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On commutativity of rings with multiplicative power
endomorphism conditions on certain subsets

Vishnu Gupta (India)

Abstract. We prove the following theorem: Let n ≥ 1. Let R be
a ring with 1, and let S = N(R) ∪ J(R). If R has property T and
(xy)k = xkyk for all x, y ∈ R − S and k = n, n + 2, n + 4, then R is
commutative.

S. Ligh and A. Richoux [8] proved that if a ring R with 1 satisfies
(xy)k = xkyk for all x, y ∈ R and positive integers k = n, n + 1, n + 2 then R

is commutative. Ashraf and Quadri [1] proved that if R is a ring with 1
satisfying (xy)n = ynxn for all x, y ∈ R − N(R) and fixed integer n > 1 and
the commutators in R are n(n + 1) torsion free, then R is commutative. In
this paper we prove the result stated in the abstract.

Throughout R will denote an associative ring with unity 1, Z(R) the
centre of R, J(R) the Jacobson radical of R, C(R) the commutator ideal
of R, N(R) the set of all nilpotent elements of R, S = N(R) ∪ J(R) and
[x, y] = xy − yx.

Lemma l. ([5], p. 221). If x, y ∈ R and
[
x, [x, y]

]
= 0 then [xm, y] =

mxm−1[x, y] for all positive integers m.

Lemma 2. ([9]). Let R be a ring with 1 and let f : R → R be a
function such that f(x + 1) = f(x) for all x ∈ R. If for some positive integer
n, xnf(x) = 0 for all x ∈ R then necessarily f(x) = 0.

Lemma 3. Let R be a ring with 1 and let f : R → R be a function such
that f(x) = f(x + 1) for all x ∈ R. If f(x)(x + t)mxn = 0 for all x ∈ R and
some fixed positive integers t,m and n, then (t + l)mnf(x) = 0.

Proof. Replace x by (x + 1) in f(x)(x + t)mxn = 0 and expanding(
x + (t + 1)

)m and (x + 1)n by the Binomial Theorem and multiplying by
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(x + t)mxn−1 from right, we get (t + 1)mf(x)(x + t)mxn−1 = 0. By continuing
this process, we get (t+1)mnf(x) (x+t)m = 0. Now replace x by (x+1) in this
equation and expanding the factor

(
(x + t) + 1

)m by the Binomial Theorem
and multiplying by (x+ t)m−1 from right, we get (t+1)mnf(x)(x+ t)m−1 = 0.

Thus (t + 1)mnf(x) = 0.

Definition. Property T : If u2 ∈ Z(R) for all invertible elements u of
R then N(R) ⊆ Z(R).

Theorem. Let n ≥ 1. Let R be a ring with 1, and let S = N(R) ∪ J(R).
If R has property T and

(xy)k = xkyk for all x, y ∈ R− S and k = n, n + 2, n + 4, (∗)

then R is commutative.

Lemma 4. Let R be a ring with 1 and n ≥ 1. Let u be an invertible
element of R and x ∈ R such that (ux)k = ukxk, k = n, n + 2, n + 4. Then
[x2, u2]xn+2 = 0.

Proof. We have un+2xn+2 = (ux)n+2 = (ux)n(ux)2 = unxn(ux)2, so

u2xn+2 = xn(ux)2. (1)

Similarly,
u2xn+4 = xn+2(ux)2. (2)

Left–multiplying (1) by x2 and comparing the result with (2) gives
[x2, u2]xn+2 = 0.

Lemma 5. Let R be a ring with 1. Suppose that m[x2, y] = 0 for all x ∈
R and that (xy)k = xkyk for all x ∈ R and k = n, n + 2. Then m[x, y]yn+1 = 0
for all x ∈ R.

Proof. xn+2yn+2 = (xy)n+2 = (xy)n(xy)2 = xnyn(xy)2. Therefore
mxn+2yn+2 = mxn(xy)2yn or mxn+1[x, y]yn+1 = 0 for all x ∈ R; and by
Lemma 2, m[x, y]yn+1 = 0 for all x ∈ R.

Lemma 6. Let R be a ring with 1 with N ⊆ Z. If (xy)k = xkyk for all
x, y ∈ R and k = n, n + 2, n + 4, then R is commutative.

Proof. By a well known theorem of Herstein, the commutator ideal of
R is nil, hence commutators are central. Now the equality (xy)kx = x(yx)k

gives xkykx = xykxk that is x[xk−1, yk]x = 0. Hence, since commutators are
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central, (k − 1)kxkyk−1[x, y] = 0 for all x, y ∈ R, k = n, n + 2, n + 4. Therefore
by Lemma 2, we have (k − 1)k[x, y] = 0 for all x, y ∈ R, k = n, n + 2, n + 4.

Now
(
(n− 1)n, (n+1)(n+2), (n+3)(n+4)

)
= 2 for n > 1; and (6, 20) = 2.

Thus, we have 2[x, y] = 0 for all x, y ∈ R. It follows that [x2, y] = 2x[x, y] = 0
for all x, y ∈ R. By Lemmas 5 and 2 we conclude that R is commutative.

Proof of Theorem. Let u and v be invertible elements of R. By
Lemma 4, [u2, v2] = 0 and by (1) with x = v, we get [u, v] = 0. Letting a ∈ S

and noting that 1 + a is invertible, we see that [u, a] = 0. This fact, together
with (*), yields

(ux)k = ukxk and (xu)k = xkuk for all x ∈ R, k = n, n + 2, n + 4. (3)

It now follows by Lemma 4 that

[x2, u2] xn+2 = 0 for all x ∈ R and all invertible u. (4)

Replacing x in turn by x + 1 and x + 2 and right multiplying each of the
resulting equations by xx+2 yields

4[x, u2](x + 1)n+2xn+2 = 0 = 4 [x, u2](x + 2)n+2xn+2.

By Lemma 3, we get 2(n+2)24 [x, u2] = 0 and 3(n+2)24 [x, u2] = 0, so that

4 [x, u2] = 0 for all x ∈ R and all invertible u. (5)

If we now replace x by x + 1 in (4) and right multiply the result by 2xn+1,

we get 2 [x2, u2] xn+1 = 0. By continuing the process, we ultimately arrive at
2 [x2, u2] = 0 for all x ∈ R and invertible u. It now follows from Lemma 5
that 2 [x, u2] = 0 for all x ∈ R and invertible u. By replacing x by x + 1 in
(4) and right multiplying by xn+1, we get [x2, u2]xn+1 = 0 and after several
repetitions, we have

[x2, u2] = 0 for all x ∈ R and invertible u. (6)

An appeal to Lemma 5 now yields

[x, u2] = 0 for all x ∈ R and invertible u, (7)

and it follows by Property T that N ⊆ Z. Thus, N is an ideal, necessarily
contained in J(R); and S = J(R). Our hypotheses on R now show that
R/J(R) satisfies the identities (xy)k = xkyk for k = n, n + 2, n + 4. Hence by
Herstein’s theorem R/J(R) is commutative. Thus

[x, y] ∈ J(R) for all x, y ∈ R. (8)
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Since invertible elements of R commute, J(R) is commutative ideal,
hence J(R)2 is central. By (8) we see that R satisfies the identity[
[x, y], [z, w]

]
= 0. Hence by Theorem 1 of [2], C(R) is nil and commuta-

tors are central.
Recalling (7) and using the fact that J(R)2 ⊆ Z, we see that for all

x ∈ R and y ∈ J(R), bx, (1+y)2c = 0 = 2 [x, y]. It follows that [x2, y] = 0 for all
x ∈ R and y ∈ J(R) and hence [x2, 1 + y] = 0 for all x ∈ R and y ∈ J(R). By
(3) and Lemma 5, we get J(R) ⊆ Z. It is now apparent that (xy)k = xkyk

for all x, y ∈ R, k = n, n + 2, n + 4, so R is commutative by Lemma 6.

Corollary 1. Let R be a ring with 1, S = N(R) ∪ J(R) and n be a
positive integer. If (xy)k = ykxk for all x, y ∈ R − S and k = n, n + 2, n + 4,

then R is commutative.

Proof. Clearly, (xy)k+1 = x(yx)ky = xxkyky = xk+1yk+1 for all x, y ∈
R−S and k = n, n+2, n+4. Thus, we need only show that R has property T.

Suppose that u2 ∈ Z for all invertible u in R. By an argument similar
to that by which we obtained (3), we get

(xu)k = ukxk for all invertible u and all x ∈ R, k = n, n + 2, n + 4. (9)

Thus un+2xn+2 = (xu)n+2 = (xu)n(xu)2 = unxn(xu)2, so that u2xn+2 =
xn(xu)2, xn+2u2 = xn(xu)2 = xn(xux)u and xn+2u = xnxux. Therefore
xn+1[x, u] = 0 for all x ∈ R and all invertible u. It follows from Lemma 2
that invertible elements are central and hence N ⊆ Z. So R has property T.

Corollary 2. Let n be a positive integer and let R be a ring with 1
satisfying (xy)k = xkyk for all x, y ∈ R − S, k = n, n + 2, n + 4. Suppose that
one of the following holds:
(i) n is even.
(ii) 2 [x, a] = 0 implies [x, a] = 0 for all x ∈ R and a ∈ N.

Then R is commutative.

Proof. Again we need to show that R has property T, so begin with
the assumption that u2 ∈ Z for all invertible u. If (i) holds, (3) implies (9)
and we can argue as in the proof of Corollary 1.

Assume now that (ii) holds. If a ∈ N and a2t ∈ Z, then [x, (1+a2t−1
)2] =

0 = 2 [x, a2t−1
]. Hence [x, a2t−1

] = 0 and a2t−1 ∈ Z. By backward induction
a ∈ Z. Hence R has property T.
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O komutativnosti prstenova s uslovima multiplikativnog
endomorfizma u nekim podskupovima

Vishnu Gupta

Sadržaj

U radu se dokazuje slijedeći teorem: Neka je n ≥ 1. Neka je R prsten
sa 1−com, i neka je S = N(R) ∪ J(R). Ako R ima svojstvo T i (xy)k = xkyk

za sve x, y ∈ R− S i k = n, n + 2, n + 4, tada je R komutativan.


