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Maximal divisible subgroups in modular group algebras
of p-mixed and p-splitting Abelian groups

Peter V. Danchev (Bulgaria)

Abstract. Suppose FG is the group algebra of an Abelian group G
over the field F with charF = p 6= 0. The main purpose and result
of this paper is the calculation of the maximal divisible subgroup of
the normed unit group V (FG) in FG in the case when the torsion
part tG of G is p-primary. As a corollary, it is shown that V (FG)
is reduced if and only if G is reduced, provided tG is p-torsion.
Moreover, the structure of the maximal divisible subgroup of V (FG)
is discussed when G is p-splitting. This extends a result of N. Nachev
[Na].

1. Introduction

We first introduce some notation. Let R be a commutative ring with
identity of prime characteristic p with a unit group U(R), with a nil-radical
(a Baer radical) N(R) and with a maximal (p-)divisible (perfect) subring
Rd. Let F be a field of characteristic p with a maximal perfect subfield
Fd (it is easy to see that Fd = F pω). For G an Abelian group, tG =

∐
p

Gp

(Gp are called the p-primary components in G) will denote its maximal
torsion subgroup, and dG, respectively G∗, will denote its maximal divisible
subgroup, respectively its maximal p-divisible subgroup. Further, for the
notations and terminology to the Abelian group theory, we shall follow
the monographs of L.Fuchs [F]. For instance, r0(G) and rq(G) designate
the torsion-free rank and the q-rank(q is a prime) of G, respectively. RG

denotes the R -group algebra of G with a group of all normalized units
denoted by V (RG). We let S(RG) = Vp(RG) denote the Sylow p-subgroup
of V (RG), i.e. its p-component. As usual, we shall let I(RG; H) denote
the relative augmentation ideal of RG about the subgroup H of G.
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In the present study a convenient explicit formula for dV (FG) is given
assuming tG as a p-group. Moreover, as a consequence, the isomorphism
class of dV (FG) in this case is provided. In particular, a criterion is ob-
tained V (FG) to be reduced when tG contains only p-torsion. Besides,
dV (FG) is partially described provided G is p-splitting, i.e. when Gp is a
direct factor of G. Finally, d(S(RG)/Gp) and d(V (FG)/G) are completely
computed, where tG = Gp in the second case.

Now, for the sake of completeness and for the convenience of the reader,
we summarize below some needed and well-known results, namely:

Proposition. ([M]) Let G be an Abelian group such that tG = Gp.
Then V (FG) = G(1 + I(FG; Gp)).

Remark. Owing to [DA] or [DAN] we have proved that S(RG) =
1 + I(RG; Gp) when N(R) = 0. Thus the above formula of May can be
replaced by V (FG) = GS(FG).

Theorem. ([N] and [NA]).

dS(RG)=S(RdG
∗)∼=

•∑

λ

Z (p∞),

where

λ=





max(|Rd|, |G∗|), if (G∗)p=(Gp)∗ 6=1;

max(|N(Rd)|, |G∗|), if (G∗)p = 1,

G∗ 6= 1 and N(Rd) 6= 0;

0, in the remaining cases.

2. Main results

Here we can formulate the main statements which are the following:

I. The characterization of d [S(RG)/Gp] and d [V (FG)/G].

Proposition 1.

d [S(RG)/Gp] = S(RdG
∗)Gp/Gp

∼= S(RdG
∗)/(G∗)p. (∗)

d [V (FG)/G] = V (FdG
∗)G/G ∼= V (FdG

∗)/G∗

∼= S(FdG
∗)Gp/Gp

∼= S(FdG
∗)/(G∗)p, (**)

when tG = Gp.
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Corollary 2. S(RG) is reduced if and only if N(Rd) = 0 and Gp is
reduced; or N(Rd) 6= 0 and G is p-reduced. Also S(RG)/Gp is reduced if
and only if N(Rd) = 0, G is not p-reduced and Gp is reduced; or G∗ 6= 1
is a p-group of two elements and Rd is a field of two elements; or G is
p-reduced. Moreover assuming tG = Gp, V (FG)/G is reduced if and only if
G is not p-reduced and Gp is reduced; or G∗ and Fd have cardinalities 2;
or G is p-reduced.

II. The construction of dV (FG) for tG = Gp.

Theorem 3. Let τ be any ordinal and G be an Abelian group whose
tG is p-torsion. Then the following explicit formula is valid

V τ (FG) = GτS(F pω

Gpωτ

).

The following statement appeared in [DANCHEV].

Corollary 4. Suppose G is an Abelian group for which tG is p–primary.
Then dV (FG)=dGdS(FG)=dGS(FdG

∗). Thus dV (FG)/dS(FG) ∼= dG/d(Gp).

Corollary 5. Suppose G is Abelian so that tG is a p-group. Then
the following isomorphisms hold:

dV (FG) ∼= dG× [S(FdG
∗)/(G∗)p] ∼= dG× [S(FdG

∗)Gp/Gp],

where (G∗)p = (dG)p = d(Gp).

Corollary 6. Suppose G is Abelian such that tG is p-primary. Then
V (FG) is reduced if and only if G is reduced.

3. Proofs of the main results

We will first prove some preliminary claims.

Lemma 7. For each ordinal τ the following are true Upτ

(R) = U(Rpτ

),
V pτ

(RG) = V (Rpτ

Gpτ

) and Spτ

(RG) = S(Rpτ

Gpτ

).

Proof. The third ratio follows from the second, since (Gp)pτ

= (Gpτ

)p

(see also [DA]). In the sequel our arguments are based on a standard transfi-
nite induction on τ . For this purpose, let τ = 1. Choose x ∈ Up(R). Hence
x = rp, where r ∈ U(R). Since r.r′ = 1 for some fixed r′ ∈ R, rp.r′p = 1
and so x ∈ U(Rp). Conversely, take x ∈ U(Rp). Therefore x = αp where
α ∈ R and moreover there is an α′ ∈ Rp so that x.α′ = αp.α′ = 1. Hence
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α.αp−1.α′ = 1 and finally α ∈ U(R). Thus x ∈ Up(R) and the case τ = 1 is
complete.

Let now τ−1 exists, i.e. τ is isolated. Furthermore Upτ

(R) = [Upτ−1
(R)]p

= Up(Rpτ−1
) = U((Rpτ−1

)p) = U(Rpτ

).
Now assume that τ−1 does not exist, i.e. τ is a limit ordinal. It is

clear that U(L) ∩ U(P ) = U(L ∩ P ) where 1 ∈ L, P ≤ R, and so we derive
Upτ

(R) =
⋂

σ<τ
Upσ

(R) =
⋂

σ<τ
U(Rpσ

) = U(
⋂

σ<τ
Rpσ

) = U(Rpτ

), which gives the

first equality.
Next we observe that charRG = p and hence by the above we have

[U(RG)]p
τ

= U((RG)pτ

) = U(Rpτ

Gpτ

). Clearly, V (Rpτ

Gpτ

) = V (RG) ∩
U(Rpτ

Gpτ

) = V (RG) ∩ Upτ

(RG) = V pτ

(RG), because V (RG) is an isotype
subgroup in U(RG) as its direct factor. ¤

Lemma 8. ([DA], [DAN]). S(RG) = 1 if and only if N(R) = 0 and
Gp = 1; or N(R) 6= 0 and G = 1.

The following lemma will be our principal tool.

Lemma 9. For every ordinal τ and all primes q 6= p, the following
identities are fulfilled:

[GS(RG)]q
τ

= Gqτ

S(RG); [GS(RG)]p
τ

= Gpτ

S(Rpτ

Gpτ

). (◦)
⋂

q 6=p

[Gqτ

S(RG)] = (
⋂

q 6=p

Gqτ

)S(RG). (◦◦)

Proof. (◦) We will use transfinite induction on τ . First, let τ = 1.
Therefore [GS(RG)]q = GqSq(RG) = GqS(RG) since S(RG) is q-divisible,
and moreover [GS(RG)]p = GpSp(RG) = GpS(RpGp) using Lemma 7.

Now, let τ be a non-limit ordinal, i.e. τ−1 exists. Therefore

[GS(RG)]q
τ

=([GS(RG)]q
τ−1

)q=[Gqτ−1
Sqτ−1

(RG)]q=[Gqτ−1
S(RG)]q

= (Gqτ−1
)qSq(RG)=Gqτ

S(RG),

and besides
[GS(RG)]p

τ

= ([GS(RG)]p
τ−1

)p=[Gpτ−1
S(Rpτ−1

Gpτ−1
)]p

=(Gpτ−1
)pSp(Rpτ−1

Gpτ−1
) = Gpτ

S(Rpτ

Gpτ

).

On the other hand, if τ is a limit ordinal, i.e. τ−1 does not ex-
ist, then [GS(RG)]q

τ

=
⋂

σ<τ
[GS(RG)]q

σ

=
⋂

σ<τ
[Gqσ

Sqσ

(RG)]=
⋂

σ<τ
[Gqσ

S(RG)] =

[
⋂

σ<τ
Gqσ

]S(RG) =Gqτ

S(RG).
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Actually, the latter claim is valid by the following arguments: If x ∈⋂
σ<τ

[Gqσ

S(RG)], then x = g′(r1g1+· · ·+rtgt) = g′′(α1a1+· · ·+αtat) = . . . , where

g′ ∈ Gqα

, g′′ ∈ Gqβ

(σ≤α<β≤τ); gi, ai ∈ G; ri, αi ∈ R (1≤i≤t). Since the
above elements are in canonical form, then g′gi = g′′ai. But r1g1+· · ·+rtgt ∈
S(RG), hence there exists an element gi ∈ Gp, say g1 ∈ Gp. Besides g′g′′−1

is a p-element and obviously a1 ∈ Gp. Finally g′g1 = g′′a1 ∈ Gqβ and, since
we have finite support whereas the intersection is infinite because τ ≥ ω,
x = g′g1(r1 + · · ·+ rtgtg

−1
1 ) ∈ (

⋂
σ<τ

Gqσ

)S(RG), as claimed.

The second relation, [GS(RG)]p
τ

=
⋂

σ<τ
[GS(RG)]p

σ

=
⋂

σ<τ
(Gpσ

S(Rpσ

Gpσ

)),

follows from the induction hypothesis and Lemma 7.
Next we shall prove

⋂
σ<τ

[Gpσ

S(Rpσ

Gpσ

)] = (
⋂

σ<τ
Gpσ

)(
⋂

σ<τ
S(Rpσ

Gpσ

)) =

Gpτ

S(Rpτ

Gpτ

). Suppose x ∈ ⋂
σ<τ

[Gpσ

S(Rpσ

Gpσ

)]. Hence x = c′(x1c1 + · · · +
xtct) = c′′(f1b1 + · · ·+ ftbt) = . . ., where c′ ∈ Gpα

, c′′ ∈ Gpβ

(σ≤α<β≤τ); ci ∈
Gpα

, bi ∈ Gpβ

; xi ∈ Rpα

, fi ∈ Rpβ

(1≤i≤t). Because x is written in two
canonical forms, we conclude that xi = fi and c′ci = c′′bi. Therefore we
can let c1 ∈ Gp. Finally x = c′c1(x1 + · · ·+ xtctc

−1
1 ) ∈ Gpβ

S(Rpβ

Gpβ

) and so
x ∈ (

⋂
σ<τ

Gpσ

)(
⋂

σ<τ
S(Rpσ

Gpσ

)), because as above c′c1 ∈
⋂

σ<τ
Gpσ

= Gpτ and

x1 + · · ·+ xtctc
−1
1 ∈ ⋂

σ<τ
S(Rpσ

Gpσ

) = S(Rpτ

Gpτ

).

(◦◦) Certainly, the left hand-side contains the right one. Conversely,
suppose x ∈ ⋂

q 6=p

[Gqτ

S(RG)]. Therefore x can be written in the form

x = g(r1g1 + · · · + rtgt) = g(α1a1 + · · · + αtat) = . . ., where g ∈ Gqτ

, g ∈
Gqτ

1 ; ri, αi ∈ R; gi, ai ∈ G. Using the canonical form we can write ggi = gai.
As above, putting g1 ∈ Gp we establish that gg1 = ga1 ∈ Gqτ

1 ∩ Gqτ since
a1 ∈ Gp. Finally, we obtain x = gg1(r1 + · · · + rtgtg

−1
1 ) ∈ (

⋂
q 6=p

Gqτ

)S(RG),

which completes the proof. ¤

Lemma 10. (G∗)p = (dG)p = d(Gp) .

Proof. Clearly, G∗ = Gpδ for some ordinal δ. Consequently (G∗)p =
(Gpδ

)p = (Gp)pδ

= d(Gp). On the other hand dG ⊆ G∗ and so (dG)p ⊆ (G∗)p.
Besides d(Gp) ⊆ dG and d(Gp) is a p-group, i.e. d(Gp) ⊆ Gp. Finally
d(Gp) ⊆ (dG)p . ¤

By analogy with [F] we shall say that N is a p-nice subgroup of G if
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(G/N)pτ

= Gpτ

N/N for each ordinal τ . It is not difficult to prove that N is
p-nice in G if and only if

⋂
σ<τ

(Gpσ

N) = (
⋂

σ<τ
Gpσ

)N , for every limit ordinal

number τ .

Lemma 11. The group G is p-balanced (p-nice and p-isotype) in
V (RG), and Gp is balanced in S(RG).

Proof. The application of Lemma 7 guarantees that G ∩ V pτ

(RG) =
G ∩ V (Rpτ

Gpτ

) = G ∩ Gpτ

= Gpτ and Gp ∩ Spτ

(RG) = Gp ∩ S(Rpτ

Gpτ

) =
Gp ∩Gpτ

= Gp
pτ

which insures the first assertion.
For the second assertion, as we have previously seen, it is sufficient to

show only that
⋂

σ<τ
(GpS

pσ

(RG)) = [
⋂

σ<τ
Spσ

(RG)]Gp and
⋂

σ<τ
(GV pσ

(RG)) =

[
⋂

σ<τ
V pσ

(RG)]G, for any limit ordinal τ . But from Lemma 7 it follows at

once that Spσ

(RG) = S(Rpσ

Gpσ

) and V pσ

(RG) = V (Rpσ

Gpσ

), hence our con-
ditions can be equivalently modified to

⋂
σ<τ

[GpS(Rpσ

Gpσ

)] = [
⋂

σ<τ
S(Rpσ

Gpσ

)]

Gp = S(Rpτ

Gpτ

)Gp and
⋂

σ<τ
[GV (Rpσ

Gpσ

)]=[
⋂

σ<τ
V (Rpσ

Gpσ

)]G=V (Rpτ

Gpτ

)G.

We will argue only the first equality. The proof of the second equality is
similar.

Suppose that x ∈ ⋂
σ<τ

[GpS(Rpσ

Gpσ

)], hence x = gp(x1c1 + · · · + xtct) =

g′p(f1b1 + · · ·+ftbt) = . . ., where gp, g
′
p ∈ Gp; xi ∈ Rpα

, ci ∈ Gpα

; fi ∈ Rpβ

, bi ∈
Gpβ

(σ≤α<β≤τ ; 1≤i≤t). The canonical form of x yields gpci = g′pbi and
xi = fi, where we may presume that c1 ∈ Gp. Therefore x = gpc1(x1 +
· · · + xtctc

−1
1 ) ∈ GpS(Rpβ

Gpβ

). Finally, since the support is finite while the
relationships are not, we have x ∈ GpS(Rpτ

Gpτ

). ¤

Remark. The “nice” property of certain subgroups of S(RG) and
V (RG) was also considered by May [M], but when R is a field. The pre-
ceding lemma generalizes the May’s attainment for niceness in [M] over an
arbitrary ring.

Lemma 12. If N is a p-balanced subgroup of G, then

(G/N)pτ ∼= Gpτ

/Npτ

, for each ordinal τ ;

(G/N)∗ = (G∗N)/N ∼= G∗/N∗.
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Proof. We shall verify only the first isomorphism, since the second is
its immediate consequence. By the supposition and using the well-known
first theorem of Noether for the isomorphism we have (G/N)pτ

= Gpτ

N/N ∼=
Gpτ

/(N ∩Gpτ

) = Gpτ

/Npτ

. ¤

Proof of Proposition 1. The proof follows directly from Lemma 11
and Lemma 12 by invoking to the above listed May’s proposition which
assures that V (FG)/G ∼= S(FG)/Gp. ¤

Proof of Corollary 2. Evidently S(RG) is reduced if and only if, by
Lemma 7, dS(RG) = S(RdG

∗) = 1, i.e. we can employ Lemma 8 to infer
that the first part holds. For the second assertion, it is clear that S(RG)/Gp

is reduced if and only if d[S(RG)/Gp] = 1, i.e. applying Proposition 1,
S(RdG

∗) = (G∗)p. This is equivalent to G∗ 6= (G∗)p = 1 and N(Rd) = 0, or
G∗ = (G∗)p 6= 1, |G∗| = 2 and |Rd| = 2, or G∗ = 1. ¤

Proof of Theorem 3. Following [F], V τ (FG) =
⋂
q

V qωτ

(FG) =
⋂

q 6=p

V qωτ

(FG) ∩ V pωτ

(FG), then using the May’s proposition cited above,

we have V τ (FG) =
⋂

q 6=p

[GS(FG)]q
ωτ ∩ V pωτ

(FG). On the other hand Lemma

9 yields that V τ (FG) =
⋂

q 6=p

[Gqωτ

S(FG)] ∩ V pωτ

(FG) = ([
⋂

q 6=p

Gqωτ

]S(FG)) ∩
V pωτ

(FG). Now, exploiting Lemma 7, we get V τ (FG) = ([
⋂

q 6=p

Gqωτ

]S(FG))∩
V (F pωτ

Gpωτ

). If we show that the last intersection is equal to (
⋂
q

Gqωτ

)

S(F pω

Gpωτ

) then the proof will be complete.
In fact, first of all, F pωτ

= F pω . Secondly, take x to lie in the left hand-
side of the wanted equality F pωτ

. Hence x = a(f1g1 + · · · + ftgt) = α1b1 +
· · · + αtbt, where a ∈ ⋂

q 6=p

Gqωτ

, gi ∈ G, bi ∈ Gpωτ

; fi ∈ F, αi ∈ F pω

(1≤i≤t).

Therefore fi = αi and agi = bi for each i. Set x = ag1(f1 + · · · + ftgtg
−1
1 ).

We may assume that g1 ∈ Gp. So ag1 ∈
⋂

q 6=p

Gqωτ and obviously ag1 ∈
⋂
q

Gqωτ .

Therefore, f1 + · · · + ftgtg
−1
1 = g−1

1 (f1g1 + · · · + ftgt) ∈ S(FG) ∩ F pω

Gpωτ

=
S(F pω

Gpωτ

). Finally, x ∈ (
⋂
q

Gqωτ

)S(F pω

Gpωτ

). ¤

Proof of Corollary 4. Using Lemma 7, it is a routine matter to check
that dS(FG) = S(FdG

∗), where Fd = F pω . Let τ be the smallest i.e. the
first ordinal with the property that V τ (FG) = V τ+1(FG), Gτ = Gτ+1 and
Gpτ

= Gpτ+1 . Hence dV (FG) = V τ (FG), dG = Gτ and G∗ = Gpτ

= Gpωτ .
Thus Theorem 3 is applicable and the proof is complete. ¤
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Proof of Corollary 5. Since dG is divisible, then it is a direct factor
of dV (FG) utilizing [F], i.e. dV (FG) ∼= dG× dV (FG)/dG. But Corollary 4
implies that dV (FG)/dG = dGS(FdG

∗)/dG ∼= S(FdG
∗)/(dG)p. Furthermore

we can apply Lemma 10 and Lemma 12 to obtain the result. ¤

Proof of Corollary 6. If V (FG) is reduced, then clearly G , being
its subgroup, is also reduced. Conversely, let us assume that G is reduced.
Hence dG = 1 and so (dG)p = d(Gp) = (G∗)p = 1 by making use of Lemma
10. Therefore, by a direct application of Corollary 5, or by virtue of Corol-
laries 2 and 4, we deduce that dV (FG) = 1, i.e. V (FG) is reduced. ¤

Remark. Using the preceding theorem of Nachev for the description
of dS(RG) and going from Theorem 3 to Corollary 5 along with some
standard group-theoretic facts, given in [F], we can verify that dV (FG) is
completely characterized, provided tG = Gp.

In order to extract the explicit isomorphism relationship, we observe
that since dS(FG) is divisible,

dV (FG) ∼= dS(FG)× dV (FG)/dS(FG) ∼= dS(FG)× dG/d(Gp),

where the second isomorphism holds by Corollary 4.
Thus, for a p-mixed group G,

dV (FG) ∼=
∐

λ

Z (p∞)×
∐

r0d(G)

|Q,

where λ = max(|F pω |, |G∗|) if (G∗)p 6= 1 or λ = 0 otherwise, and |Q is regarded
as an additive group.

III. The description of dV (FG) for G = Gp ×G/Gp

Let G be p-splitting and F an algebraically closed field. Then, from
the results in [D] and [DANC], it follows that

dV (FG) ∼=
( ∐

µ

d(G/Gt)
)
×

( ∐
µ

F ∗
)
× S(FG∗) ,

where µ = |tG/Gp| ≥ ℵ0 or µ = |tG/Gp| − 1 otherwise. Thus this group is
completely characterized up to an isomorphism.

Now suppose G is p-splitting (i.e. G = Gp×G/Gp) and F is arbitrary.
Then, owing to ([F], p.124, Theorem 23.1) and to our results in [D] and
[DANC], we establish that

dV (FG) ∼=
∐

r0dV (F (G/Gp))

|Q×
∐

q 6=p

[ ×
rqdV (F (G/Gp))

Z (q∞)]×
∐

λ

Z (p∞) ,
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where λ is calculated as in the Nachev’s theorem stated above in para-
graph 1. Thus, if we compute the cardinal numbers r0dV (F (G/Gp)) (when
G splits r0dV (F (G/Gp)) and even r0V (F (G/Gp)) were calculated in [D]
and [DANCH]) and rqdV (F (G/Gp)), then the structure of dV (FG) , under
these restrictions, will be completely determined. Thus, in accordance with
the latter formula, in the case when G is a splitting group, the cardinals
rqdV (F (G/Gp)) are only needed for the isomorphic classification of dV (FG).
However, their computation is a problem of some other investigation where
a new approach might work.

We close this paper with some open problems and questions.

4. Concluding discussion

Here is a question which immediately arises. What is the structure of
dV (FG) in the general case (in particular when tG 6= Gp and tG/Gp is
finite; or G = tG)? When G is p-splitting (in particular torsion), it follows
from [D] and [DANC], that dV (FG) = dV (F (G/Gp)) × S(FdG

∗) and thus
it remains only to describe dV (F (G/Gp)) in the terms of F and G. But
when G is torsion and F ∗ is torsion (i.e. F is an algebraic extension of a
finite field), employing [DANCH], dV (F (G/Gp)) is torsion whence dV (FG) =∐

q 6=p dVq(F (G/Gp))× S(FdG
∗). Thus dVq(F (G/Gp)) need be classified.
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Maksimalne dijeljive podgrupe u modularnim grupnim algebrama
p–miješanih i p–podijeljenih Abelovih grupa

Peter V. Danchev

Sadržaj

Neka je FG grupna algebra Abelove grupe G nad poljem F sa charF =
p 6= 0. Glavni cilj i rezultat ovog rada je izračunavanje maksimalne di-
jeljive podgrupe normirane jedinične grupe V (FG) u FG u slučaju kada je
torzioni dio tG od G p-primarni. Kao korolar se pokazuje da je V (FG) re-
ducirana, ako je i samo ako G reducirana, pod uslovom da je tG p-torzija.
Takodjer se razmatra struktura maksimalne dijeljive podgrupe od V (FG)
kada je G p-podijeljena. Ovo proširuje rezultate N. Nacheva [Na].


