Maximal divisible subgroups in modular group algebras of p -mixed and p -splitting Abelian groups

Peter V. Danchev (Bulgaria)

Abstract

Suppose $F G$ is the group algebra of an Abelian group G over the field F with $\operatorname{char} F=p \neq 0$. The main purpose and result of this paper is the calculation of the maximal divisible subgroup of the normed unit group $V(F G)$ in $F G$ in the case when the torsion part $t G$ of G is p-primary. As a corollary, it is shown that $V(F G)$ is reduced if and only if G is reduced, provided $t G$ is p-torsion. Moreover, the structure of the maximal divisible subgroup of $V(F G)$ is discussed when G is p-splitting. This extends a result of N. Nachev [Na].

1. Introduction

We first introduce some notation. Let R be a commutative ring with identity of prime characteristic p with a unit group $U(R)$, with a nil-radical (a Baer radical) $N(R)$ and with a maximal (p-)divisible (perfect) subring R_{d}. Let F be a field of characteristic p with a maximal perfect subfield F_{d} (it is easy to see that $F_{d}=F^{p^{\omega}}$). For G an Abelian group, $t G=\coprod_{p} G_{p}$ (G_{p} are called the p-primary components in G) will denote its maximal torsion subgroup, and $d G$, respectively G^{*}, will denote its maximal divisible subgroup, respectively its maximal p-divisible subgroup. Further, for the notations and terminology to the Abelian group theory, we shall follow the monographs of L.Fuchs [F]. For instance, $r_{0}(G)$ and $r_{q}(G)$ designate the torsion-free rank and the $q-\operatorname{rank}(q$ is a prime) of G, respectively. $R G$ denotes the R-group algebra of G with a group of all normalized units denoted by $V(R G)$. We let $S(R G)=V_{p}(R G)$ denote the Sylow p-subgroup of $V(R G)$, i.e. its p-component. As usual, we shall let $I(R G ; H)$ denote the relative augmentation ideal of $R G$ about the subgroup H of G.

[^0]In the present study a convenient explicit formula for $d V(F G)$ is given assuming $t G$ as a p-group. Moreover, as a consequence, the isomorphism class of $d V(F G)$ in this case is provided. In particular, a criterion is obtained $V(F G)$ to be reduced when $t G$ contains only p-torsion. Besides, $d V(F G)$ is partially described provided G is p-splitting, i.e. when G_{p} is a direct factor of G. Finally, $d\left(S(R G) / G_{p}\right)$ and $d(V(F G) / G)$ are completely computed, where $t G=G_{p}$ in the second case.

Now, for the sake of completeness and for the convenience of the reader, we summarize below some needed and well-known results, namely:

Proposition. ([M]) Let G be an Abelian group such that $t G=G_{p}$. Then $V(F G)=G\left(1+I\left(F G ; G_{p}\right)\right)$.

Remark. Owing to [DA] or [DAN] we have proved that $S(R G)=$ $1+I\left(R G ; G_{p}\right)$ when $N(R)=0$. Thus the above formula of May can be replaced by $V(F G)=G S(F G)$.

Theorem. ([N] and [NA]).

$$
d S(R G)=S\left(R_{d} G^{*}\right) \cong \sum_{\lambda}^{\bullet} \mathbf{Z}\left(p^{\infty}\right)
$$

where

$$
\lambda=\left\{\begin{array}{l}
\max \left(\left|R_{d}\right|,\left|G^{*}\right|\right), \text { if }\left(G^{*}\right)_{p}=\left(G_{p}\right)^{*} \neq 1 \\
\max \left(\left|N\left(R_{d}\right)\right|,\left|G^{*}\right|\right), \quad \text { if }\left(G^{*}\right)_{p}=1, \\
G^{*} \neq 1 \text { and } N\left(R_{d}\right) \neq 0 \\
0, \text { in the remaining cases. }
\end{array}\right.
$$

2. Main results

Here we can formulate the main statements which are the following:
I. The characterization of $d\left[S(R G) / G_{p}\right]$ and $d[V(F G) / G]$.

Proposition 1.

$$
\begin{gather*}
d\left[S(R G) / G_{p}\right]=S\left(R_{d} G^{*}\right) G_{p} / G_{p} \cong S\left(R_{d} G^{*}\right) /\left(G^{*}\right)_{p} \tag{*}\\
d[V(F G) / G]=V\left(F_{d} G^{*}\right) G / G \cong V\left(F_{d} G^{*}\right) / G^{*} \\
\cong S\left(F_{d} G^{*}\right) G_{p} / G_{p} \cong S\left(F_{d} G^{*}\right) /\left(G^{*}\right)_{p} \tag{**}
\end{gather*}
$$

when $t G=G_{p}$.

Corollary 2. $S(R G)$ is reduced if and only if $N\left(R_{d}\right)=0$ and G_{p} is reduced; or $N\left(R_{d}\right) \neq 0$ and G is p-reduced. Also $S(R G) / G_{p}$ is reduced if and only if $N\left(R_{d}\right)=0, G$ is not p-reduced and G_{p} is reduced; or $G^{*} \neq 1$ is a p-group of two elements and R_{d} is a field of two elements; or G is p-reduced. Moreover assuming $t G=G_{p}, V(F G) / G$ is reduced if and only if G is not p-reduced and G_{p} is reduced; or G^{*} and F_{d} have cardinalities 2; or G is p-reduced.
II. The construction of $d V(F G)$ for $t G=G_{p}$.

Theorem 3. Let τ be any ordinal and G be an Abelian group whose $t G$ is p-torsion. Then the following explicit formula is valid

$$
V^{\tau}(F G)=G^{\tau} S\left(F^{p^{\omega}} G^{p^{\omega \tau}}\right)
$$

The following statement appeared in [DANCHEV].
Corollary 4. Suppose G is an Abelian group for which $t G$ is p-primary. Then $d V(F G)=d G d S(F G)=d G S\left(F_{d} G^{*}\right)$. Thus $d V(F G) / d S(F G) \cong d G / d\left(G_{p}\right)$.

Corollary 5. Suppose G is Abelian so that $t G$ is a p-group. Then the following isomorphisms hold:

$$
d V(F G) \cong d G \times\left[S\left(F_{d} G^{*}\right) /\left(G^{*}\right)_{p}\right] \cong d G \times\left[S\left(F_{d} G^{*}\right) G_{p} / G_{p}\right],
$$

where $\left(G^{*}\right)_{p}=(d G)_{p}=d\left(G_{p}\right)$.
Corollary 6. Suppose G is Abelian such that $t G$ is p-primary. Then $V(F G)$ is reduced if and only if G is reduced.

3. Proofs of the main results

We will first prove some preliminary claims.
Lemma 7. For each ordinal τ the following are true $U^{p^{\tau}}(R)=U\left(R^{p^{\tau}}\right)$, $V^{p^{\tau}}(R G)=V\left(R^{p^{\tau}} G^{p^{\tau}}\right)$ and $S^{p^{\tau}}(R G)=S\left(R^{p^{\tau}} G^{p^{\tau}}\right)$.

Proof. The third ratio follows from the second, since $\left(G_{p}\right)^{p^{\tau}}=\left(G^{p^{\tau}}\right)_{p}$ (see also [DA]). In the sequel our arguments are based on a standard transfinite induction on τ. For this purpose, let $\tau=1$. Choose $x \in U^{p}(R)$. Hence $x=r^{p}$, where $r \in U(R)$. Since $r . r^{\prime}=1$ for some fixed $r^{\prime} \in R, r^{p} \cdot r^{\prime p}=1$ and so $x \in U\left(R^{p}\right)$. Conversely, take $x \in U\left(R^{p}\right)$. Therefore $x=\alpha^{p}$ where $\alpha \in R$ and moreover there is an $\alpha^{\prime} \in R^{p}$ so that $x \cdot \alpha^{\prime}=\alpha^{p} . \alpha^{\prime}=1$. Hence
$\alpha . \alpha^{p-1} . \alpha^{\prime}=1$ and finally $\alpha \in U(R)$. Thus $x \in U^{p}(R)$ and the case $\tau=1$ is complete.

Let now $\tau-1$ exists, i.e. τ is isolated. Furthermore $U^{p^{\tau}}(R)=\left[U^{p^{\tau-1}}(R)\right]^{p}$ $=U^{p}\left(R^{p^{\tau-1}}\right)=U\left(\left(R^{p^{\tau-1}}\right)^{p}\right)=U\left(R^{p^{\tau}}\right)$.

Now assume that $\tau-1$ does not exist, i.e. τ is a limit ordinal. It is clear that $U(L) \cap U(P)=U(L \cap P)$ where $1 \in L, P \leq R$, and so we derive $U^{p^{\tau}}(R)=\bigcap_{\sigma<\tau} U^{p^{\sigma}}(R)=\bigcap_{\sigma<\tau} U\left(R^{p^{\sigma}}\right)=U\left(\bigcap_{\sigma<\tau} R^{p^{\sigma}}\right)=U\left(R^{p^{\tau}}\right)$, which gives the first equality.

Next we observe that $\operatorname{char} R G=p$ and hence by the above we have $[U(R G)]^{p^{\tau}}=U\left((R G)^{p^{\tau}}\right)=U\left(R^{p^{\tau}} G^{p^{\tau}}\right)$. Clearly, $V\left(R^{p^{\tau}} G^{p^{\tau}}\right)=V(R G) \cap$ $U\left(R^{p^{\tau}} G^{p^{\tau}}\right)=V(R G) \cap U^{p^{\tau}}(R G)=V^{p^{\tau}}(R G)$, because $V(R G)$ is an isotype subgroup in $U(R G)$ as its direct factor.

Lemma 8. ([DA], [DAN]). $S(R G)=1$ if and only if $N(R)=0$ and $G_{p}=1$; or $N(R) \neq 0$ and $G=1$.

The following lemma will be our principal tool.
Lemma 9. For every ordinal τ and all primes $q \neq p$, the following identities are fulfilled:

$$
\begin{equation*}
[G S(R G)]^{q^{\tau}}=G^{q^{\tau}} S(R G) ;[G S(R G)]^{p^{\tau}}=G^{p^{\tau}} S\left(R^{p^{\tau}} G^{p^{\tau}}\right) . \tag{०}
\end{equation*}
$$

$$
\begin{equation*}
\bigcap_{q \neq p}\left[G^{q^{\tau}} S(R G)\right]=\left(\bigcap_{q \neq p} G^{q^{\tau}}\right) S(R G) . \tag{০০}
\end{equation*}
$$

Proof. (o) We will use transfinite induction on τ. First, let $\tau=1$. Therefore $[G S(R G)]^{q}=G^{q} S^{q}(R G)=G^{q} S(R G)$ since $S(R G)$ is q-divisible, and moreover $[G S(R G)]^{p}=G^{p} S^{p}(R G)=G^{p} S\left(R^{p} G^{p}\right)$ using Lemma 7 .

Now, let τ be a non-limit ordinal, i.e. $\tau-1$ exists. Therefore

$$
\begin{aligned}
& {[G S(R G)]^{q^{\tau}}=\left([G S(R G)]^{q^{\tau-1}}\right)^{q}=\left[G^{q^{\tau-1}} S^{q^{\tau-1}}(R G)\right]^{q}=\left[G^{q^{\tau-1}} S(R G)\right]^{q}} \\
& =\left(G^{q^{\tau-1}}\right)^{q} S^{q}(R G)=G^{q^{\tau}} S(R G)
\end{aligned}
$$

and besides

$$
\begin{aligned}
& {[G S(R G)]^{p^{\tau}}=\left([G S(R G)]^{p^{\tau-1}}\right)^{p}=\left[G^{p^{\tau-1}} S\left(R^{p^{\tau-1}} G^{p^{\tau-1}}\right)\right]^{p}} \\
& =\left(G^{p^{\tau-1}}\right)^{p} S^{p}\left(R^{p^{\tau-1}} G^{p^{\tau-1}}\right)=G^{p^{\tau}} S\left(R^{p^{\tau}} G^{p^{\tau}}\right) .
\end{aligned}
$$

On the other hand, if τ is a limit ordinal, i.e. $\tau-1$ does not exist, then $[G S(R G)]^{q^{\tau}}=\bigcap_{\sigma<\tau}[G S(R G)]^{q^{\sigma}}=\bigcap_{\sigma<\tau}\left[G^{q^{\sigma}} S^{q^{\sigma}}(R G)\right]=\bigcap_{\sigma<\tau}\left[G^{q^{\sigma}} S(R G)\right]=$ $\left[\bigcap_{\sigma<\tau} G^{q^{\sigma}}\right] S(R G)=G^{q^{\tau}} S(R G)$.

Actually, the latter claim is valid by the following arguments: If $x \in$ $\bigcap_{\sigma<\tau}\left[G^{q^{\sigma}} S(R G)\right]$, then $x=g^{\prime}\left(r_{1} g_{1}+\cdots+r_{t} g_{t}\right)=g^{\prime \prime}\left(\alpha_{1} a_{1}+\cdots+\alpha_{t} a_{t}\right)=\ldots$, where $g^{\prime} \in G^{q^{\alpha}}, g^{\prime \prime} \in G^{q^{\beta}}(\sigma \leq \alpha<\beta \leq \tau) ; g_{i}, a_{i} \in G ; r_{i}, \alpha_{i} \in R(1 \leq i \leq t)$. Since the above elements are in canonical form, then $g^{\prime} g_{i}=g^{\prime \prime} a_{i}$. But $r_{1} g_{1}+\cdots+r_{t} g_{t} \in$ $S(R G)$, hence there exists an element $g_{i} \in G_{p}$, say $g_{1} \in G_{p}$. Besides $g^{\prime} g^{\prime \prime-1}$ is a p-element and obviously $a_{1} \in G_{p}$. Finally $g^{\prime} g_{1}=g^{\prime \prime} a_{1} \in G^{q^{\beta}}$ and, since we have finite support whereas the intersection is infinite because $\tau \geq \omega$, $x=g^{\prime} g_{1}\left(r_{1}+\cdots+r_{t} g_{t} g_{1}^{-1}\right) \in\left(\bigcap_{\sigma<\tau} G^{q^{\sigma}}\right) S(R G)$, as claimed.
The second relation, $\left.[G S(R G)]^{p^{\tau}}=\bigcap_{\sigma<\tau}[G S(R G)]\right]^{p^{\sigma}}=\bigcap_{\sigma<\tau}\left(G^{p^{\sigma}} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right)$, follows from the induction hypothesis and Lemma 7.

Next we shall prove $\bigcap_{\sigma<\tau}\left[G^{p^{\sigma}} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right]=\left(\bigcap_{\sigma<\tau} G^{p^{\sigma}}\right)\left(\bigcap_{\sigma<\tau} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right)=$ $G^{p^{\tau}} S\left(R^{p^{\tau}} G^{p^{\tau}}\right)$. Suppose $x \in \bigcap_{\sigma<\tau}\left[G^{p^{\sigma}} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right]$. Hence $x=c^{\prime}\left(x_{1} c_{1}+\cdots+\right.$ $\left.x_{t} c_{t}\right)=c^{\prime \prime}\left(f_{1} b_{1}+\cdots+f_{t} b_{t}\right)=\ldots$, where $c^{\prime} \in G^{p^{\alpha}}, c^{\prime \prime} \in G^{p^{\beta}}(\sigma \leq \alpha<\beta \leq \tau) ; c_{i} \in$ $G^{p^{\alpha}}, b_{i} \in G^{p^{\beta}} ; x_{i} \in R^{p^{\alpha}}, f_{i} \in R^{p^{\beta}}(1 \leq i \leq t)$. Because x is written in two canonical forms, we conclude that $x_{i}=f_{i}$ and $c^{\prime} c_{i}=c^{\prime \prime} b_{i}$. Therefore we can let $c_{1} \in G_{p}$. Finally $x=c^{\prime} c_{1}\left(x_{1}+\cdots+x_{t} c_{t} c_{1}^{-1}\right) \in G^{p^{\beta}} S\left(R^{p^{\beta}} G^{p^{\beta}}\right)$ and so $x \in\left(\bigcap_{\sigma<\tau} G^{p^{\sigma}}\right)\left(\bigcap_{\sigma<\tau} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right)$, because as above $c^{\prime} c_{1} \in \bigcap_{\sigma<\tau} G^{p^{\sigma}}=G^{p^{\tau}}$ and $x_{1}+\cdots+x_{t} c_{t} c_{1}^{\sigma<\tau} \in \bigcap_{\sigma<\tau} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)=S\left(R^{p^{\tau}} G^{p^{\tau}}\right)$.
(oo) Certainly, the left hand-side contains the right one. Conversely, suppose $x \in \bigcap_{q \neq p}\left[G^{q^{q}} S(R G)\right]$. Therefore x can be written in the form $x=\bar{g}\left(r_{1} g_{1}+\cdots+r_{t} g_{t}\right)=\overline{\bar{g}}\left(\alpha_{1} a_{1}+\cdots+\alpha_{t} a_{t}\right)=\ldots$, where $\bar{g} \in G^{q^{\tau}}, \overline{\bar{g}} \in$ $G^{q_{1}^{\top}} ; r_{i}, \alpha_{i} \in R ; g_{i}, a_{i} \in G$. Using the canonical form we can write $\bar{g} g_{i}=\overline{\bar{g}} a_{i}$. As above, putting $g_{1} \in G_{p}$ we establish that $\bar{g} g_{1}=\overline{\bar{g}} a_{1} \in G^{q_{1}^{\top}} \cap G^{q^{\tau}}$ since $a_{1} \in G_{p}$. Finally, we obtain $x=\bar{g} g_{1}\left(r_{1}+\cdots+r_{t} g_{t} g_{1}^{-1}\right) \in\left(\bigcap_{q \neq p} G^{q^{\top}}\right) S(R G)$, which completes the proof.

Lemma 10. $\left(G^{*}\right)_{p}=(d G)_{p}=d\left(G_{p}\right)$.
Proof. Clearly, $G^{*}=G^{p^{\delta}}$ for some ordinal δ. Consequently $\left(G^{*}\right)_{p}=$ $\left(G^{p^{\delta}}\right)_{p}=\left(G_{p}\right)^{p^{\delta}}=d\left(G_{p}\right)$. On the other hand $d G \subseteq G^{*}$ and so $(d G)_{p} \subseteq\left(G^{*}\right)_{p}$. Besides $d\left(G_{p}\right) \subseteq d G$ and $d\left(G_{p}\right)$ is a p-group, i.e. $d\left(G_{p}\right) \subseteq G_{p}$. Finally $d\left(G_{p}\right) \subseteq(d G)_{p}$.

By analogy with $[\mathrm{F}]$ we shall say that N is a p-nice subgroup of G if
$(G / N)^{p^{\tau}}=G^{p^{\tau}} N / N$ for each ordinal τ. It is not difficult to prove that N is p-nice in G if and only if $\bigcap_{\sigma<\tau}\left(G^{p^{\sigma}} N\right)=\left(\bigcap_{\sigma<\tau} G^{p^{\sigma}}\right) N$, for every limit ordinal number τ.

Lemma 11. The group G is p-balanced (p-nice and p-isotype) in $V(R G)$, and G_{p} is balanced in $S(R G)$.

Proof. The application of Lemma 7 guarantees that $G \cap V^{p^{\tau}}(R G)=$ $G \cap V\left(R^{p^{\tau}} G^{p^{\tau}}\right)=G \cap G^{p^{\tau}}=G^{p^{\tau}}$ and $G_{p} \cap S^{p^{\tau}}(R G)=G_{p} \cap S\left(R^{p^{\tau}} G^{p^{\tau}}\right)=$ $G_{p} \cap G^{p^{\tau}}=G_{p}{ }^{p^{\tau}}$ which insures the first assertion.

For the second assertion, as we have previously seen, it is sufficient to show only that $\bigcap_{\sigma<\tau}\left(G_{p} S^{p^{\sigma}}(R G)\right)=\left[\bigcap_{\sigma<\tau} S^{p^{\sigma}}(R G)\right] G_{p}$ and $\bigcap_{\sigma<\tau}\left(G V^{p^{\sigma}}(R G)\right)=$ $\left[\bigcap_{\sigma<\tau} V^{p^{\sigma}}(R G)\right] G$, for any limit ordinal τ. But from Lemma 7 it follows at once that $S^{p^{\sigma}}(R G)=S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)$ and $V^{p^{\sigma}}(R G)=V\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)$, hence our conditions can be equivalently modified to $\bigcap_{\sigma<\tau}\left[G_{p} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right]=\left[\bigcap_{\sigma<\tau} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right]$ $G_{p}=S\left(R^{p^{\tau}} G^{p^{\tau}}\right) G_{p}$ and $\bigcap_{\sigma<\tau}\left[G V\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right]=\left[\bigcap_{\sigma<\tau} V\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right] G=V\left(R^{p^{\tau}} G^{p^{\tau}}\right) G$. We will argue only the first equality. The proof of the second equality is similar.

Suppose that $x \in \bigcap_{\sigma<\tau}\left[G_{p} S\left(R^{p^{\sigma}} G^{p^{\sigma}}\right)\right]$, hence $x=g_{p}\left(x_{1} c_{1}+\cdots+x_{t} c_{t}\right)=$ $g_{p}^{\prime}\left(f_{1} b_{1}+\cdots+f_{t} b_{t}\right)=\ldots$, where $g_{p}, g_{p}^{\prime} \in G_{p} ; x_{i} \in R^{p^{\alpha}}, c_{i} \in G^{p^{\alpha}} ; f_{i} \in R^{p^{\beta}}, b_{i} \in$ $G^{p^{\beta}}(\sigma \leq \alpha<\beta \leq \tau ; 1 \leq i \leq t)$. The canonical form of x yields $g_{p} c_{i}=g_{p}^{\prime} b_{i}$ and $x_{i}=f_{i}$, where we may presume that $c_{1} \in G_{p}$. Therefore $x=g_{p} c_{1}\left(x_{1}+\right.$ $\left.\cdots+x_{t} c_{t} c_{1}^{-1}\right) \in G_{p} S\left(R^{p^{\beta}} G^{p^{\beta}}\right)$. Finally, since the support is finite while the relationships are not, we have $x \in G_{p} S\left(R^{p^{\tau}} G^{p^{\tau}}\right)$.

Remark. The "nice" property of certain subgroups of $S(R G)$ and $V(R G)$ was also considered by May $[\mathrm{M}]$, but when R is a field. The preceding lemma generalizes the May's attainment for niceness in $[M]$ over an arbitrary ring.

Lemma 12. If N is a p-balanced subgroup of G, then

$$
\begin{gathered}
(G / N)^{p^{\top}} \cong G^{p^{\top}} / N^{p^{\top}}, \text { for each ordinal } \tau ; \\
(G / N)^{*}=\left(G^{*} N\right) / N \cong G^{*} / N^{*} .
\end{gathered}
$$

Proof. We shall verify only the first isomorphism, since the second is its immediate consequence. By the supposition and using the well-known first theorem of Noether for the isomorphism we have $(G / N)^{p^{\tau}}=G^{p^{\tau}} N / N \cong$ $G^{p^{\tau}} /\left(N \cap G^{p^{\tau}}\right)=G^{p^{\tau}} / N^{p^{\tau}}$.

Proof of Proposition 1. The proof follows directly from Lemma 11 and Lemma 12 by invoking to the above listed May's proposition which assures that $V(F G) / G \cong S(F G) / G_{p}$.

Proof of Corollary 2. Evidently $S(R G)$ is reduced if and only if, by Lemma $7, d S(R G)=S\left(R_{d} G^{*}\right)=1$, i.e. we can employ Lemma 8 to infer that the first part holds. For the second assertion, it is clear that $S(R G) / G_{p}$ is reduced if and only if $d\left[S(R G) / G_{p}\right]=1$, i.e. applying Proposition 1, $S\left(R_{d} G^{*}\right)=\left(G^{*}\right)_{p}$. This is equivalent to $G^{*} \neq\left(G^{*}\right)_{p}=1$ and $N\left(R_{d}\right)=0$, or $G^{*}=\left(G^{*}\right)_{p} \neq 1,\left|G^{*}\right|=2$ and $\left|R_{d}\right|=2$, or $G^{*}=1$.

Proof of Theorem 3. Following [F], $V^{\tau}(F G)=\bigcap_{q} V^{q^{\omega \tau}}(F G)=$ $\bigcap_{q \neq p} V^{q^{\omega \tau}}(F G) \cap V^{p^{\omega \tau}}(F G)$, then using the May's proposition cited above, we have $V^{\tau}(F G)=\bigcap_{q \neq p}[G S(F G)]^{q^{\omega \tau}} \cap V^{p^{\omega \tau}}(F G)$. On the other hand Lemma 9 yields that $V^{\tau}(F G)=\bigcap_{q \neq p}\left[G^{q^{\omega \tau}} S(F G)\right] \cap V^{p^{\omega \tau}}(F G)=\left(\left[\bigcap_{q \neq p} G^{q^{\omega \tau}}\right] S(F G)\right) \cap$ $V^{p^{\omega \tau}}(F G)$. Now, exploiting Lemma 7, we get $V^{\tau}(F G)=\left(\left[\bigcap_{q \neq p} G^{q^{\omega \tau}}\right] S(F G)\right) \cap$ $V\left(F^{p^{\omega \tau}} G^{p^{\omega \tau}}\right)$. If we show that the last intersection is equal to $\left(\bigcap_{q} G^{q^{\omega \tau}}\right)$ $S\left(F^{p^{\omega}} G^{p^{\omega \tau}}\right)$ then the proof will be complete.

In fact, first of all, $F^{p^{\omega \tau}}=F^{p^{\omega}}$. Secondly, take x to lie in the left handside of the wanted equality $F^{p^{\omega \tau}}$. Hence $x=a\left(f_{1} g_{1}+\cdots+f_{t} g_{t}\right)=\alpha_{1} b_{1}+$ $\cdots+\alpha_{t} b_{t}$, where $a \in \bigcap_{q \neq p} G^{q^{\omega \tau}}, g_{i} \in G, b_{i} \in G^{p^{\omega \tau}} ; f_{i} \in F, \alpha_{i} \in F^{p^{\omega}}(1 \leq i \leq t)$. Therefore $f_{i}=\alpha_{i}$ and $a g_{i}=b_{i}$ for each i. Set $x=a g_{1}\left(f_{1}+\cdots+f_{t} g_{t} g_{1}^{-1}\right)$. We may assume that $g_{1} \in G_{p}$. So $a g_{1} \in \bigcap_{q \neq p} G^{q^{\omega \tau}}$ and obviously $a g_{1} \in \bigcap_{q} G^{q^{\omega \tau}}$. Therefore, $f_{1}+\cdots+f_{t} g_{t} g_{1}^{-1}=g_{1}^{-1}\left(f_{1} g_{1}+\cdots+f_{t} g_{t}\right) \in S(F G) \cap F^{p^{\omega}} G^{p^{\omega \tau}}=$ $S\left(F^{p^{\omega}} G^{p^{\omega \tau}}\right)$. Finally, $x \in\left(\bigcap_{q} G^{q^{\omega \tau}}\right) S\left(F^{p^{\omega}} G^{p^{\omega \tau}}\right)$.

Proof of Corollary 4. Using Lemma 7, it is a routine matter to check that $d S(F G)=S\left(F_{d} G^{*}\right)$, where $F_{d}=F^{p^{\omega}}$. Let τ be the smallest i.e. the first ordinal with the property that $V^{\tau}(F G)=V^{\tau+1}(F G), G^{\tau}=G^{\tau+1}$ and $G^{p^{\tau}}=G^{p^{\tau+1}}$. Hence $d V(F G)=V^{\tau}(F G), d G=G^{\tau}$ and $G^{*}=G^{p^{\tau}}=G^{p^{\omega \tau}}$. Thus Theorem 3 is applicable and the proof is complete.

Proof of Corollary 5. Since $d G$ is divisible, then it is a direct factor of $d V(F G)$ utilizing [F], i.e. $d V(F G) \cong d G \times d V(F G) / d G$. But Corollary 4 implies that $d V(F G) / d G=d G S\left(F_{d} G^{*}\right) / d G \cong S\left(F_{d} G^{*}\right) /(d G)_{p}$. Furthermore we can apply Lemma 10 and Lemma 12 to obtain the result.

Proof of Corollary 6. If $V(F G)$ is reduced, then clearly G, being its subgroup, is also reduced. Conversely, let us assume that G is reduced. Hence $d G=1$ and so $(d G)_{p}=d\left(G_{p}\right)=\left(G^{*}\right)_{p}=1$ by making use of Lemma 10. Therefore, by a direct application of Corollary 5, or by virtue of Corollaries 2 and 4, we deduce that $d V(F G)=1$, i.e. $V(F G)$ is reduced.

Remark. Using the preceding theorem of Nachev for the description of $d S(R G)$ and going from Theorem 3 to Corollary 5 along with some standard group-theoretic facts, given in [F], we can verify that $d V(F G)$ is completely characterized, provided $t G=G_{p}$.

In order to extract the explicit isomorphism relationship, we observe that since $d S(F G)$ is divisible,

$$
d V(F G) \cong d S(F G) \times d V(F G) / d S(F G) \cong d S(F G) \times d G / d\left(G_{p}\right),
$$

where the second isomorphism holds by Corollary 4.
Thus, for a p-mixed group G,

$$
d V(F G) \cong \coprod_{\lambda} \mathbf{Z}\left(p^{\infty}\right) \times \coprod_{r_{0} d(G)} \mathrm{Q},
$$

where $\lambda=\max \left(\left|F^{p^{\omega}}\right|,\left|G^{*}\right|\right)$ if $\left(G^{*}\right)_{p} \neq 1$ or $\lambda=0$ otherwise, and Q is regarded as an additive group.
III. The description of $d V(F G)$ for $G=G_{p} \times G / G_{p}$

Let G be p-splitting and F an algebraically closed field. Then, from the results in [D] and [DANC], it follows that

$$
d V(F G) \cong\left(\coprod_{\mu} d\left(G / G_{t}\right)\right) \times\left(\coprod_{\mu} F^{*}\right) \times S\left(F G^{*}\right),
$$

where $\mu=\left|t G / G_{p}\right| \geq \aleph_{0}$ or $\mu=\left|t G / G_{p}\right|-1$ otherwise. Thus this group is completely characterized up to an isomorphism.

Now suppose G is p-splitting (i.e. $G=G_{p} \times G / G_{p}$) and F is arbitrary. Then, owing to ([F], p.124, Theorem 23.1) and to our results in [D] and [DANC], we establish that

$$
d V(F G) \cong \coprod_{r_{0} d V\left(F\left(G / G_{p}\right)\right)} \mathrm{Q} \times \coprod_{q \neq p}\left[\underset{r_{q} d V\left(F\left(G / G_{p}\right)\right)}{\times} \mathbf{Z}\left(q^{\infty}\right)\right] \times \coprod_{\lambda} \mathbf{Z}\left(p^{\infty}\right),
$$

where λ is calculated as in the Nachev's theorem stated above in paragraph 1. Thus, if we compute the cardinal numbers $r_{0} d V\left(F\left(G / G_{p}\right)\right)$ (when G splits $r_{0} d V\left(F\left(G / G_{p}\right)\right)$ and even $r_{0} V\left(F\left(G / G_{p}\right)\right)$ were calculated in [D] and [DANCH]) and $r_{q} d V\left(F\left(G / G_{p}\right)\right)$, then the structure of $d V(F G)$, under these restrictions, will be completely determined. Thus, in accordance with the latter formula, in the case when G is a splitting group, the cardinals $r_{q} d V\left(F\left(G / G_{p}\right)\right)$ are only needed for the isomorphic classification of $d V(F G)$. However, their computation is a problem of some other investigation where a new approach might work.

We close this paper with some open problems and questions.

4. Concluding discussion

Here is a question which immediately arises. What is the structure of $d V(F G)$ in the general case (in particular when $t G \neq G_{p}$ and $t G / G_{p}$ is finite; or $G=t G)$? When G is p-splitting (in particular torsion), it follows from [D] and [DANC], that $d V(F G)=d V\left(F\left(G / G_{p}\right)\right) \times S\left(F_{d} G^{*}\right)$ and thus it remains only to describe $d V\left(F\left(G / G_{p}\right)\right)$ in the terms of F and G. But when G is torsion and F^{*} is torsion (i.e. F is an algebraic extension of a finite field), employing [DANCH], $d V\left(F\left(G / G_{p}\right)\right)$ is torsion whence $d V(F G)=$ $\coprod_{q \neq p} d V_{q}\left(F\left(G / G_{p}\right)\right) \times S\left(F_{d} G^{*}\right)$. Thus $d V_{q}\left(F\left(G / G_{p}\right)\right)$ need be classified.

Acknowledgments. The author would like to thank the referee for the careful reading of the paper and the helpful expert comments.

REFERENCES

[D] P.V. Danchev, Units in Abelian group rings of prime characteristic, C. R. Acad. Bulg. Sci., 48 (8) (1995), 5-8.
[DA] , Topologically pure and basis subgroups in commutative group rings, C. R. Acad. Bulg. Sci., 48 (9-10) (1995), 7-10.
[DAN] , Commutative group algebras of σ-summable Abelian groups, Proc. Amer. Math. Soc., 125 (9) (1997), 2559-2564.
[DANC] , Normed units in Abelian group rings, Glasgow Math. J., 43
(3) (2001), 365-373.
[DANCH] , Criteria for unit groups in commutative groups rings, to appear
[DANCHEV] __ , Sylow p-subgroups of commutative modular and semisimple group rings, C. R. Acad. Bulg. Sci., 54 (6) (2001), 5-6.
[F] L. Fuchs, Infinite Abelian Groups, I-II, Moscow, Mir, 1974-1977. (In Russian.)
[M] W. May, The direct factor problem for modular Abelian group algebras, Contemp. Math., 93 (1989), 303-308.
[N] N.A. Nachev, Invariants of the Sylow p-subgroup of the unit group of commutative group ring of characteristic p, C. R. Acad. Bulg. Sci., 47 (1) (1994), 9-12.
[NA] N.A. Nachev, Invariants of the Sylow p-subgroup of the unit group of a commutative group ring of characteristic p, Commun. Algebra, 23 (7) (1995), 2469-2489.
(Received: July 6, 2004)
(Revised: August 31, 2004)

Department of Algebra
Plovdiv University
4000 Plovdiv
Bulgaria BGR
E-mail: pvdanchev@yahoo.com

Maksimalne dijeljive podgrupe u modularnim grupnim algebrama p-miješanih i p-podijeljenih Abelovih grupa

Peter V. Danchev

Sadržaj

Neka je $F G$ grupna algebra Abelove grupe G nad poljem F sa char $F=$ $p \neq 0$. Glavni cilj i rezultat ovog rada je izračunavanje maksimalne dijeljive podgrupe normirane jedinične grupe $V(F G)$ u $F G$ u slučaju kada je torzioni dio $t G$ od G p-primarni. Kao korolar se pokazuje da je $V(F G)$ reducirana, ako je i samo ako G reducirana, pod uslovom da je $t G$-torzija. Takodjer se razmatra struktura maksimalne dijeljive podgrupe od $V(F G)$ kada je G p-podijeljena. Ovo proširuje rezultate N. Nacheva [Na].

[^0]: 2000 Mathematics Subject Classification: Primary: 16S34, 16U60, 20C07; Secondary: 20K10, 20 K 21.
 Keywords and phrases: Modular group algebras, maximal divisible subgroups, p mixed Abelian groups, p-splitting Abelian groups.

