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New lower bounds for two multicolor classical
Ramsey numbers

H. Luo, W. Su (China) and Y.–Q. Shen (USA)

Abstract. We present an algorithm to find lower bounds for multi-
color classical Ramsey numbers by using 2-normalized cyclic graphs
of prime order, and use it to obtain new lower bounds for two multi-
color classical Ramsey numbers: R(3, 3, 12) ≥ 182, R(3, 3, 13) ≥ 212.

1. Introduction

The multicolor classical Ramsey number R(q1, q2, ...qn) is the smallest
integer r such that if the edges of Kr, the complete graph of order r, are
colored with n colors, there exists a monochromatic Kqi for some i. The def-
inition is well defined and the existence of these numbers has been proved
(See the book by Graham, Rothschild and Spencer [1]). However for con-
crete q′is, only very few actual Ramsey numbers are known. Radziszowski
[4], in his dynamic survey, lists the known Ramsey numbers and the up-
dated upper and lower bounds.

In [3], we presented an algorithm based on the properties of normalized
cyclic graphs with prime order and use it to obtain several new lower bounds
on two-color Ramsey numbers. The method reduces to a certain amount
of computation depending on the sizes of the parameter sets.

In this paper, we will present an algorithm for lower bounds of three-
color Ramsey numbers which improves the effectiveness of the previous
algorithm. Our new method is based on some properties of 2-normalized
cyclic graphs of prime order. The method reduces to a certain amount of
computation for parameter sets of any size. Using our new algorithm we
obtain:

R(3, 3, 12) ≥ 182, R(3, 3, 13) ≥ 212. (1)
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Our results improve the known bounds R(3, 3, 12) ≥ 181, R(3, 3, 13) ≥ 205
listed in [4]. The algorithm also reduces the amount of computation neces-
sary in finding new lower bounds for classical Ramsey numbers.

2. 2–normalized cyclic graphs of prime order

Given a prime number p = 2m + 1, let Zp = {−m, ...,−1, 0, 1, ...m} =
[−m,m]. We write s = t in Zp if and only if s ≡ t(mod p). For any parameter
set S ⊂ Z+

p = [1,m], the cyclic graph Gp(S) of order p with the parameter set
S is Gp(S) = (V, E) = (Zp, E), where E = {{x, y} : |x − y| ∈ S}. Using cyclic
graphs of prime order to obtain lower bounds for classical Ramsey numbers
has been successful in the past [4]. For special constructions of parameter
sets to reduce the computation, see [3], [5], [6], [7]. In [3], we use normalized
cyclic graphs of prime order to reduce the amount of computation.

Let g be a primitive root of p and k = |S| ≥ 2. A cyclic graph of order
p with S is called normalized if the following three conditions are satisfied:

S = {|ga0 |, |ga1 |, ..., |gak−1 | ∈ Z+
p : aj ∈ [0,m− 1]}, (2)

0 = a0 < a1 < ... < ak−1 ≤ m− a1, (3)

a1 = min{aj − aj−1 : j ∈ [1, k − 1]} ≤ m/k. (4)

We call the set B(S) ≡ {a0, a1, ..., ak−1} ⊂ [0,m − 1] the corresponding
subset associated with S. In [3] we have proved the following theorem:

Theorem 1. Any cyclic graph Gp(S) with |S| ≥ 2 is isomorphic to a
normalized Gp(S∗) for some parameter set S∗ ⊂ Z+

p with |S∗| = |S|.
For a given prime number p, and a fixed integer k, the naive approach

require computation over all parameter sets S with |S| = k to search for
an effective parameter set to produce a lower bound. Theorem 1 tells us
that we only need to restrict our search to the parameter sets of normalized
cyclic graphs. The total number of possible parameter sets of normalized
cyclic graphs compared to all the possible parameter sets of cyclic graphs
when the size |S| = k is fixed depends on the size k. Therefore a large
portion of the naive method of searching over all of the subsets size k can
be saved only when k is small compared to m in [3]. However, we have
found that if 2 is a primitive root of the prime number p, and the cyclic
graphs do not contain the complete subgraph K3, then the total number of
possible parameter sets of normalized cyclic graphs is less than 25% of the
parameter sets of cyclic graphs in the worst cases no matter what size k is.
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A normalized cyclic graph of prime order p is said to be 2-normalized if it
satisfies

a1 ≥ 2. (5)

Now we present a theorem which gives a sufficient condition for a cyclic
graph to be isomorphic to a 2-normalized cyclic graph:

Theorem 2. If g = 2 is a primitive root of the prime number p, and
Gp(S) contains no complete subgraph K3, then this cyclic graph of prime
order p is isomorphic to a 2-normalized cyclic graph of order p.

Proof. Using Theorem 1, Gp(S) is isomorphic to some normalized
cyclic graph Gp(S∗) with |S| = |S∗|. Now we only need to show that if
g = 2 is a primitive root of p, then a1 ≥ 2 for S∗. If not, a1 = 1, then S∗ =
{20, 21, ...} = {1, 2, ...} which implies that the cyclic graph with parameter S∗

contains a complete K3 with vertices {0, 1, 2}, contradicting the isomorphism
of the two graphs since the original cyclic graph does not contain K3. ¤

3. Counting 2–normalized cyclic graphs

In the last section, we proved that if a normalized cyclic graph does
not contain the complete subgraph K3 and 2 is a primitive root of the
prime number p, then the normalized cyclic graph is 2-normalized. We
now give an estimate for the percentage of 2-normalized graphs among all
cyclic graphs when m, k are fixed. Denote the set of all parameter sets S

with |S| = k as W (m, k) when p and k are fixed by counting their parameter
sets. We compare |W (m, k)| with

(
m
k

)
, the number of all parameter sets

with size k in naive computation. We have the following theorem, which
compares to a similar estimate in Theorem 4.2 [3], but it is better since our
last estimate in (b) is independent of the size k.

Theorem 3. The number of parameter sets with |S| = k satisfies the
following estimates:

(a) |W (m, k)| = ∑bm
k c

a1=2

(
m + k − 2− a1k

k − 2

)
.

(b) |W (m, k)|
/ (

m
k

)
≤ m−1

4m

∏k−1
s=2

(
1− k

m−s

)
< 1

4 .

Proof. (a) We count the parameter sets with fixed size k and m by
using their corresponding subsets B(S) in [0,m − 1]. From (3), (4): 2 ≤
a1 ≤ bm

k c. Let aj − aj−1 = a1 + cj , j = 2, ...k, where cj ≥ 0. Then
∑k

j=2 cj =
m − a1 − a1(k − 1) = m − a1k. When k is fixed, |W (m, k)| is equal to the
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number of all possibilities of distributing m− a1k ones into k − 1 places on
a line. That can be calculated by

|W (m, k)| =
bm

k c∑
a1=2

(
(m− a1k) + (k − 1)− 1

m− a1k

)
=

bm
k c∑

a1=2

(
m + k − 2− a1k

k − 2

)
.

(b) Using (a), we have

|W (m, k)|
/ (

m
k

)
≤

bm
k c∑

a1=2

(
m− k − 2

k − 2

)/(
m
k

)

≤ m− k

k

(
m− k − 2

k − 2

)/ (
m(m− 1)
k(k − 1)

(
m− 2
k − 2

))

=
(m− k)(k − 1)

m(m− 1)
(m− k − 2)(m− k − 3)...(m− 2k + 1)

(m− 2)(m− 3)...(m− k + 1)

≤ (1/4)(m− 1)2

m(m− 1)

k−1∏
s=2

(
m− s− k

m− s

)

=
m− 1
4m

k−1∏
s=2

(
1− k

m− s

)

using that the maximum of (m−k)(k−1) is (1/4)(m−1)2 when k = (m+1)/2.
So the first part of (b) is proved. The second part of (b) is obvious. The
proof is completed. ¤

From the theorem, in the worst cases, at least 75% of the parameter
sets can be omitted from checking. The example in the next section shows
that in the actual computation, there are more parameter sets which can
be omitted.

4. An algorithm to finding lower bounds for three–color
Ramsey numbers

Based on Theorem 2, we present an algorithm for a lower bound for
R(3, 3, q3). The algorithm can be extended to find lower bounds for more
general multicolor classical Ramsey numbers with some modifications.

Algorithm 1. For given q1 = q2 = 3, q3 ≥ 3, perform the following
steps:

(a) Choose a prime number p = 2m + 1 with primitive root g = 2, and
positive integers k1, k2, k3 = m− k1 − k2.

(b) For i = 1, 2, do Steps (c) - (g):
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(c) Let M1 = [0,m− 2] and M2 = [1,m− 1]−B1.
(d) List all possible subsets Bi,ji

in Mi with ki elements according to the
lexicographic order of their elements. If i = 1, list all subsets B1,j1 with
k1 elements using the restrictions (2) – (5) of the 2-normalized cyclic
graph. For each ji, do Steps (e) and (f):

(e) Use Bi,ji
to form Si,ji

.
(f) Compute the clique number [Si,ji

] of Gp(Si,ji
). If [Si,ji

] < qi, then let
Si = Si,ji , Bi = Bi,ji . Go to (b) if i = 1, and go to (h) if i = 2, then let
i = i + 1.

(g) Conclude that for the chosen p, k1, k2, the method cannot produce a
lower bound. Stop.

(h) Let S3 = Z+
p − ∪2

i=1Si, compute the clique number [S3]. If [S3] < q3, go
to (i). If [S3] ≥ q3, go to (g).

(i) Conclude that R(3, 3, q3) ≥ p + 1. Stop.

Note that in practice, for the chosen p, k1, k2 the algorithm stops at
Step (g) frequently, therefore we need to choose another set of p, k1, k2 and
do the same steps in the algorithm again. The correct terms p, k1, k2 for
effective parameter sets are usually obtained after many experiments. In
general, we need to select a prime number p, not too small to produce a
new lower bound, and not too large so the amount of calculations can be
performed in a computer.

We present an example to illustrate our algorithm. The lower bound
was initially obtained in [2].

Example 1. R(3, 3, 4) ≥ 30.

In this case q3 = 4. After experimenting with different choices, we pick
p = 29 in Step (a) that gives g = 2 and m = 14, and choose k1 = k2 = 4, so
k3 = 6. There are 34 subsets B1,j1 in [0, 14− a1] fitting 2 ≤ a1 ≤ 14/4 with 4
elements:

{0, 2, 4, 6}, {0, 2, 4, 7}, {0, 2, 4, 8}, {0, 2, 4, 9}, {0, 2, 4, 10}, {0, 2, 4, 11},
{0, 2, 4, 12}, {0, 2, 5, 7}, {0, 2, 5, 8}, {0, 2, 5, 9}, {0, 2, 5, 10}, {0, 2, 5, 11},
{0, 2, 5, 12}, {0, 2, 6, 8}, {0, 2, 6, 9}, {0, 2, 6, 10}, {0, 2, 6, 11}, {0, 2, 6, 12},
{0, 2, 7, 9}, {0, 2, 7, 10}, {0, 2, 7, 11}, {0, 2, 7, 12}, {0, 2, 8, 10}, {0, 2, 8, 11},
{0, 2, 8, 12}, {0, 2, 9, 11}, {0, 2, 9, 12}, {0, 2, 10, 12}, {0, 3, 6, 9}, {0, 3, 6, 10},
{0, 3, 6, 11}, {0, 3, 7, 10}, {0, 3, 7, 11}, {0, 3, 8, 11}.
After Steps (c) and (d), we obtain the subset S1 = {1, 4, 10, 12} which

fits the requirement, i.e. the clique number is [S1] = 2 < 3 = q1. Using naive
computation to find a suitable subset with 4 elements from 14 positions in
{1, 2, ...14} would require checking

(
14
4

)
= 1001 subsets. Using our algorithm,

we find three parameter sets:
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S1 = {1, 4, 10, 12}, S2 = {2, 5, 8, 9}, S3 = {3, 6, 7, 11, 13, 14}
with three clique numbers respectively [S1] = 2, [S2] = 2, [S3] = 3, therefore
R(3, 3, 4) ≥ 30.

The example shows, in actual computation the real percentage of the
parameter sets needing to be checked to obtain S1 is much less than 25%,
which is the conservative estimate from Theorem 3. The percentage in the
example is 34/1001 ≈ 3.4% .

5. Two new lower bounds for Ramsey numbers

Using our algorithm, we have found two sets of effective parameter sets,
and these sets yield the new lower bounds in (1) that yield the following
theorem:

Theorem 4. R(3, 3, 12) ≥ 182, R(3, 3, 13) ≥ 212.

Proof. For each p, with primitive root g = 2, we use Algorithm 1 to
obtain the parameter sets S1, S2, S3 and their related clique numbers. We
list them as follows:
(a) Let p = 181 which gives g = 2. When

S1 = {1, 4, 7, 19, 22, 32, 35, 45, 48, 50, 53, 56, 59, 62, 65, 76, 79, 89},
S2 = {2, 3, 9, 10, 17, 24, 25, 31, 38, 39, 46, 57, 61, 68, 72, 73, 80, 87},

we obtain clique numbers [S1] = [S2] = 2, [S3] = 11 which implies that
R(3, 3, 12) ≥ 182.
(b) Let p = 211 which gives g = 2. When

S1 = {1, 4, 6, 9, 23, 25, 40, 55, 58, 60, 68, 71, 73, 76, 87, 90, 92, 97, 102, 104},
S2 = {8, 11, 12, 13, 18, 27, 28, 32, 42, 48, 49, 63, 65, 72, 79, 82, 86, 88, 89, 103},

we obtain clique numbers [S1] = [S2] = 2, [S3] = 12 which implies that
R(3, 3, 13) ≥ 212. ¤
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Nove donje granice dvaju multikolornih
klasičnih Ramsey brojeva

H. Luo, W. Su i Y.–Q. Shen

Sadržaj

U radu se prezentira algoritam za iznalaženje donjih granica multi-
kolornih klasičnih Ramsey brojeva uz korǐstenje 2-normaliziranih cikličkih
grafova prvog reda. Dobivaju se nove donje granice dvaju multikolornih
klasičnih Ramsey brojeva: R(3, 3, 12) ≥ 182, R(3, 3, 13) ≥ 212.


