On commutativity of rings with multiplicative power endomorphism conditions on certain subsets

Vishnu Gupta (India)

Abstract

We prove the following theorem: Let $n \geq 1$. Let R be a ring with 1 , and let $S=N(R) \cup J(R)$. If R has property T and $(x y)^{k}=x^{k} y^{k}$ for all $x, y \in R-S$ and $k=n, n+2, n+4$, then R is commutative.

S. Ligh and A. Richoux [8] proved that if a ring R with 1 satisfies $(x y)^{k}=x^{k} y^{k}$ for all $x, y \in R$ and positive integers $k=n, n+1, n+2$ then R is commutative. Ashraf and Quadri [1] proved that if R is a ring with 1 satisfying $(x y)^{n}=y^{n} x^{n}$ for all $x, y \in R-N(R)$ and fixed integer $n>1$ and the commutators in R are $n(n+1)$ torsion free, then R is commutative. In this paper we prove the result stated in the abstract.

Throughout R will denote an associative ring with unity $1, Z(R)$ the centre of $R, J(R)$ the Jacobson radical of $R, C(R)$ the commutator ideal of $R, N(R)$ the set of all nilpotent elements of $R, S=N(R) \cup J(R)$ and $[x, y]=x y-y x$.

Lemma 1. ([5], p. 221). If $x, y \in R$ and $[x,[x, y]]=0$ then $\left[x^{m}, y\right]=$ $m x^{m-1}[x, y]$ for all positive integers m.

Lemma 2. ([9]). Let R be a ring with 1 and let $f: R \rightarrow R$ be a function such that $f(x+1)=f(x)$ for all $x \in R$. If for some positive integer $n, x^{n} f(x)=0$ for all $x \in R$ then necessarily $f(x)=0$.

Lemma 3. Let R be a ring with 1 and let $f: R \rightarrow R$ be a function such that $f(x)=f(x+1)$ for all $x \in R$. If $f(x)(x+t)^{m} x^{n}=0$ for all $x \in R$ and some fixed positive integers t, m and n, then $(t+l)^{m n} f(x)=0$.

Proof. Replace x by $(x+1)$ in $f(x)(x+t)^{m} x^{n}=0$ and expanding $(x+(t+1))^{m}$ and $(x+1)^{n}$ by the Binomial Theorem and multiplying by
$(x+t)^{m} x^{n-1}$ from right, we get $(t+1)^{m} f(x)(x+t)^{m} x^{n-1}=0$. By continuing this process, we get $(t+1)^{m n} f(x)(x+t)^{m}=0$. Now replace x by $(x+1)$ in this equation and expanding the factor $((x+t)+1)^{m}$ by the Binomial Theorem and multiplying by $(x+t)^{m-1}$ from right, we get $(t+1)^{m n} f(x)(x+t)^{m-1}=0$. Thus $(t+1)^{m n} f(x)=0$.

Definition. Property T : If $u^{2} \in Z(R)$ for all invertible elements u of R then $N(R) \subseteq Z(R)$.

Theorem. Let $n \geq 1$. Let R be a ring with 1 , and let $S=N(R) \cup J(R)$. If R has property T and

$$
\begin{equation*}
(x y)^{k}=x^{k} y^{k} \text { for all } x, y \in R-S \text { and } k=n, n+2, n+4 \tag{*}
\end{equation*}
$$

then R is commutative.
Lemma 4. Let R be a ring with 1 and $n \geq 1$. Let u be an invertible element of R and $x \in R$ such that $(u x)^{k}=u^{k} x^{k}, k=n, n+2, n+4$. Then $\left[x^{2}, u^{2}\right] x^{n+2}=0$.

Proof. We have $u^{n+2} x^{n+2}=(u x)^{n+2}=(u x)^{n}(u x)^{2}=u^{n} x^{n}(u x)^{2}$, so

$$
\begin{equation*}
u^{2} x^{n+2}=x^{n}(u x)^{2} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
u^{2} x^{n+4}=x^{n+2}(u x)^{2} . \tag{2}
\end{equation*}
$$

Left-multiplying (1) by x^{2} and comparing the result with (2) gives $\left[x^{2}, u^{2}\right] x^{n+2}=0$.

Lemma 5. Let R be a ring with 1. Suppose that $m\left[x^{2}, y\right]=0$ for all $x \in$ R and that $(x y)^{k}=x^{k} y^{k}$ for all $x \in R$ and $k=n, n+2$. Then $m[x, y] y^{n+1}=0$ for all $x \in R$.

Proof. $x^{n+2} y^{n+2}=(x y)^{n+2}=(x y)^{n}(x y)^{2}=x^{n} y^{n}(x y)^{2}$. Therefore $m x^{n+2} y^{n+2}=m x^{n}(x y)^{2} y^{n}$ or $m x^{n+1}[x, y] y^{n+1}=0$ for all $x \in R$; and by Lemma 2, $m[x, y] y^{n+1}=0$ for all $x \in R$.

Lemma 6. Let R be a ring with 1 with $N \subseteq Z$. If $(x y)^{k}=x^{k} y^{k}$ for all $x, y \in R$ and $k=n, n+2, n+4$, then R is commutative.

Proof. By a well known theorem of Herstein, the commutator ideal of R is nil, hence commutators are central. Now the equality $(x y)^{k} x=x(y x)^{k}$ gives $x^{k} y^{k} x=x y^{k} x^{k}$ that is $x\left[x^{k-1}, y^{k}\right] x=0$. Hence, since commutators are
central, $(k-1) k x^{k} y^{k-1}[x, y]=0$ for all $x, y \in R, k=n, n+2, n+4$. Therefore by Lemma 2 , we have $(k-1) k[x, y]=0$ for all $x, y \in R, k=n, n+2, n+4$.

Now $((n-1) n,(n+1)(n+2),(n+3)(n+4))=2$ for $n>1$; and $(6,20)=2$. Thus, we have $2[x, y]=0$ for all $x, y \in R$. It follows that $\left[x^{2}, y\right]=2 x[x, y]=0$ for all $x, y \in R$. By Lemmas 5 and 2 we conclude that R is commutative.

Proof of Theorem. Let u and v be invertible elements of R. By Lemma $4,\left[u^{2}, v^{2}\right]=0$ and by (1) with $x=v$, we get $[u, v]=0$. Letting $a \in S$ and noting that $1+a$ is invertible, we see that $[u, a]=0$. This fact, together with $\left({ }^{*}\right)$, yields

$$
\begin{equation*}
(u x)^{k}=u^{k} x^{k} \text { and }(x u)^{k}=x^{k} u^{k} \text { for all } x \in R, k=n, n+2, n+4 \tag{3}
\end{equation*}
$$

It now follows by Lemma 4 that

$$
\begin{equation*}
\left[x^{2}, u^{2}\right] x^{n+2}=0 \text { for all } x \in R \text { and all invertible } u . \tag{4}
\end{equation*}
$$

Replacing x in turn by $x+1$ and $x+2$ and right multiplying each of the resulting equations by x^{x+2} yields

$$
4\left[x, u^{2}\right](x+1)^{n+2} x^{n+2}=0=4\left[x, u^{2}\right](x+2)^{n+2} x^{n+2} .
$$

By Lemma 3, we get $2^{(n+2)^{2}} 4\left[x, u^{2}\right]=0$ and $3^{(n+2)^{2}} 4\left[x, u^{2}\right]=0$, so that

$$
\begin{equation*}
4\left[x, u^{2}\right]=0 \text { for all } x \in R \text { and all invertible } u . \tag{5}
\end{equation*}
$$

If we now replace x by $x+1$ in (4) and right multiply the result by $2 x^{n+1}$, we get $2\left[x^{2}, u^{2}\right] x^{n+1}=0$. By continuing the process, we ultimately arrive at $2\left[x^{2}, u^{2}\right]=0$ for all $x \in R$ and invertible u. It now follows from Lemma 5 that $2\left[x, u^{2}\right]=0$ for all $x \in R$ and invertible u. By replacing x by $x+1$ in (4) and right multiplying by x^{n+1}, we get $\left[x^{2}, u^{2}\right] x^{n+1}=0$ and after several repetitions, we have

$$
\begin{equation*}
\left[x^{2}, u^{2}\right]=0 \text { for all } x \in R \text { and invertible } u . \tag{6}
\end{equation*}
$$

An appeal to Lemma 5 now yields

$$
\begin{equation*}
\left[x, u^{2}\right]=0 \text { for all } x \in R \text { and invertible } u \tag{7}
\end{equation*}
$$

and it follows by Property T that $N \subseteq Z$. Thus, N is an ideal, necessarily contained in $J(R)$; and $S=J(R)$. Our hypotheses on R now show that $R / J(R)$ satisfies the identities $(x y)^{k}=x^{k} y^{k}$ for $k=n, n+2, n+4$. Hence by Herstein's theorem $R / J(R)$ is commutative. Thus

$$
\begin{equation*}
[x, y] \in J(R) \text { for all } x, y \in R . \tag{8}
\end{equation*}
$$

Since invertible elements of R commute, $J(R)$ is commutative ideal, hence $J(R)^{2}$ is central. By (8) we see that R satisfies the identity $[[x, y],[z, w]]=0$. Hence by Theorem 1 of $[2], C(R)$ is nil and commutators are central.

Recalling (7) and using the fact that $J(R)^{2} \subseteq Z$, we see that for all $x \in R$ and $y \in J(R),\left\lfloor x,(1+y)^{2}\right\rfloor=0=2[x, y]$. It follows that $\left[x^{2}, y\right]=0$ for all $x \in R$ and $y \in J(R)$ and hence $\left[x^{2}, 1+y\right]=0$ for all $x \in R$ and $y \in J(R)$. By (3) and Lemma 5 , we get $J(R) \subseteq Z$. It is now apparent that $(x y)^{k}=x^{k} y^{k}$ for all $x, y \in R, k=n, n+2, n+4$, so R is commutative by Lemma 6 .

Corollary 1. Let R be a ring with $1, S=N(R) \cup J(R)$ and n be a positive integer. If $(x y)^{k}=y^{k} x^{k}$ for all $x, y \in R-S$ and $k=n, n+2, n+4$, then R is commutative.

Proof. Clearly, $(x y)^{k+1}=x(y x)^{k} y=x x^{k} y^{k} y=x^{k+1} y^{k+1}$ for all $x, y \in$ $R-S$ and $k=n, n+2, n+4$. Thus, we need only show that R has property T.

Suppose that $u^{2} \in Z$ for all invertible u in R. By an argument similar to that by which we obtained (3), we get

$$
\begin{equation*}
(x u)^{k}=u^{k} x^{k} \text { for all invertible } u \text { and all } x \in R, k=n, n+2, n+4 \text {. } \tag{9}
\end{equation*}
$$

Thus $u^{n+2} x^{n+2}=(x u)^{n+2}=(x u)^{n}(x u)^{2}=u^{n} x^{n}(x u)^{2}$, so that $u^{2} x^{n+2}=$ $x^{n}(x u)^{2}, x^{n+2} u^{2}=x^{n}(x u)^{2}=x^{n}(x u x) u$ and $x^{n+2} u=x^{n} x u x$. Therefore $x^{n+1}[x, u]=0$ for all $x \in R$ and all invertible u. It follows from Lemma 2 that invertible elements are central and hence $N \subseteq Z$. So R has property T.

Corollary 2. Let n be a positive integer and let R be a ring with 1 satisfying $(x y)^{k}=x^{k} y^{k}$ for all $x, y \in R-S, k=n, n+2, n+4$. Suppose that one of the following holds:
(i) n is even.
(ii) $2[x, a]=0$ implies $[x, a]=0$ for all $x \in R$ and $a \in N$.

Then R is commutative.
Proof. Again we need to show that R has property T, so begin with the assumption that $u^{2} \in Z$ for all invertible u. If (i) holds, (3) implies (9) and we can argue as in the proof of Corollary 1.

Assume now that (ii) holds. If $a \in N$ and $a^{2^{t}} \in Z$, then $\left[x,\left(1+a^{2^{t-1}}\right)^{2}\right]=$ $0=2\left[x, a^{2^{t-1}}\right]$. Hence $\left[x, a^{2^{t-1}}\right]=0$ and $a^{2^{t-1}} \in Z$. By backward induction $a \in Z$. Hence R has property T.

Acknowledgment. The author expresses his sincere thanks to the referee for his helpful suggestions.

REFERENCES

[1] M. Ashraf and M.A. Quadri, On commutativity of rings with some polynomial constraints, Bull. Aust. Math. Soc., 41 (1990), 201-206.
[2] H.E. Bell, On some commutativity theorems of Herstein, Arch. Math., 24 (1973), 34-38.
[3] H.E. Bell and A. Yaqub, Commutativity of rings with certain polynomial constraints, Math. Japonica, 32 (1987), 511-519.
[4] I.N. Herstein, A commutativity theorem, J. Algebra, 38 (1976), 112- 118.
[5] N. Jacobson, Structure of rings, A.M.S. Colloq. Publ., 37 (1964).
[6] H. Komatsu and H. Tominaga, On commutativity of s-unital rings, Math. J. Okayama Univ., 28 (1986), 93-96.
[7] H. Komatsu and H. Tominaga, Commutativity theorem for rings with polynomial constraints on certain subsets, Bull. Aust. Math. Soc., 43 (1991), 451-462.
[8] S. Ligh and A. Richoux, A commutativity theorem for rings, Bull. Aust. Math. Soc., 16 (1977), 75-77.
[9] W.K. Nicholson and A. Yaqub, A commutativity theorem for rings and groups, Canad. Math. Bull., 22 (1979), 419-423.
(Received: December 11, 2003)
(Revised: June 7, 2004)

Department of Mathematics
University of Delhi
Delhi- 110007
India
E-mail: vishnu_ gupta2k3@yahoo.co.in

O komutativnosti prstenova s uslovima multiplikativnog endomorfizma u nekim podskupovima

Vishnu Gupta

Sadržaj

U radu se dokazuje slijedeći teorem: Neka je $n \geq 1$. Neka je R prsten sa $1-\mathrm{com}$, i neka je $S=N(R) \cup J(R)$. Ako R ima svojstvo T i $(x y)^{k}=x^{k} y^{k}$ za sve $x, y \in R-S$ i $k=n, n+2, n+4$, tada je R komutativan.

