ON THE DUAL BASIS OF PROJECTIVE SEMIMODULES
AND ITS APPLICATIONS

R. P. DEORE AND K. B. PATIL

Abstract. The dual basis lemma for projective semimodule over a
semiring is proved. We show under which conditions the two categories
cs mod $\text{-} R$ and $S \text{-} cs mod$ of cancellative semimodules are equivalent
and how these equivalences are realized.

1. Introduction

Projective semimodules over semirings are characterized in [2]. Here we
generalize one of the classical tools from the theory of modules over rings
called the dual basis lemma, for projective semimodule over a semiring. We
define generator and progenerator semimodules over semirings and show
under which conditions the two categories $cs mod - R$ and $S - cs mod$ of
cancellative semimodules are equivalent and how such equivalences are real-
ized.

2. Results

Dual Basis Lemma. Let M be an R–semimodule. Then M is projective
if and only if there exists $\{m_i\}_{i \in I} \subset M$ and $\{f_i\}_{i \in I} \subset \text{Hom}_R(M, R)$ (I some
index set) such that

a) for every $m \in M$, $f_i(m) = 0$ for all but finitely many $i \in I$ and
b) for every $m \in M$, $\sum_{i \in I} f_i(m) m_i = m$.

The collection $\{m_i, f_i\}$ is called a dual basis for M.

Proof. Let $R^{(I)}$ be a free R–semimodule and θ be a surjective R–ho-
momorphism from $R^{(I)}$ to M where $R^{(I)}$ is the set of all functions from I to R
with finite support.

Since M is a projective semimodule, there exists an R– homomorphism
$\psi : M \to R^{(I)}$ such that $\theta \psi = \text{Id}_M$. Let $\pi_i : R^{(I)} \to R$ be given by

2000 Mathematics Subject Classification. 16Y 60.
\[\pi_i(f) = f(i) \] for all \(f \in R(I) \), then for any \(f \) in \(R(I) \) we have \(\sum_{i \in I} \pi_i(f)e_i = f \), since \(\left[\sum_{i \in I} \pi_i(f)e_i \right](j) = \pi_j(f) = f(j) \) where \(e_i \in R(I) \) defined by

\[
e_i(j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}
\]

Now set \(m_i = \theta(e_i) \) and \(\pi_i \psi = f_i \). For \(m \in M \) clearly \(f_i(m) = 0 \), for all but finitely many \(i \).

Now,

\[
\sum_{i \in I} f_i(m)m_i = \sum_{i \in I} (\pi_i \psi)(m)m_i
= \sum_{i \in I} \pi_i(\psi(m))\theta(e_i)
= \theta \left(\sum_{i \in I} \pi_i(\psi(m)) \right)(e_i)
= \theta(\psi(m))
= (\theta \psi)(m)
= m, \text{ for all } m \in M.
\]

Thus \(\{ m_i, f_i \} \) forms a dual basis for \(M \).

Conversely, suppose that \(\{ m_i, f_i \} \) is a dual basis for \(R\text{-semimodule } M \).

Define \(\psi : M \to R(I) \) by \(\psi(m)(i) = f_i(m) \) for all \(m \in M \) and \(\theta : R(I) \to M \) by \(\theta(f) = \sum_{i \in I} f(i)m_i \) for \(m \in M \) and \(f \in R(I) \). Then \(\theta \) and \(\psi \) are \(R\text{-homomorphisms of left } R\text{-semimodules and}

\[
(\theta \psi)(m) = \theta(\psi(m))
= \theta(f_i(m))
= \sum_{i \in I} f_i(m)m_i
= m, \text{ for all } m \in M.
\]

Let \(\phi : L \to K \) be a surjective \(R\text{-homomorphism of left } R\text{-semimodules and } \alpha : M \to K \) be an \(R\text{-homomorphism. Since } R(I) \text{ is projective, then there exists an } R\text{-homomorphism } \beta : R(I) \to L \text{ such that } \phi \beta = \alpha \theta \Rightarrow \phi \beta \psi = \alpha \theta \psi = \alpha \text{ and } \beta \psi : M \to L \text{ is a map having the property that we seek in order to prove the first condition of projectiveness. Now let } \phi : L \to K \text{ be a steady } R\text{-homomorphism of left } R\text{-semimodules and } \alpha, \alpha' : M \to L \text{ be } R\text{-homomorphisms satisfying } \phi \alpha = \phi \alpha' \text{ which implies that } \phi \alpha \theta = \phi \alpha' \theta. \)
ON THE DUAL BASIS OF PROJECTIVE SEMIMODULES

Since $R(I)$ is projective, there exist R–homomorphisms $\beta, \beta' : R(I) \to L$ satisfying $\phi \beta = \phi \beta'$ and $\alpha \theta + \beta = \alpha' \theta + \beta'$. This implies $\phi(\beta \psi) = \phi(\beta' \psi)$ and $\alpha + \beta \psi = \alpha \theta \psi + \beta \psi = (\alpha \theta + \beta) \psi = (\alpha' \theta + \beta') \psi = \alpha' + \beta' \psi$.

Hence the second condition of projectiveness. \hfill \Box

Tensor product is as defined in [2]. Note that if M is a cancellative left R–semimodule then $R \otimes M \cong M$.

Proposition 1. Let R be a cancellative semiring and M be a cancellative R–semimodule. Then $\text{Hom}_R(R, M) \cong M$.

Proposition 2. Let R be a commutative semiring and let A and B be R–semialgebras. Let M be a finitely generated and projective A–semimodule and let N be a finitely generated and projective B–semimodule. Then

$$\text{Hom}_A(M, M) \otimes \text{Hom}_B(N, N) \cong \text{Hom}_{A \otimes B}(M \otimes N, M \otimes N)$$

where $\otimes = \otimes_R$.

Proof. Let $\{x_j, f_j\}, \{y_i, g_i\}$ be the dual bases for M and N respectively. Then for any m in M and n in N, $\sum_j f_j(m) x_j = m$ and $\sum_i g_i(n) y_i = n$.

Define,

$$\theta_j : M \otimes \text{Hom}_B(N, N) \to \text{Hom}_A(M, M) \otimes \text{Hom}_B(N, N)$$

by

$$\theta_j(a \otimes h) = f_j(\) a \otimes h$$

and

$$\pi_i : M \otimes N \to M \otimes \text{Hom}_B(N, N)$$

given by

$$\pi_i(b_1 \otimes b_2) = b_1 \otimes g_i(\) b_2.$$

Now define

$$\psi : \text{Hom}_{A \otimes B}(M \otimes N, M \otimes N) \to \text{Hom}_A(M, M) \otimes \text{Hom}_B(N, N)$$

by

$$\psi(f) = \sum_{i,j} \theta_j(\pi_i[f(x_j \otimes y_i)])$$

and

$$\psi' : \text{Hom}_A(M, M) \otimes \text{Hom}_B(N, N) \to \text{Hom}_{A \otimes B}(M \otimes N, M \otimes N)$$

by

$$\psi'(h_1 \otimes h_2) = h_1 \otimes h_2.$$
Consider,
\[
\psi \psi'(h_1 \otimes h_2)(m \otimes n) = \psi(h_1 \otimes h_2)(m \otimes n)
\]
\[
= \sum_{i,j} \theta_j(\pi_i[h_1 \otimes h_2(x_j \otimes y_i)])(m \otimes n)
\]
\[
= \sum_{i,j} \theta_j(\pi_i[(h_1(x_j) \otimes h_2(y_i)])(m \otimes n))
\]
\[
= \sum_{i,j} \theta_j(h_1(x_j) \otimes g_i(h_2(y_i))(m \otimes n)
\]
\[
= (h_1 \otimes h_2)\left(\sum_{i,j} f_j(m)x_j \otimes g_i(n)y_i\right)
\]
\[
= (h_1 \otimes h_2)(m \otimes n)
\]
\[
\Rightarrow \psi \psi'(h_1 \otimes h_2)(m \otimes n) = (h_1 \otimes h_2)(m \otimes n).
\]

Clearly, \(\psi \psi(f) = f\). Hence \(\psi\) is a one–one onto homomorphism.

For any \(R\)–semimodule \(M\), consider the subset \(I_R(M)\) of \(R\) consisting of the element of the form \(\sum_{i=1}^n f_i(m_i)\) where the \(f_i \in \text{Hom}_R(M, R)\) and the \(m_i \in M\). The \(I_R(M)\) is two–sided ideal in \(R\) so \(I_R(M)\) is an ideal in \(R\) and is called the **trace ideal** of \(M\). An \(R\)–semimodule \(M\) is an **\(R\)–generator** if \(I_R(M) = R\). Thus \(M\) is an \(R\)–generator if and only if there exist \(f_1, f_2, \ldots, f_n \in \text{Hom}_R(M, R)\) and \(m_1, m_2, \ldots, m_n \in M\) with \(\sum_{i=1}^n f_i(m_i) = 1\).

An \(R\)–semimodule \(M\) is an **\(R\)–progenerator** if \(M\) is a finitely generated, projective and generator over \(R\).

Proposition 3. Let \(R\) be a commutative semiring and let \(M\) and \(N\) be \(R\)–semimodules. Then

i) \(M \otimes_R N\) is finitely generated over \(R\) if both \(M\) and \(N\) are.

ii) \(M \otimes_R N\) is \(R\)–projective if both \(M\) and \(N\) are.

iii) \(M \otimes_R N\) is \(R\)–generator if both \(M\) and \(N\) are.

Henceforth we show that **\(csmod\)–\(R\)** and **\(S\)–\(csmod\)** are equivalent categories where \(S\) is chosen as the cancellative semiring of endomorphisms of some cancellative **\(R\)–progenerator**.

Let \(R\) be any cancellative semiring and let \(M\) be any cancellative \(R\)–semimodule. Define \(M^* = \text{Hom}_R(M, R)\) and \(S = \text{Hom}_R(M, M)\). Note that \(M^*, S\) are cancellative. Since \(R\) is a cancellative \((R \otimes R)\) bisemimodule, \(M^*\) is a cancellative right \(R\)–semimodule under the operation \((f \cdot r)m = f(m)r\).

Moreover \(M\) is a cancellative left \(S\)–semimodule with \(s \cdot m = s(m)\). Under this operation \(M\) is a cancellative left \(R\)–left \(S\) bisemimodule. Hence \(M^*\) becomes a cancellative right \(S\)–semimodule under the operation \((f \cdot s)(m) =
$f(s(m))$. M^* is a cancellative right R–right S–bisemimodule. We can form $M^* \otimes_R M$ and $M^* \otimes_S M$. Moreover $M^* \otimes_R M$ is a cancellative left S–right S–bisemimodule by virtue of M being a cancellative left R–left R–bisemimodule and M^* being a cancellative right R–right S–bisemimodule. Similarly $M^* \otimes_S M$ is a cancellative left R–right R bisemimodule.

Let θ_R denote the map from $M^* \otimes_R M$ to $S = \text{Hom}_R(M, M)$ given by $[\theta_R \sum_i (f_i \otimes m_i)](m) = \sum_i f_i(m)m_i$. θ_R is both a left and a right S–semimodule homomorphism. Let θ_S denote the map from $M^* \otimes_S M$ to R given by $\theta_S(\sum_i f_i \otimes m_i) = \sum_i f_i(m_i)$. θ_S is a right and left R–semimodule homomorphism, whose image is the trace ideal $I_R(M)$.

Lemma 1. Let R be any cancellative semiring and M be any cancellative R–semimodule. θ_R is onto iff M is finitely generated and projective. Moreover if θ_R is onto then it is one–one.

Proof. Suppose that M is finitely generated and projective. Therefore there exists a dual basis $f_1, f_2, \ldots, f_n \in M^*$ and $m_1, m_2, \ldots, m_n \in M$, such that $\theta_R[\sum_{i=1}^{n} (f_i \otimes m_i)](m) = g$ for any g in $S = \text{Hom}_R(M, M)$. Hence θ_R is onto.

Conversely, assume that θ_R is onto. Then there exist $\sum_{i=1}^{n} f_i \otimes m_i \in M^* \otimes_R M$ such that $\theta_R(\sum_{i=1}^{n} f_i \otimes m_i)$ is the identity map from M to M, that is, $\sum_{i=1}^{n} f_i(m)m_i = m$ for all $m \in M$.

Thus the set f_1, f_2, \ldots, f_n, and m_1, m_2, \ldots, m_n forms a finite dual basis for M. Therefore by the dual basis lemma, M is finitely generated and projective.

Now given that θ_R is onto, we know that M possesses a dual basis $f_1, f_2, \ldots, f_n \in M^*$ and $m_1, m_2, \ldots, m_n \in M$.

We claim that θ_R is one–one. Let $\sum_j g_j \otimes n_j, \sum_k h_k \otimes p_k \in M^* \otimes_R M$ satisfy

$$\theta_R\left(\sum_j g_j \otimes n_j\right)(m) = \theta_R\left(\sum_k h_k \otimes p_k\right)(m), \ \forall m \in M.$$

Then

$$\sum_j g_j(m)n_j = \sum_k h_k(m)p_k.$$

Now

$$\sum_j g_j \otimes n_j = \sum_j g_j \otimes \left(\sum_i f_i(n_j)\right)m_i = \sum_{i,j} g_j f_i(n_j) \otimes m_i.$$

But

$$\sum_j (g_j f_i(n_j))(m) = \sum_j (g_j(f_i(n_j))(m))$$
\[
\sum_j (g_j(m)f_i(n_j)) = f_i\left(\sum_j g_j(m)\right) = f_i\left(\sum_k h_k(m)\right) = \sum_k h_k(m)f_i(p_k) = \sum_k (h_kf_i(p_k))(m).
\]

Therefore

\[
\left[\sum_j g_jf_i(n_j)\right](m) = \left[\sum_k h_kf_i(p_k)\right](m), \quad \forall m \in M
\]

\[
\Rightarrow \sum_j g_jf_i(n_j) = \sum_k h_kf_i(p_k)
\]

\[
\Rightarrow \sum_{i,j} g_jf_i(n_j) \otimes m_i = \sum_{i,k} h_kf_i(p_k) \otimes m_i
\]

\[
\Rightarrow \sum_j g_j \otimes n_j = \sum_k h_k \otimes p_k.
\]

Thus

\[
\theta_R\left(\sum_j g_j \otimes n_j\right) = \theta_R\left(\sum_k h_k \otimes p_k\right)
\]

\[
\Rightarrow \sum_j g_j \otimes n_j = \sum_k h_k \otimes p_k.
\]

Hence \(\theta_R\) is one-one. \(\square\)

Lemma 2. Let \(R\) be any cancellative semiring, \(M\) be any cancellative \(R\)-semimodule and \(S = \text{Hom}_R(M, M)\) be a cancellative semiring. \(\theta_S\) is onto if and only if \(M\) is a generator. Moreover if \(\theta_S\) is onto then it is one-one.

Proof. Since the image of \(\theta_S\) is equal to \(I_R(M)\), \(\theta_S\) is onto if and only if \(I_R(M) = R\), that is \(M\) is a generator over \(R\).

Suppose \(\theta_S\) is onto. We claim that \(\theta_S\) is one-one. Let \(\sum_j h_j \otimes n_j, \sum_k g_k \otimes p_k \in M^* \otimes_S M\) satisfy

\[
\theta_S\left(\sum_j h_j \otimes n_j\right) = \theta_S\left(\sum_k g_k \otimes p_k\right).
\]
Then

\[\sum_j h_j(n_j) = \sum_k g_k(p_k). \]

Since \(\theta_S \) is onto, there exist \(f_1, f_2, \ldots, f_n \in M^* \) and \(m_1, m_2, \ldots, m_n \in M \) with

\[\sum_i f_i(m_i) = 1. \]

Now

\[\sum_j h_j \otimes n_j = \sum_j h_j \otimes \left(\sum_i f_i(m_i) \right) n_j \]
\[= \sum_{i,j} h_j \otimes \theta_R(f_i \otimes n_j)(m_i) \]
\[= \sum_i \left(\sum_j h_j \theta_R(f_i \otimes n_j) \right) \otimes m_i. \]

Note that for every \(i \) and every \(m \in M \),

\[\left[\sum_j h_j \theta_R(f_i \otimes n_j) \right](m) = \sum_j h_j(f_i(m)n_j) \]
\[= f_i(m) \left(\sum_j h_j(n_j) \right) \]
\[= f_i(m) \left(\sum_k g_k(p_k) \right) \]
\[= \sum_k g_k(f_i(m)p_k) \]
\[= \left[\sum_k g_k \theta_R(f_i \otimes p_k) \right](m). \]

Therefore

\[\left[\sum_j h_j \theta_R(f_i \otimes n_j) \right](m) = \left[\sum_k g_k \theta_R(f_i \otimes p_k) \right](m), \forall m \in M. \]

So,

\[\left[\sum_j h_j \theta_R(f_i \otimes n_j) \right] = \left[\sum_k g_k \theta_R(f_i \otimes p_k) \right] \]
\[\Rightarrow \left[\sum_{i,j} h_j \theta_R(f_i \otimes n_j) \right] \otimes m_i = \left[\sum_{i,k} g_k \theta_R(f_i \otimes p_k) \right] \otimes m_i \]
\[\Rightarrow \sum_j h_j \otimes n_j = \sum_k g_k \otimes p_k. \]
Thus

\[\theta_S \left(\sum_j h_j \otimes n_j \right) = \theta_S \left(\sum_k g_k \otimes p_k \right) \]

\[\Rightarrow \sum_j h_j \otimes n_j = \sum_k g_k \otimes p_k. \]

Hence \(\theta_S \) is one–one.

For any cancellative left \(R \)–semimodule \(M \), we have seen that \(M \) is a left \(R \)–left \(S \) cancellative bisemimodule and \(M^* = \text{Hom}_R(M, R) \) is a right \(R \)–right \(S \) cancellative bisemimodule where \(S = \text{Hom}_R(M, M) \) is a cancellative semiring. Therefore for any cancellative right \(R \)–semimodule \(L \), \(L \otimes_R M \) has the structure of a left cancellative \(S \)–semimodule, while for any cancellative left \(S \)–semimodule \(N \), \(M^* \otimes_S N \) has the structure of a cancellative right \(R \)–semimodule.

Then

\[(\) \otimes_R M : \text{cs mod } -R \rightarrow S - \text{cs mod} \]

and

\[M^* \otimes_S (\) : S - \text{cs mod} \rightarrow \text{cs mod } -R \]

are functors.

Theorem 4. Let \(R \) be any cancellative semiring, \(M \) be any cancellative left \(R \)–semimodule and left \(R \) progenerator. Consider the cancellative semiring \(S = \text{Hom}_R(M, M) \) and the cancellative semimodule \(M^* = \text{Hom}_R(M, R) \). Then the functors

\[(\) \otimes_R M : \text{cs mod } -R \rightarrow S - \text{cs mod}, \]

\[M^* \otimes_S (\) : S - \text{cs mod} \rightarrow \text{cs mod } -R \]

are inverse equivalences.

Proof. Let \(L \in \text{cs mod } -R \). Then we have

\[M^* \otimes_S (L \otimes_R M) \cong M^* \otimes_S (M \otimes_R L) \]

\[\cong (M^* \otimes_S M) \otimes_R L \]

\[\cong (R \otimes_R L). \]

\[\cong L \otimes_R R \cong L. \]

Similarly for any cancellative left \(S \)–semimodule \(N \),

\[(M^* \otimes_S N) \otimes_R M \cong (N \otimes_S M^*) \otimes_R M \]

\[\cong N \otimes_S (M^* \otimes_R M) \]

\[\cong N \otimes_S S \]

\[\cong S \otimes_S N \cong N. \]
Hence the functors are inverse equivalences.

Acknowledgement. The authors would like to thank the referee and editor in chief for useful suggestions for the improvement of the article.

References

(Received: November 12, 2004) R. P. Deore
(Revised: June 21, 2005) Department of Mathematics
North Maharashtra University
Jalgaon–425001, M.S. (India)
E-mail: rpdeore123@yahoo.com

K.B. Patil
Department of Mathematics
Jaihind College
Dhule–424002, M.S. (India)