Results on the error function and the neutrix convolution

B. Fisher (England), M. Telci and E. Özçağ (Turkey)

Abstract. Some neutrix convolutions of the error function $\text{erf}(x)$ and its associated functions $\text{erf}_+(x)$ and $\text{erf}_-(x)$ with x^r, x^r_+ and x^r_- are evaluated. Further neutrix convolutions are deduced.

The error function $\text{erf}(x)$, see for example Sneddon [6], is the locally summable function defined by

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-u^2) \, du.$$ \hfill (1)

More generally $\text{erf}(\lambda x)$ was defined in [4] for $\lambda \neq 0$ by

$$\text{erf}(\lambda x) = \frac{2}{\sqrt{\pi}} \int_0^{\lambda x} \exp(-u^2) \, du.$$ \hfill (2)

It is easily seen that $\text{erf}(x)$ is an odd function of x.

The locally summable functions $\text{erf}_+(\lambda x)$ and $\text{erf}_-(\lambda x)$ were defined for $\lambda \neq 0$ by

$$\text{erf}_+(\lambda x) = H(x)\text{erf}(\lambda x) \quad \text{and} \quad \text{erf}_-(\lambda x) = H(-x)\text{erf}(\lambda x),$$

where H denotes Heaviside’s function. Note that

$$\text{erf}_+[\lambda(-x)] = -\text{erf}_-(\lambda x), \quad \text{and} \quad \text{erf}_-[-\lambda x] = -\text{erf}_+(\lambda x).$$ \hfill (3)

If f and g are locally summable functions then the classical convolution $f * g$ of f and g is given by

$$(f * g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t) \, dt = \int_{-\infty}^{\infty} f(x-t)g(t) \, dt.$$

1 This research was supported by TUBITAK.

2000 Mathematics Subject Classification: 46F10.

Key words and phrases: Error function, distribution, neutrix, neutrix limit, convolution, neutrix convolution.
for all values of \(x \) for which the integral exists. It follows easily that if \(f \ast g \) exists, then

\[
f \ast g = g \ast f, \\
(f \ast g)' = f' \ast g = f \ast g'.
\]

Before proving our results on the convolution, we need the following easily proved lemma:

Lemma 1.

\[
\begin{align*}
\alpha_{2r}(x) &= \int_0^x t^{2r} \exp(-t^2) \, dt \\
&= -\sum_{i=0}^{r-1} \frac{(2r)!}{2^{2i+1}r!(2r-2i)!} x^{2r-2i-1} \exp(-x^2) + \frac{(2r)!}{2^{2r+1}r!} \exp(x), \\
\alpha_{2r+1}(x) &= \int_0^x t^{2r+1} \exp(-t^2) \, dt \\
&= -\sum_{i=0}^{r} \frac{r!}{2(r-i)!} x^{2r-2i} \exp(-x^2) + \frac{r!}{2}
\end{align*}
\]

for \(r = 0, 1, 2, \ldots \), where the sum in (4) is empty when \(r = 0 \).

We now let \(\mathcal{D} \) be the space of infinitely differentiable functions with compact support and let \(\mathcal{D}' \) be the space of distributions defined on \(\mathcal{D} \).

Definition 1. The *convolution* \(f \ast g \) of two distributions \(f \) and \(g \) in \(\mathcal{D}' \) is defined by the equation

\[
\langle (f \ast g)(x), \varphi \rangle = \langle f(y), \langle g(x), \varphi(x+y) \rangle \rangle
\]

for arbitrary \(\varphi \) in \(\mathcal{D} \), provided \(f \) and \(g \) satisfy either of the conditions

(a) either \(f \) or \(g \) has bounded support,

(b) the supports of \(f \) and \(g \) are bounded on the same side,

see Gel’fand and Shilov [5].

Note that if \(f \) and \(g \) are locally summable functions satisfying either of the above conditions and the classical convolution \(f \ast g \) exists, then it is in agreement with Definition 1.

This definition of the convolution is rather restrictive and so the non–commutative neutrix convolution was introduced in [2]. In order to define the neutrix convolution product we first of all let \(\tau \) be a function in \(\mathcal{D} \) satisfying the following properties:
(i) $\tau(x) = \tau(-x)$,
(ii) $0 \leq \tau(x) \leq 1$,
(iii) $\tau(x) = 1$ for $|x| \leq \frac{1}{2}$,
(iv) $\tau(x) = 0$ for $|x| \geq 1$.

The function τ_n is now defined by

$$\tau_n(x) = \begin{cases}
1, & |x| \leq n, \\
\tau(n^n x - n^{n+1}), & x > n, \\
\tau(n^n x + n^{n+1}), & x < -n,
\end{cases}$$

for $n = 1, 2, \ldots$.

Definition 2. Let f and g be distributions in \mathcal{D}' and let $f_n = f\tau_n$ for $n = 1, 2, \ldots$. Then the neutrix convolution $f \odot g$ is defined as the neutrix limit of the sequence $\{f_n \ast g\}$, provided that the limit h exists in the sense that

$$\lim_{n \to \infty} \langle f_n \ast g, \phi \rangle = \langle h, \phi \rangle,$$

for all ϕ in \mathcal{D}, where N is the neutrix, see van der Corput [1], having domain $N' = \{1, 2, \ldots, n, \ldots\}$ and range N'' the real numbers, with negligible functions finite linear sums of the functions

$$n^\lambda \ln^{r-1} n, \ln^r n \quad (\lambda > 0, r = 1, 2, \ldots)$$

and all functions which converge to zero in the usual sense as n tends to infinity.

Note that in this definition the convolution $f_n \ast g$ is defined in Gel’fand and Shilov’s sense, the distribution f_n having bounded support. Note also that because of the lack of symmetry in the definition of $f \odot g$, the neutrix convolution is in general non-commutative.

The following theorem was proved in [2], showing that the neutrix convolution is a generalization of the convolution.

Theorem 1. Let f and g be distributions in \mathcal{D}' satisfying either condition (a) or condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution $f \odot g$ exists and

$$f \odot g = f \ast g.$$

The next theorem was also proved in [2].
Theorem 2. Let \(f \) and \(g \) be distributions in \(\mathcal{D}' \) and suppose that \(f \ast g \) exists, then the neutrix convolution \(f \ast g' \) exists and
\[
(f \ast g)' = f \ast g'.
\] (6)

Note however that \((f \ast g)' \) is not necessarily equal to \(f' \ast g \). We do however have the following lemma which was proved in [3].

Lemma 2. Let \(f \) and \(g \) be distributions in \(\mathcal{D}' \) and suppose that \(f \ast g \) exists. If \(\lim_{n \to \infty} \langle f(\tau_n) \ast g, \varphi \rangle \) exists and equals \(\langle h, \varphi \rangle \) for all \(\varphi \) in \(\mathcal{D}' \), then the neutrix convolution \(f' \ast g \) exists and
\[
(f \ast g)' = f' \ast g + h.
\] (7)

In order to define further neutrix convolution products, we increase our set of negligible functions given in Definition 2 to also include finite linear sums of the functions
\[
n^r \text{erf}(\lambda n), \quad r = 1, 2, \ldots, \quad \lambda \neq 0.
\]

The following theorem was proved in [4].

Theorem 3. The function \(n^r \text{erf}[\lambda (\alpha \pm n)], \varphi \) is a negligible function for \(r = 1, 2, \ldots, \lambda \neq 0 \) and all \(\varphi \) in \(\mathcal{D} \).

We now prove

Theorem 4. If \(\lambda \neq 0 \), then the neutrix convolution \(\text{erf}(\lambda x) \ast x_+^r \) exists and
\[
\text{erf}(\lambda x) \ast x_+^r = \frac{2}{(r + 1) \sqrt{\pi}} \sum_{i=0}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \alpha_i(\lambda x) x^{r-i+1} + \\
+ \frac{2}{(r + 1) \sqrt{\pi}} \sum_{i=1}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \beta_i x^{r-i+1}
\] (8)
for \(r = 0, 1, 2, \ldots \).

Proof. We put \(\text{erf}_n(\lambda x) = \text{erf}(\lambda x) \tau_n(x) \) for \(n = 1, 2, \ldots \). Since \(\text{erf}_n(\lambda x) \) has compact support, the classical convolution \(\text{erf}_n(\lambda x) \ast x_+^r \) exists and
\[
\frac{\sqrt{\pi}}{2} \text{erf}_n(\lambda x) \ast x_+^r = \int_{x-n}^{x} (x - t)^r \text{erf}(\lambda t) \, dt + \\
\int_{-x-n}^{-x} (x - t)^r \tau_n(t) \text{erf}(\lambda t) \, dt \\
= I_1 + I_2.
\] (9)
It is easily seen that
\[
\lim_{n \to \infty} I_2 = 0. \tag{10}
\]

Further,
\[
I_1 = \int_{-\infty}^{\lambda x} (x - t)^r \int_0^{\lambda t} \exp(-u^2) \, du \, dt
\]
\[
= \int_0^{\lambda x} \exp(-u^2) \left(\int_{\lambda t}^{\lambda x} (x - t)^r \, dt + \int_{-\infty}^{0} (x - t)^r \, dt + \int_{-\lambda n}^{0} (x - t)^r \, dt \right) \, du
\]
\[
= \frac{1}{r+1} \int_0^{\lambda x} (x - u/\lambda)^{r+1} \exp(-u^2) \, du + \frac{1}{r+1} \int_{-\lambda n}^{0} [(x - u/\lambda)^{r+1} - (x + n)^{r+1}] \exp(-u^2) \, du
\]
\[
= \frac{1}{r+1} \sum_{i=0}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \alpha_i(\lambda x)x^{-i+1} + \frac{1}{r+1} \sum_{i=1}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \alpha_i(-\lambda n)x^{-i+1}
\]
\[
+ \frac{\sqrt{\pi}}{2(r+1)} \sum_{i=1}^{r+1} \binom{r+1}{i} x^{-i+1} n \operatorname{erf}(\lambda n).
\]

Noting that
\[
\lim_{n \to \infty} \alpha_{2i}(-\lambda n) = \frac{(2i)! \sqrt{\pi} \sgn \lambda}{2^{2i+1} i!}, \quad \lim_{n \to \infty} \alpha_{2i+1}(-\lambda n) = \frac{i!}{2}
\]
for \(i = 0, 1, 2, \ldots\) and using Theorem 3, it follows that
\[
N - \lim_{n \to \infty} I_1 = \frac{1}{r+1} \sum_{i=0}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \alpha_i(\lambda x)x^{-i+1} + \frac{1}{r+1} \sum_{i=1}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \beta_i x^{-i+1}.
\]
\[
\tag{11}
\]
Equation (8) now follows from equations (9), (10) and (11).

Corollary 4.1. If \(\lambda \neq 0\), then the neutrix convolution \(\text{erf}(\lambda x) \odot x^r\) exists and
\[
\text{erf}(\lambda x) \odot x^r = \frac{2(-1)^r}{(r+1)\sqrt{\pi}} \sum_{i=0}^{r+1} \binom{r+1}{i} \lambda^{-i} (-1)^{i+1} \alpha_i(\lambda x)x^{-i+1} + \frac{2(-1)^r}{(r+1)\sqrt{\pi}} \sum_{i=1}^{r+1} \binom{r+1}{i} \lambda^{-i} \beta_i x^{-i+1}
\]
\[
for r = 0, 1, 2, \ldots
\]

for \(r = 0, 1, 2, \ldots\).
Proof. It follows from equations (4) and (5) that
\[\alpha_i(-x) = (-1)^{i+1} \alpha_i(x). \]
Equation (12) now follows on replacing \(x \) by \(-x \) in equation (8).

Corollary 4.2. If \(\lambda \neq 0 \), then the neutrix convolutions \(\exp(-\lambda^2 x^2) \ast x^r_+ \) and \(\exp(-\lambda^2 x^2) \ast x^r_- \) exist and

\[
\exp(-\lambda^2 x^2) \ast x^r_+ = \frac{1}{r+1} \sum_{i=0}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \alpha'_i(\lambda x)x^{r-i+1} + \]
\[
- \frac{1}{r+1} \sum_{i=1}^{r} \binom{r+1}{i+1} (i+1)(-\lambda)^{-i-1} \alpha_i(\lambda x)x^{r-i+1} + \]
\[
- \frac{1}{r+1} \sum_{i=0}^{r} \binom{r+1}{i+1} (i+1)(-\lambda)^{-i-1} \beta_i x^{r-i},
\]
\[
\exp(-\lambda^2 x^2) \ast x^r_- = \frac{(-1)^{r+1}}{r+1} \sum_{i=0}^{r+1} \binom{r+1}{i+1} (-\lambda)^{-i} \alpha'_i(\lambda x)x^{r-i+1} + \]
\[
- \frac{(-1)^r}{r+1} \sum_{i=1}^{r} \binom{r+1}{i+1} (i+1)(-1)^i \lambda^{-i-1} \alpha_i(\lambda x)x^{r-i} + \]
\[
+ \frac{(-1)^r}{r+1} \sum_{i=0}^{r} \binom{r+1}{i+1} (i+1)\lambda^{-i-1} \beta_i x^{r-i}
\]
for \(r = 0, 1, 2, \ldots \).

Proof. With \(x < n + n^{-n} \), we have

\[
[\text{erf}(\lambda x) \tau_n'(x)] \ast x^r_+ = \int_{-n-n^{-n}}^{-n} (x-t)^r \text{erf}(\lambda t) \, d\tau_n(t)
\]
\[
= (x+n)^r \text{erf}(-\lambda n) - \frac{2}{\sqrt{\pi}} \int_{-n-n^{-n}}^{-n} (x-t)^r \exp(-\lambda^2 t^2) \tau_n(t) \, dt + \]
\[
+ r \int_{-n-n^{-n}}^{-n} (x-t)^{r-1} \text{erf}(\lambda t) \tau_n(t) \, dt
\]
\[
= I_1 + I_2 + I_3.
\]
It is clear that
\[N \lim_{n \to \infty} I_1 = \lim_{n \to \infty} x^r \text{erf}(-\lambda n) = -\text{sgn} \lambda x^r, \]
and it follows from equations (15), (16) and (17) that
\[N \lim_{n \to \infty} [\text{erf}(\lambda x) r'_n(x)] * x^r = -\text{sgn} \lambda x^r. \] (18)

Differentiating equation (8) partially with respect to \(x \) and using Lemma 2, Theorem 3 and equation (18) gives equation (13). Equation (14) follows similarly from equation (12).

Corollary 4.3 If \(\lambda \neq 0 \), then the neutrix convolutions \([x \exp(-\lambda^2x^2)] \odot x^r_+\) and \([x \exp(-\lambda^2x^2)] \odot x^r_-\) exist and
\[
[x \exp(-\lambda^2x^2)] \odot x^r_+ = \frac{1}{r+1} \sum_{i=0}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \alpha_i'(\lambda x) x^{r-i+2} + \\
+ \frac{1}{r+1} \sum_{i=1}^{r+1} \binom{r+1}{i} (-\lambda)^{-i-1} \alpha_i(\lambda x) x^{r-i+1} + \\
+ \frac{1}{r+1} \sum_{i=1}^{r+1} \binom{r+1}{i} i(-\lambda)^{-i-1} \beta_i x^{r-i+1}, \tag{19}
\]
\[
[x \exp(-\lambda^2x^2)] \odot x^r_- = \frac{(-1)^r}{r+1} \sum_{i=0}^{r+1} \binom{r+1}{i} (-\lambda)^{-i} \alpha_i'(\lambda x) x^{r-i+2} + \\
- \frac{(-1)^r}{r+1} \sum_{i=1}^{r+1} \binom{r+1}{i} (-\lambda)^{-i-1} \alpha_i(\lambda x) x^{r-i+1} + \\
- \frac{(-1)^r}{r+1} \sum_{i=1}^{r+1} \binom{r+1}{i} i\lambda^{-i-1} \beta_i x^{r-i+1}, \tag{20}
\]
for \(r = 0, 1, 2, \ldots \).

Proof. Equation (19) follows on differentiating equation (8) partially with respect to \(x \). Equation (20) follows similarly from equation (12).

Corollary 4.4 If \(\lambda \neq 0 \), then the neutrix convolution \(\text{erf}(\lambda x) \odot x^r \) exists and
\[
\text{erf}(\lambda x) \odot x^r = -\text{sgn} \lambda x^{r} \sum_{i=0}^{\left\lceil \frac{r+1}{2} \right\rceil} \frac{(2i)!}{(2^i-1)!} \lambda^{-2i} x^{r-2i+1} \tag{21}
\]
for $r = 0, 1, 2, \ldots$, where $[a]$ denotes the integer part of a.

Proof. Noting that $x^r = x^r_+ + (-1)^r x^r_-$, it follows from equations (8) and (12) that

$$\text{erf}(\lambda x) \otimes x^r = \frac{2}{(r+1)\sqrt{\pi}} \sum_{i=0}^{r+1} \binom{r+1}{i} [1 + (-1)^i\lambda^{-i}\beta_i] x^{r-i+1}$$

$$= \frac{4}{(r+1)\sqrt{\pi}} \sum_{i=0}^{[(r+1)/2]} \binom{r+1}{2i} \lambda^{-2i}\beta_{2i} x^{r-2i+1}$$

and equation (21) follows.

Theorem 5. If $\lambda \neq 0$, then the neutrix convolution $[x^s \exp(-\lambda^2 x^2)] \otimes x^r$ exists and

$$[x^s \exp(-\lambda^2 x^2)] \otimes x^r = \frac{\sqrt{\pi} \text{sgn} \lambda}{r+1} \sum_{i=0}^{[(r+1)/2]} \binom{r+1}{2i} \frac{(2i+1)(2s+2i)!}{2^{2s+2i}(s+i)!} \lambda^{-2s-2i} x^{r-2i}, \quad (22)$$

$$[x^{s+1} \exp(-\lambda^2 x^2)] \otimes x^r = \frac{\sqrt{\pi} \text{sgn} \lambda}{r+1} \sum_{i=0}^{[(r+1)/2]} \binom{r+1}{2i} \frac{i(2s+2i)!}{2^{2s+2i-1}(s+i)!} \lambda^{-2s-2i} x^{r-2i+1}, \quad (23)$$

for $r, s = 0, 1, 2, \ldots$.

Proof. With $x < n + n^{-n}$, we have

$$[t^s \exp(-\lambda^2 x^2) \tau^*_n(x)] \otimes x^r_+ = \int_{-n-n^{-n}}^{-n} (x - t)^r t^s \exp(-\lambda^2 t^2) \, d\tau_n(t)$$

$$= (x + n)^r (-n)^s \exp(-\lambda^2 n^2)$$

$$- \int_{-n-n^{-n}}^{-n} [(x - t)^r t^s \exp(-\lambda^2 t^2)]' \tau_n(t) \, dt$$

and it follows easily that

$$\lim_{n \to \infty} [t^s \exp(-\lambda^2 x^2) \tau^*_n(x)] \otimes x^r_+ = 0. \quad (24)$$

Differentiating equation (21) partially with respect to x and using the Lemma and equation (24) now gives equation (22) for the case $s = 0$.
Now suppose that equation (22) holds for some s. Then differentiating equation (22) partially with respect to λ we get

$$ [x^{2s+2} \exp(-\lambda^2 x^2)] \ast x^r = $$

$$ = -\sqrt{\pi} \frac{\text{sgn} \lambda}{r+1} \sum_{i=0}^{(r+1)/2} \binom{r+1}{2i} \frac{(2i+1)(2i+2s)!}{2^{2s+2i+1}(s+i)!} (2s+2i+1) \lambda^{-2s-2i-3} x^{r-2i} $$

and equation (22) follows by induction.

Next, differentiating equation (21) partially with respect to λ gives equation (23) for the case $s = 0$.

Now suppose that equation (23) holds for some s. Then differentiating equation (23) partially with respect to λ we get

$$ [x^{2s+3} \exp(-\lambda^2 x^2)] \ast x^r = $$

$$ = \sqrt{\pi} \frac{\text{sgn} \lambda}{r+1} \sum_{i=0}^{(r+1)/2} \binom{r+1}{2i} \frac{i(2s+2i)!}{2^{2s+2i}(s+i)!} (2s+2i+1) \lambda^{-2s-2i-3} x^{r-2i+1} $$

and equation (23) follows by induction.

For further related results, see [4].

REFERENCES

Rezultati o funkciji greške i neutrix konvoluciji

B. Fisher, M. Telci i E. Özcag

Sadržaj

U radu se izračunavaju neke neutrix konvolucije funkcije greške erf(x) i njenih pridruženih funkcija erf+(x) i erf−(x) sa x', x'+ i x'−. Daljnje neutrix konvolucije su izvedene.