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Oscillatory behavior of solutions of three-dimensional delay
difference systems

E. Thandapani and B. Selvaraj (India)

Abstract. The authors study the oscillatory behavior of solutions
of third order delay difference system of the form

Az, = anygfk

Ay, = bnsz_e
Az, = —CnLL';YL,m,

where {a,} , {b,} and {c,} are real sequences, k,¢ and m are non-
and v are ratios of odd positive integers.

negative integers and «,
Examples are provided to illustrate the results.

1. Introduction
In this paper, we are concerned with the delay difference system of the

form
Axy, = anyn_p
Ayn = bnz?l,g (1)
Azy, = _Cnx;yy,fm7
where n € N(ng) = {no,no+1,n0+2,---}, no is a nonnegative integer and
A is the forward difference operator defined by Au, = u, 1 — u, subject to

the following conditions:
o0
(C1) {an}, {b,} and {c,} are nonnegative real sequences such that 3 a,=o0,
n=mno

> by, = o0, and ¢, # 0 for infinitely many values of n;

n=no

(C2) k,¢ and m are nonnegative integers and «,3 and v are ratio of odd

positive integers.
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Let 0 = max{k,¢,m} . By a solution of the system (1), we mean a real
sequence {(zn,Yn,zn)} defined for all n > ng — 6 that satisfies the system (1)
for all n € N(ng). A solution ({xn},{yn},{zx}) of the system (1) is nonoscil-
latory if each of its component is either eventually positive or eventually
negative and oscillatory otherwise.

If {a,} and {b,} are positive then the system (1) can be reduced to a
third order difference equation whose oscillatory behavior has been studied
extensively in the literature. See for example [1, 2, 3, 9] and the references
cited therein. However for the system (1), the oscillatory behavior is studied
in [11] without delay arguments. All the results obtained in this paper state
that “ every solution {(z,,yn,2,)} of the system (1) is either oscillatory or
nl:rr;@ inf |z,| =0 and nleréo Yn = nh_}rréo zn =07

The purpose of this paper is to obtain conditions under which all so-
lutions of the system (1) are oscillatory. For related results corresponding
to two-dimensional system one can refer to [4, 6, 7, 8, 10] and the refer-
ences cited therein. Examples are provided to illustrate the relevance of
the results discussed.

2. Some preliminary lemmas

In this section we state and prove some lemmas, which will be used in
establishing our main results.

Lemma 2.1. Let {(zn,Yn,2n)} be a solution of the system (1) with
{zn} nonoscillatory for n € N(ng). Then {(xn, yn,zn)} s nonoscillatory and
{zn}.{yn}, {20} are monotone for n € N(ng).

Proof. Let {(x,,yn,2,)} be a solution of the system (1) with {z,} be
nonoscillatory for n € N(ng). Then without loss of generality assume that
z, > 0 for n € N(ng) and hence from the third equation of the system (1)
we have Az, <0 for n > N. Thus {z,} is nonincreasing sequence for n > N
and therefore eventually of one sign for n > N. Since {a,} and {b,} have
positive subsequences in view of condition (C}), applying similar arguments
to the second and the first equation of (1), we see that {y,} and {z,} are
monotone for n > N. Hence {(z,,yn,2n)} is nonoscillatory and the proof is
complete. O

Lemma 2.2. Let {(z,,yn,2:)} be a nonoscillatory solution of the sys-
tem (1), then there are only the following two cases for n € N(ng) sufficiently
large:

(1) sgnwz, = sgny, = Sgn z,,
(I1) sgnx,, = sgnz, # SGNY,.
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Proof. The proof is similar to that of Lemma 2.2 in [11] and hence
the details are omitted. O

Lemma 2.3. [5] If X and Y are nonnegative, then
X+ A=)y = AxyMl>0, A>1
where equality holds if and only if X =Y.

3. Oscillation results

In this section we establish conditions for the oscillation of all solutions
of the system (1). We begin with the following theorem.

Theorem 3.1. Consider the difference system (1), subject to the con-
ditions

Z Cn = 00, (3)
n=nogo
and
n+m t t
th Zas ij > 1. (4)
t=n s=n Jj=s

Then every solution {(x,,yn,2zn)} of the system (1) is oscillatory.

Proof. Let {(z,yn,2,)} be a nonoscillatory solution of the system (1).
Then choose an integer N € N(ng) such that for all n > N, the solutions
{(%n, Yn»2n)} of system (1) satisfy either Case (I) or (II) of Lemma 2.2.

First assume that the solution {(z,,yn, 2,)} satisfies Case (I) of Lemma
2.2 for n > N. Without loss of generality assume that z,_,, > 0 for n > N.
Define

Then , for n > N, we have

Az Zna1 Ty _yp
Aw,, = no_ ot < ey,
Tn—2 Lp—0Ln—0+1

Summing the inequality from N to j > N, we obtain

which contradicts (3) as j — occ.
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Case (II). Let s € N(ng) be fixed and summing the third equation of (1)

from s to n — 1, we obtain

n—1

Zn — 25 + § CtTi—m =0,

t=s
or

0o
_bnznfﬁ + bn § CtTt—m < 07
t=n—/{
or

— Ay, + by Z CtTi—m < 0.

t=n

Summing the last inequality from s to n and rearranging , we obtain

yn—i-Z(Zb)ctxt m <0,

t=n S=n
or

Yn—k + Z <Zb > CtTy—m <0

t=n—~k
Al‘n-i-anZ(Zb)Ctxt m <
t=n \s=n

A final summation of the last inequality yields

Z ZCLS Zb CtTt—m < L,

t=n | s=n
or
n+m t

Z Zas Zb CiTt—m < Tn-

t=n s=n

Since {z,} is decreasing, (5) yields,

n+m t t
e | Y (S| <1
t=n s=n j=s

which contradicts (4). The proof is compete.

Example 3.1. Consider the difference system

Az, = 4y, _k
1

Ay, = =2

Y 22 0

Azn = *4:1771,—m7 n > 1
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where k,¢ and m are even positive integers. All conditions of Theorem 3.1
are satisfied and hence all solutions of the system (6) are oscillatory. In fact
)‘n,+1

{(@ny Yn,2n)}t = {(—1)”, (*%,2(71)”} is one such solution of the system

6).

Theorem 3.2. Consider the difference system (1) subject to the con-
ditions (3),
a=0F=1land0<~vy<1 (7)

n+m t

t
nhﬂn;o sup Z ct Z as Z b = o0. (8)
t=n s=n j=s

Then every solution {(x,,yn, 2n)} of the system (1) is almost oscillatory.

Proof. Let {(z,yn, 2,)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we choose N € N(ng) so
that Lemma 2.2 holds for n > N. First we consider Case (I).

Case (I). Define

Then ,
AZn Zn+1 A'/Enfl

Y vy Y
xn—é xn—fxn—é—i-l

Aw, = < -c¢,, n=N.

Summing the last inequality from N to j > N, we obtain

which contradicts (3) as j — oo.

Case (IT). Proceeding as in the proof of Theorem 3.1, we obtain

n+m t t
Z Ct Z Qs ij z] < Ty (9)
t=n s=n j=s

Since {x,} is positive decreasing and ~ is such that 0 < v < 1, we have from

(9);

n+m

t t

1—

E ct g as g b; <, 7.
s=n j=s

t=n
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Next taking the limit supremum in the last inequality we see that

n+m t

t
lim sup Z Ct Z Qg Z b; < 00
nee t=n s Jj=s

=n

which contradicts (8). O

Example 3.2. Consider the difference system

AV = 2nYn—1
_2n+3
Yn = 7’L+2 Zn—2 (10)
2n+ 7 1
Azy=—— L 45 >3,
- (n+3)(n+4) ™ "

All conditions of Theorem 3.2 are satisfied and hence all solutions of +tlhe
system (10) are oscillatory. In fact {(x,, yn,2n)} = {((—1)”,), (;i)l ,%}

is one such solution of the system (10).

Theorem 3.3. Consider the difference system (1) subject to the con-
ditions

e} n—m-—1 s—k—1 a\ 7
ZQL(Z as(Z bt)) = 00, (11)

n=ng s=ng t=ng
(03
n+m t t p
nh_)rxgo sup Z ay Z bs ch =00 (12)
t=n s=n j=s
and
afy < 1. (13)

Then every solution {(x,,yn,zn)} of the system (1) is oscillatory.

Proof. Let {(z,yn,2,)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we choose N € N(ng) so
that Lemma 2.2 holds for n > N. First we consider Case (I).

Case (I). Summing the second equation of the system (1) from N to
n —k — 1, we obtain

n—k—1

Yn—k — YN = Z bszf_e, n>N+k+1
s=N
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n—k—1
Un-k > D bzl n=Ni=N+k+1 (14)

s=N

Using the monotoncity of {z,} in (14), we have

n—

1]
s ( >

k—1 @
bs> s n 2 Nl. (15)
s=N

Summing the first equation of the system (1) from N; to n —m — 1 and
using (15), we obtain

n—m—1 s—k—1 @
Tn—m 2 Z aszf:fk,g ( Z bt) 5 n 2 Nl +m + 1. (16)
s=N; t=N

From (16) and the monotoncity of {z,}, we have

n—m-—1 s—k—1 «
Tp—m 2 fo(k+£+m) Z Qs < bt) , n=2No2>2Ni+m+1,

or
n—m-—1 s—k—1 a\ Y
x> zf{m < Z as ( z bt> ) , n = N,. (17)
S:Nl t=N

Multiply (17) by %, using the third equation of the system (1), and then
summing from N, to n — 1, we obtain

n—1 Az n—1 s—m—1 t—k—1 “\ 7
- 5
D DU 5 S 5 S ) B IR SRS
s=Np %5 s=N> t=N1 J=N
For z,.1 <u < z,, we have
Zn A
du Zn
/ W>7ZOTW, n>N2 (19)
n

Zn+1

Combining (18) and (19), we obtain

ZNz du oo n—m—1 s—k—1 a\ 7Y
(£ 5Y)
0 =

n=N> s=Ny t=N

which is a contradiction in view of (11) and (13).
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Case (II). Let s — £ € N(ng) be fixed and summing the third equation
of (1) from s — ¢ to n — 1, we obtain

n—1
Zn — Zs_g + cizl_ =0
n s—4 Jti—m )
j=s—4

B
o0
v B
(Z cjmj_m> < Z,_p-

Jj=n

or

Multiplying both sides of the last inequality by b,, and then using the second
equation of (1) and then summing from s—k € N(ng) to n—1 and rearranging

we obtain .

[e%¢] t B
S (z ) 20| <

t=n s=n
Multiplying the above inequality by a, and using the first equation of (1)
and then summing, we obtain
00 t t s\ “
Dla | Y b [ D¢ 22 <y,
j=s

t=n s=n

or o
n+m t B

t
Z ay Z bs Z ¢j 2P < . (20)
t=n j=s

s=n

Since {z,} is decreasing and from (13) and (20), we have

o
n+m p

t ¢
lim sup E a; E bs E cj < 0
n—oo

t=n s=n j=s

which contradicts (12). O

Example 3.3. Consider the difference system

Az, =2(n+ 1)%y§_3
_2n+3
Yn = o Fne (21)
2n+ 7
Azy=——ntl
: (n+3)(n+4)

3
Ty _4, n2=>3.
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All conditions of Theorem 3.3 are satisfied and hence all solutions of the
system (21) are oscillatory.

Theorem 3.4. Consider the difference system (1) subject to the con-
ditions

afy=1 (22)
and N
n+m t t p
Sac [ Db [ D g > 1. (23)
t=n s=n Jj=s

If there exists a positive decreasing sequence {¢,}+ such that

J 1 (Agy) ™
li n®Pn — = s 24
lﬁriso‘ipn; (C T BT Gy ) 24
where X N
Nn = Gn (Z bs> >0, for all n € N(ny). (25)

Then all solutions {(xn,yn, zn)} of the system (1) are oscillatory.

Proof. Let {(z.,yn, 2,)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we choose N € N(ng) so
that Lemma 2.2 holds for n > N. First we consider Case (I). Define

Onin

Y )
n—m-—1

Wy, = n>Ny>2N+m+1.

T

Then, for n > N, we have

Aoy ¢nznAx'y_ -1
Aw, = —Cpdp + ——Wpi1 — ———a 26
Pnt1 " T T (26)

Using the mean value theorem for the function r(t) = ¢7, we have
y—1 :
yr) o ATy, fr>1
A$Z7m7 > { n—m

o ) (27)
yr) o ATy gy, ifr<1.

From (26), (27) and in view of the behavior of {z,} and {z,} we obtain

A¢n 'Y(bnwn-l-len—m—l

Aw, = —cpo, + W41 —
¢n+1

n+lLn—m
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Summing the second equation of the system (1) from N; to n —k — 1 and
then using the nonincreasing character of {z,} we obtain

n—k—1 1
Yn—k = 2 ( > bs> zi, n>Ny>=Np. (29)

s=N;

Now from the first equation of (1), (29) and (20), we have

n—k—1 « 1
Awn>an< Z bs) Zn, mn=N;
S:Nl
or ) )
Axn—m—l > nn—m—lzgfmfl 2 77n—m—1277+1, n 2 Nl (30)

since {z,} is nonincreasing. Using (30) and (28) and simplifying we obtain

A n nt'inm—m-— 1
Awy < —Cpp + ¢ Wpt1 — wnillwiiﬂ n 2= Na > Ni.
¢n+1 ¢1+7
n+1
Set 1
X = (’y(z)nnn—m—l)ﬁ M7 A= L >1
Gny1 0
vy 2l
Y A¢n _(L) P v
Y=(—— |: v+ nTn—m— Y o
(“H- 1) (¢n+1) ! (nt 2 O
in Lemma 2.3, to conclude that
Aoy, VYO Nn—m—1 142 < 1 (Ad)n)’ﬁ_l

Wpt+1 — w,,
n+ 1_‘_% +1X ('Y+ 1)7 nzim7l¢%

n+1

¢n+1

and therefore

1 (Ag,)"M!

A’LU <_67¢ + 9
! B O ) L

n>N2

Summing both sides of the last inequality from N, to 7 > N;, we obtain

J +1

1 (Agpy,)”
Wit — WN, < — CnPn —
’ T n;\/'g o ('Y + 1)’Y T]Z—m,—l(rb;yl

— —00

as j — oo which is a contradiction to the fact that w; > 0 for j > N5.
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Case (II). Proceeding as in the proof of Theorem 3.3, we obtain (20).
Now using the nonincreasing behavior of {x,,} and condition (22), we obtain
a contradiction to (23). O

In the case of a8y > 1, we are unable to find the conditions under which
all solutions of the system (1) are oscillatory. However, we establish the
following result.

Theorem 3.5. Consider the difference system (1) subject to the con-
ditions

afy > 1, (31)
Z by, <Z cs> =00 (32)

and
(e%S) n—k—1 o 0o B
Zan(z bs> ( 3 ) . )
n=ng s=ng s=n+m-+1

hold. Then every solution {(zn,yn, 2n)} of the system (1) is either oscillatory

or lim xz, = lim y, = lim 2z, =0.
n—oo n—oo n—oo

Proof. Let {(z,yn, 2,)} be a nonoscillatory solution of the system (1).
Then proceeding as in the proof of Theorem 3.1, we see that {(x,, yn,2n)}
satisfies one of the two cases in Lemma 2.2 for n > N. First consider Case
(I). In this case, from the third equation of the system (1) and using the
nondecreasing behavior of {z,}, we have

o0
Zn =X Z Cs, n > N. (34)
sS=n

Further, summing the second equation of the system (1) from N to n —1
and then using the nonincreasing character of {z,} we obtain

n—1
yn>z5_g<§:bs>, n>N
s=N
or

n—k—1
Un—k =20y ( > bs> , n=N=N+k+1 (35)
=N

From (34), (35) and the first equation of system (1), we have

n—k—1 @ %) B
A$n>an< Z bs> ( Z Cs) xgﬁ

s=N s=n+m+1
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or

n—1 Az n—1 s—k—1 « 9] g
Z aﬁi = Z as( bt) ( Z Ct> , n =Ny (36)

s=N Ts+1 s=N1

For z,, <u < x,41 , we have

Tn41

Az,
/ du_ ATn o N, (37)

afBy = aBy !
u anrl

Tn

Combining (36) and (37), we obtain

o0 d oo n—k—1 « ) B
a5 (5

n=N1 s=n+m+1

$N1

which is a contradiction in view of (31) and (33).

Case (II). Now from the first equation of (1), we see that {z,} is
nonincreasing for n > N and therefore lim z, = L; < co. Hence from

n—oo

Lemma 2.3 in [11], we have

lim y, = lim z, = 0.
n—oo n—oo

We shall prove that lim z, = 0. Let L; > 0. Then there is an integer

n—oo

N; > N +m such that z,_,, > dy > 0 for m > N;. Now summing the third
equation (1) from n to oo and then using z,,_,, > d; for m > N7, we obtain

o0
Zn = d?ch, n > Nj.
s=n

Suppose § is a ratio of odd positive integers and {z,} is nonincreasing, we
have from the last inequality

oo 8
2B, =>d’ (Z cs> , n>=Np. (38)

sS=n

Summing the second equation (1) from N; to n — 1 and then using (38), we
obtain

n—1 0o B
yn>yN1 +d’1Yﬁ Z bs (ZQ) , m=Nj.
t=s

s=Ny
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In view of (32), the last inequality implies for that lim y, = oo, which is a

n—oo

contradiction. Therefore lim z, = 0. O

n—oo

We conclude this paper with the following example.

Example 3.4. Consider the difference system

Axn = (1 + (71)n)yi—2
Ay, =nz;_s (39)

1 .
Az, = — 3

_ > 3.
n(n + 1):17”_17 "

All conditions of Theorem 3.5 are satisfied for the system (39) and hence
every solution {(xn,yn,z,)} for the system (39) is either oscillatory or
lim z, = lim y, = lim 2z, = 0.

n—oo n—oo n—oo
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Oscilatorno djelovanje rjesenja trodimenzionalnih
diferentnih sistema sa kaSnjenjem

E. Thandapani i B. Selvaraj

Sadrzaj

U radu se izucava oscilatorno djelovanje rjesenja diferentnog sistema
treéeg reda sa kasnjenjem, koji ima oblik

(o3
Axn = a’nynfk

Ay, = bnzg_e
Az, = —cpx)l_ .,

gdje su {a,} , {bn} i {c,} realne sekvence, k, ¢ i m nenegativni cijeli brojevi
i a,p, 1~ omjeri neparnih pozitivnih cijelih brojeva. Dati su primjeri za
ilustraciju rezultata.



