t=n

ct




t∑
s=n

as




t∑

j=s

bj





 > 1. (4)

Then every solution {(xn, yn, zn)} of the system (1) is oscillatory.

Proof. Let {(xn, yn, zn)} be a nonoscillatory solution of the system (1).
Then choose an integer N ∈ N(n0) such that for all n ≥ N , the solutions
{(xn, yn, zn)} of system (1) satisfy either Case (I) or (II) of Lemma 2.2.

First assume that the solution {(xn, yn, zn)} satisfies Case (I) of Lemma
2.2 for n ≥ N . Without loss of generality assume that xn−m > 0 for n ≥ N.

Define
wn =

zn

xn−`
, n > N.

Then , for n > N , we have

∆wn =
∆zn

xn−`
− zn+1∆xn−`

xn−`xn−`+1
≤ −cn.

Summing the inequality from N to j ≥ N , we obtain
j∑

n=N

cn 6 wN

which contradicts (3) as j →∞.



E. Thandapani and B. Selvaraj42

Case (II). Let s ∈ N(n0) be fixed and summing the third equation of (1)
from s to n− 1, we obtain

zn − zs +
n−1∑
t=s

ctxt−m = 0,

or

−bnzn−` + bn

∞∑

t=n−`

ctxt−m 6 0,

or

−∆yn + bn

∞∑
t=n

ctxt−m 6 0.

Summing the last inequality from s to n and rearranging , we obtain

yn +
∞∑

t=n

(
t∑

s=n

bs

)
ctxt−m 6 0,

or

yn−k +
∞∑

t=n−k

(
t∑

s=n

bs

)
ctxt−m 6 0

∆xn + an

∞∑
t=n

(
t∑

s=n

bs

)
ctxt−m 6 0.

A final summation of the last inequality yields

∞∑
t=n




t∑
s=n

as




t∑

j=s

bj





 ctxt−m 6 xn,

or
n+m∑
t=n




t∑
s=n

as




t∑

j=s

bj





 ctxt−m 6 xn. (5)

Since {xn} is decreasing, (5) yields,

n+m∑
t=n

ct




t∑
s=n

as




t∑

j=s

bj





 6 1,

which contradicts (4). The proof is compete. ¤
Example 3.1. Consider the difference system

∆xn = 4yn−k

∆yn =
1
2
zn−`

∆zn = −4xn−m, n ≥ 1

(6)
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where k, ` and m are even positive integers. All conditions of Theorem 3.1
are satisfied and hence all solutions of the system (6) are oscillatory. In fact
{(xn, yn, zn)} =

{
(−1)n, (−1)n+1

2 , 2(−1)n
}

is one such solution of the system
(6).

Theorem 3.2. Consider the difference system (1) subject to the con-
ditions (3),

α = β = 1 and 0 < γ < 1 (7)

and

lim
n→∞

sup
n+m∑
t=n

ct




t∑
s=n

as




t∑

j=s

bj





 = ∞. (8)

Then every solution {(xn, yn, zn)} of the system (1) is almost oscillatory.

Proof. Let {(xn, yn, zn)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we choose N ∈ N(n0) so
that Lemma 2.2 holds for n ≥ N. First we consider Case (I).

Case (I). Define
wn =

zn

xγ
n−`

, n > N.

Then

∆wn =
∆zn

xγ
n−`

− zn+1∆xγ
n−`

xγ
n−`x

γ
n−`+1

≤ −cn, n > N.

Summing the last inequality from N to j ≥ N , we obtain

j∑

n=N

cn 6 wN

which contradicts (3) as j →∞.

Case (II). Proceeding as in the proof of Theorem 3.1, we obtain

n+m∑
t=n

ct




t∑
s=n

as




t∑

j=s

bj





 xγ

t−m 6 xn. (9)

Since {xn} is positive decreasing and γ is such that 0 < γ < 1, we have from
(9),

n+m∑
t=n

ct




t∑
s=n

as




t∑

j=s

bj





 6 x1−γ

n .
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Next taking the limit supremum in the last inequality we see that

lim
n→∞

sup
n+m∑
t=n

ct




t∑
s=n

as




t∑

j=s

bj





 < ∞

which contradicts (8). ¤

Example 3.2. Consider the difference system

∆xn = 2nyn−1

∆yn =
2n + 3
n + 2

zn−2

∆zn = − 2n + 7
(n + 3)(n + 4)

x
1
3
n−3, n > 3.

(10)

All conditions of Theorem 3.2 are satisfied and hence all solutions of the
system (10) are oscillatory. In fact {(xn, yn, zn)} =

{
((−1)n, ) , (−1)n

n+1 , (−1)n+1

n+3

}

is one such solution of the system (10).

Theorem 3.3. Consider the difference system (1) subject to the con-
ditions

∞∑
n=n0

cn

(
n−m−1∑

s=n0

as

(
s−k−1∑
t=n0

bt

)α)γ

= ∞, (11)

lim
n→∞

sup
n+m∑
t=n

at




t∑
s=n

bs




t∑

j=s

cj




β



α

= ∞ (12)

and
αβγ < 1. (13)

Then every solution {(xn, yn, zn)} of the system (1) is oscillatory.

Proof. Let {(xn, yn, zn)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we choose N ∈ N(n0) so
that Lemma 2.2 holds for n ≥ N. First we consider Case (I).

Case (I). Summing the second equation of the system (1) from N to
n− k − 1, we obtain

yn−k − yN =
n−k−1∑

s=N

bsz
β
s−`, n > N + k + 1
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yn−k >
n−k−1∑

s=N

bsz
β
s−`, n > N1 > N + k + 1. (14)

Using the monotoncity of {zn} in (14), we have

yα
n−k > zαβ

s−k−`

(
n−k−1∑

s=N

bs

)α

, n > N1. (15)

Summing the first equation of the system (1) from N1 to n − m − 1 and
using (15), we obtain

xn−m >
n−m−1∑

s=N1

asz
αβ
s−k−`

(
s−k−1∑

t=N

bt

)α

, n > N1 + m + 1. (16)

From (16) and the monotoncity of {zn}, we have

xn−m > zαβ
n−(k+`+m)

n−m−1∑

s=N1

as

(
s−k−1∑

t=N

bt

)α

, n > N2 > N1 + m + 1,

or

xγ
n−m > zαβγ

n

(
n−m−1∑

s=N1

as

(
s−k−1∑

t=N

bt

)α)γ

, n > N2. (17)

Multiply (17) by cn

zαβγ
n

, using the third equation of the system (1), and then
summing from N2 to n− 1, we obtain

n−1∑

s=N2

−∆zs

zαβγ
s

>
n−1∑

s=N2

as




s−m−1∑

t=N1

at




t−k−1∑

j=N

bj




α


γ

, n > N2. (18)

For zn+1 < u < zn, we have

zn∫

zn+1

du

uαβγ
> −∆zn

zαβγ

n

, n > N2. (19)

Combining (18) and (19), we obtain

zN2∫

0

du

uαβγ
>

∞∑

n=N2

cn

(
n−m−1∑

s=N1

as

(
s−k−1∑

t=N

bt

)α)γ

which is a contradiction in view of (11) and (13).
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Case (II). Let s− ` ∈ N(n0) be fixed and summing the third equation
of (1) from s− ` to n− 1, we obtain

zn − zs−` +
n−1∑

j=s−`

cjx
γ
j−m = 0,

or 


∞∑

j=n

cjx
γ
j−m




β

6 zβ
n−`.

Multiplying both sides of the last inequality by bn and then using the second
equation of (1) and then summing from s−k ∈ N(n0) to n−1 and rearranging
we obtain 


∞∑

t=n

bt

(
t∑

s=n

cs

)β

xγβ
t−m




α

6 −yα
n−k.

Multiplying the above inequality by an and using the first equation of (1)
and then summing, we obtain

∞∑
t=n

at




t∑
s=n

bs




t∑

j=s

cj




β



α

xαβγ
t−m 6 xn

or
n+m∑
t=n

at




t∑
s=n

bs




t∑

j=s

cj




β



α

xαβγ
t−m 6 xn. (20)

Since {xn} is decreasing and from (13) and (20), we have

lim
n→∞

sup
n+m∑
t=n

at




t∑
s=n

bs




t∑

j=s

cj




β



α

< ∞

which contradicts (12). ¤

Example 3.3. Consider the difference system

∆xn = 2(n + 1)
1
3 y

1
3
n−3

∆yn =
2n + 3
n + 1

zn−2

∆zn = − 2n + 7
(n + 3)(n + 4)

x
3
5
n−1, n ≥ 3.

(21)



Oscillatory behavior of solutions of three-dimensional delay ... 47

All conditions of Theorem 3.3 are satisfied and hence all solutions of the
system (21) are oscillatory.

Theorem 3.4. Consider the difference system (1) subject to the con-
ditions

αβγ = 1 (22)

and
n+m∑
t=n

at




t∑
s=n

bs




t∑

j=s

cj




β



α

> 1. (23)

If there exists a positive decreasing sequence {φn} such that

lim sup
j→∞

j∑
n=n0

(
cnφn − 1

(γ + 1)γ
(∆φn)γ+1

(ηn−j−1φn)γ

)
= ∞, (24)

where

ηn = an

(
n−1∑
s=n0

bs

)α

> 0, for all n ∈ N(n0). (25)

Then all solutions {(xn, yn, zn)} of the system (1) are oscillatory.

Proof. Let {(xn, yn, zn)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we choose N ∈ N(n0) so
that Lemma 2.2 holds for n ≥ N. First we consider Case (I). Define

wn =
φnzn

xγ
n−m−1

, n > N1 > N + m + 1.

Then, for n > N1, we have

∆wn = −cnφn +
∆φn

φn+1
wn+1 −

φnzn∆xγ
n−m−1

xγ
n−mxγ

n−m−1

. (26)

Using the mean value theorem for the function r(t) = tγ , we have

∆xγ
n−m−1 >

{
γxγ−1

n−m−1∆xn−m−1, if r > 1

γxγ−1
n−m∆xn−m−1, if r < 1.

(27)

From (26), (27) and in view of the behavior of {xn} and {zn} we obtain

∆wn = −cnφn +
∆φn

φn+1
wn+1 − γφnwn+1∆xn−m−1

φn+1xn−m
, n > N1. (28)
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Summing the second equation of the system (1) from N1 to n − k − 1 and
then using the nonincreasing character of {zn} we obtain

yn−k > zβ
n

(
n−k−1∑

s=N1

bs

)
z

1
γ
n , n > N2 > N1. (29)

Now from the first equation of (1), (29) and (20), we have

∆xn > an

(
n−k−1∑

s=N1

bs

)α

z
1
γ
n , n > N1

or
∆xn−m−1 > ηn−m−1z

1
γ

n−m−1 > ηn−m−1z
1
γ

n+1, n > N1 (30)

since {zn} is nonincreasing. Using (30) and (28) and simplifying we obtain

∆wn 6 −cnφn +
∆φn

φn+1
wn+1 − γφnηn−m−1

φ
1+ 1

γ
n+1

w
1+ 1

γ
n+1 , n > N2 > N1.

Set
X = (γφnηn−m−1)

γ
1+γ

wn+1

φn+1
, λ =

γ + 1
γ

> 1

and
Y =

(
γ

γ + 1

)γ (
∆φn

φn+1

)γ [
γ−( γ

γ+1 ) (φnηn−m−1)
− γ

1+γ φn+1

]γ

in Lemma 2.3, to conclude that

∆φn

φn+1
wn+1 − γφnηn−m−1

φ
1+ 1

γ
n+1

w
1+ 1

γ
n+1 6 1

(γ + 1)γ
(∆φn)γ+1

ηγ
n−m−1φ

γ
n

and therefore

∆wn 6 −cnφn +
1

(γ + 1)γ
(∆φn)γ+1

ηγ
n−m−1φ

γ
n
, n > N2.

Summing both sides of the last inequality from N2 to j ≥ N1, we obtain

wj+1 − wN2 6 −
j∑

n=N2

[
cnφn − 1

(γ + 1)γ
(∆φn)γ+1

ηγ
n−m−1φ

γ
n

]
→ −∞

as j →∞ which is a contradiction to the fact that wj > 0 for j ≥ N2.
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Case (II). Proceeding as in the proof of Theorem 3.3, we obtain (20).
Now using the nonincreasing behavior of {xn} and condition (22), we obtain
a contradiction to (23). ¤

In the case of αβγ > 1, we are unable to find the conditions under which
all solutions of the system (1) are oscillatory. However, we establish the
following result.

Theorem 3.5. Consider the difference system (1) subject to the con-
ditions

αβγ > 1, (31)
∞∑

n=n0

bn

( ∞∑
s=n

cs

)α

= ∞ (32)

and
∞∑

n=n0

an

(
n−k−1∑
s=n0

bs

)α ( ∞∑
s=n+m+1

cs

)β

= ∞ (33)

hold. Then every solution {(xn, yn, zn)} of the system (1) is either oscillatory
or lim

n→∞
xn = lim

n→∞
yn = lim

n→∞
zn = 0.

Proof. Let {(xn, yn, zn)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we see that {(xn, yn, zn)}
satisfies one of the two cases in Lemma 2.2 for n ≥ N . First consider Case
(I). In this case, from the third equation of the system (1) and using the
nondecreasing behavior of {xn}, we have

zn > xγ
n−m

∞∑
s=n

cs, n > N. (34)

Further, summing the second equation of the system (1) from N to n − 1
and then using the nonincreasing character of {zn} we obtain

yn > zβ
n−`

(
n−1∑

s=N

bs

)
, n > N

or

yn−k > zβ
n−k−`

(
n−k−1∑

s=N

bs

)
, n > N1 > N + k + 1. (35)

From (34), (35) and the first equation of system (1), we have

∆xn > an

(
n−k−1∑

s=N

bs

)α ( ∞∑
s=n+m+1

cs

)β

xαβγ
n+1
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or
n−1∑

s=N

∆xs

xαβγ
s+1

>
n−1∑

s=N1

as

(
s−k−1∑

t=N

bt

)α ( ∞∑
t=s+m+1

ct

)β

, n > N1. (36)

For xn < u < xn+1 , we have

xn+1∫

xn

du

uαβγ
> ∆xn

x
αβγ

n+1

, n > N1. (37)

Combining (36) and (37), we obtain

∞∫

xN1

du

uαβγ
>

∞∑

n=N1

an

(
n−k−1∑

s=N

bs

)α ( ∞∑
s=n+m+1

cs

)β

,

which is a contradiction in view of (31) and (33).

Case (II). Now from the first equation of (1), we see that {xn} is
nonincreasing for n ≥ N and therefore lim

n→∞
xn = L1 < ∞. Hence from

Lemma 2.3 in [11], we have

lim
n→∞

yn = lim
n→∞

zn = 0.

We shall prove that lim
n→∞

xn = 0. Let L1 > 0. Then there is an integer
N1 > N + m such that xn−m > d1 > 0 for m ≥ N1. Now summing the third
equation (1) from n to ∞ and then using xn−m > d1 for m ≥ N1, we obtain

zn > dγ
1

∞∑
s=n

cs, n > N1.

Suppose β is a ratio of odd positive integers and {zn} is nonincreasing, we
have from the last inequality

zβ
n−` > dγβ

1

( ∞∑
s=n

cs

)β

, n > N1. (38)

Summing the second equation (1) from N1 to n− 1 and then using (38), we
obtain

yn > yN1 + dγβ
1

n−1∑

s=N1

bs

( ∞∑
t=s

ct

)β

, n > N1.
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In view of (32), the last inequality implies for that lim
n→∞

yn = ∞, which is a
contradiction. Therefore lim

n→∞
xn = 0. ¤

We conclude this paper with the following example.

Example 3.4. Consider the difference system

∆xn = (1 + (−1)n)y3
n−2

∆yn = nz
1
3
n−3

∆zn = − 1
n(n + 1)

x3
n−1, n > 3.

(39)

All conditions of Theorem 3.5 are satisfied for the system (39) and hence
every solution {(xn, yn, zn)} for the system (39) is either oscillatory or
lim

n→∞
xn = lim

n→∞
yn = lim

n→∞
zn = 0.
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Oscilatorno djelovanje rješenja trodimenzionalnih
diferentnih sistema sa kašnjenjem

E. Thandapani i B. Selvaraj

Sadržaj

U radu se izučava oscilatorno djelovanje rješenja diferentnog sistema
trećeg reda sa kašnjenjem, koji ima oblik

∆xn = anyα
n−k

∆yn = bnzβ
n−`

∆zn = −cnxγ
n−m,

gdje su {an} , {bn} i {cn} realne sekvence, k, ` i m nenegativni cijeli brojevi
i α, β, i γ omjeri neparnih pozitivnih cijelih brojeva. Dati su primjeri za
ilustraciju rezultata.


