GENERAL SUMMABILITY FACTOR THEOREMS AND APPLICATIONS

B. E. RHoadES AND EKREM SAVAŞ

Abstract. We obtain sufficient and (different) necessary conditions for the series \(\sum a_n \), which is absolutely summable of order \(k \) by a triangular matrix method \(A \), to be such that \(\sum a_n \lambda_n \) is absolutely summable of order \(k \) by a triangular matrix \(B \). As corollaries we obtain a number of inclusion theorems.

In a recent paper the authors [3] obtained sufficient conditions for a series \(\sum a_n \) which is absolutely summable of order \(k \) by a weighted mean method to be such that \(\sum a_n \lambda_n \) is absolutely summable of order \(k \) by a triangular matrix method. In this paper we establish a more general summability factor theorem involving two lower triangular matrices. Using these results we obtain a number of corollaries.

Let \(T \) be a lower triangular matrix, \(\{s_n\} \) a sequence. Then

\[
T_n := \sum_{\nu=0}^{n} t_{n\nu} s_\nu.
\]

A series \(\sum a_n \) is said to be summable \(|T|_k, k \geq 1 \) if

\[
\sum_{n=1}^{\infty} n^{k-1} |T_n - T_{n-1}|^k < \infty. \quad (1)
\]

We may associate with \(T \) two lower triangular matrices \(\bar{T} \) and \(\hat{T} \) as follows:

\[
\bar{t}_{n\nu} := \sum_{r=\nu}^{n} t_{nr}, \quad n, \nu = 0, 1, 2, \ldots,
\]

and

\[
\hat{t}_{n\nu} := \bar{t}_{n\nu} - \bar{t}_{n-1,\nu}, \quad n = 1, 2, 3, \ldots.
\]

2000 Mathematics Subject Classification. Primary: 40G99; Secondary: 40G05, 40D15.

Key words and phrases. Absolute summability, weighted mean matrix, Cesáro matrix, summability factor.

This research was completed while the second author was a Fulbright scholar at Indiana University, Bloomington, IN, USA, during the fall semester of 2003.
With \(s_n := \sum_{i=0}^{n} \lambda_i a_i \).

\[
y_n := \sum_{i=0}^{n} t_{ni} s_i = \sum_{i=0}^{n} t_{ni} \sum_{\nu=0}^{i} \lambda_\nu a_\nu = \sum_{\nu=0}^{n} \lambda_\nu a_\nu \sum_{i=\nu}^{n} t_{ni} = \sum_{\nu=0}^{n} \hat{t}_{n\nu} \lambda_\nu a_\nu
\]

and

\[
Y_n := y_n - y_{n-1} = \sum_{\nu=0}^{n} (\hat{t}_{n\nu} - \hat{t}_{n-1,\nu}) \lambda_\nu a_\nu = \sum_{\nu=0}^{n} \hat{t}_{n\nu} \lambda_\nu a_\nu.
\]

We shall call \(T \) a triangle if \(T \) is lower triangular and \(t_{nn} \neq 0 \) for each \(n \).

The notation \(\Delta_\nu \hat{a}_{n\nu} \) means \(\hat{a}_{n\nu} - \hat{a}_{n,\nu+1} \).

Theorem 1 of this paper represents the first time that two arbitrary triangles have been used in a summability factor theorem for absolute summability of order \(k > 1 \). By restricting \(A \) and \(B \) to be specific matrices we obtain summability factor theorems for specific classes of matrices, such as weighted means and the Cesàro matrix of order 1. By setting each \(\lambda_n = 1 \) we obtain a number of inclusion theorems.

The notation \(\lambda \in (|A|_k, |B|_k) \) will be used to represent the statement that, if \(\sum a_n \) is summable \(|A|_k \), then \(\sum a_n \lambda_n \) is summable \(|B|_k \).

Theorem 1. Let \(\{\lambda_n\} \) be a sequence of constants, \(A \) and \(B \) triangles satisfying

1. \(\frac{|b_{nn}|}{|a_{nn}|} = O\left(\frac{1}{|\lambda_n|}\right) \),
2. \(|a_{nn} - a_{n+1,n}| = O(|a_{nn}a_{n+1,n+1}|) \),
3. \(\sum_{\nu=0}^{n-1} |\Delta_\nu (\hat{b}_{n\nu} \lambda_\nu)| = O(|b_{nn} \lambda_n|) \),
4. \(\sum_{n=\nu+1}^{\infty} |n| |b_{nn} \lambda_n|^{k-1} |\Delta_\nu (\hat{b}_{n\nu} \lambda_\nu)| = O(\nu^{k-1} |b_{\nu\nu} \lambda_\nu|^k) \),
5. \(\sum_{\nu=0}^{n-1} |b_{\nu\nu}| |\hat{b}_{n,\nu+1} \lambda_{\nu+1}| = O(|b_{nn} \lambda_{n+1}|) \),
6. \(\sum_{n=\nu+1}^{\infty} |n| |b_{nn} \lambda_{n+1}|^{k-1} |\hat{b}_{n,\nu+1}| = O((\nu |b_{\nu\nu} \lambda_{\nu+1}|)^{k-1}) \),
7. \(\sum_{\nu=1}^{\infty} \nu^{k-1} |\lambda_{\nu+1} X_\nu|^k = O(1) \),
\((\text{viii}) \sum_{n=1}^{\infty} n^{k-1} \left| \sum_{\nu=2}^{n} \hat{b}_{\nu \nu} \lambda_{\nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i \right|^2 = O(1) \)

where \(X_{\nu}, X_i \) and \(\hat{a}_{\nu i} \) are defined latter, in formulas (4) and (5).

Then \(\lambda \in (|A|_k, |B|_k) \).

Proof. If \(y_n \) denotes the \(n \)-th term of the \(B \)-transform of a sequence \(\{s_n\} \), then

\[
y_n = \sum_{i=0}^{n} b_{ni} s_i = \sum_{i=0}^{n} b_{ni} \sum_{\nu=0}^{i} \lambda_{\nu} a_{\nu} = \sum_{\nu=0}^{n} \lambda_{\nu} a_{\nu} \sum_{i=0}^{\nu} b_{ni} = \sum_{\nu=0}^{n} \hat{b}_{\nu \nu} \lambda_{\nu} a_{\nu}.
\]

\[
y_{n-1} = \sum_{\nu=0}^{n-1} \hat{b}_{n-1,\nu} \lambda_{\nu} a_{\nu}.
\]

\[
Y_n := y_n - y_{n-1} = \sum_{\nu=0}^{n} \hat{b}_{\nu \nu} \lambda_{\nu} a_{\nu}, \quad (3)
\]

where \(s_n = \sum_{i=0}^{n} \lambda_{i} a_{i} \).

Let \(x_n \) denote the \(n \)-th term of the \(A \)-transform of a series \(\sum a_n \). Then

\[
X_n := x_n - x_{n-1} = \sum_{\nu=0}^{n} \hat{a}_{\nu \nu} a_{\nu}. \quad (4)
\]

Since \(\hat{A} \) is a triangle, it has a unique two-sided inverse, which we shall denote by \(\hat{A}' \). Thus we may solve (4) for \(a_n \) to obtain

\[
a_n = \sum_{\nu=0}^{n} \hat{a}_{\nu \nu}' X_{\nu}. \quad (5)
\]

Substituting (5) into (3) yields

\[
Y_n = \sum_{\nu=0}^{n} \hat{b}_{\nu \nu} \lambda_{\nu} \hat{a}_{\nu \nu}' = \sum_{\nu=0}^{n} \hat{b}_{\nu \nu} \lambda_{\nu} \left(\sum_{i=0}^{\nu-2} \hat{a}_{\nu i}' X_i + \hat{a}_{\nu \nu-1}' X_{\nu-1} + \hat{a}_{\nu \nu}' X_{\nu} \right)
\]

\[
= \sum_{\nu=0}^{n} \hat{b}_{\nu \nu} \lambda_{\nu} \hat{a}_{\nu \nu}' X_{\nu} + \sum_{\nu=1}^{n} \hat{b}_{\nu \nu} \lambda_{\nu} \hat{a}_{\nu \nu-1}' X_{\nu-1}
\]
\[
\begin{align*}
&+ \sum_{\nu=2}^{n} b_{n\nu} \lambda_{\nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i \\
&= \hat{b}_{nn} \lambda_{nn} \hat{a}_{nn} X_n + \sum_{\nu=0}^{n-1} \hat{b}_{n\nu} \lambda_{\nu} \hat{a}_{\nu \nu} X_{\nu} + \sum_{\nu=0}^{n-1} \hat{b}_{n,\nu+1} \lambda_{\nu+1} \hat{a}_{\nu+1,\nu} X_{\nu} \\
&\quad + \sum_{\nu=2}^{n} b_{n\nu} \lambda_{\nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i \\
&= \frac{b_{nn}}{a_{nn}} \lambda_{nn} X_n + \sum_{\nu=0}^{n-1} \left(\hat{b}_{n\nu} \lambda_{\nu} \hat{a}_{\nu \nu} + \hat{b}_{n,\nu+1} \lambda_{\nu+1} \hat{a}_{\nu+1,\nu} + \hat{b}_{n,\nu} \lambda_{\nu} \hat{a}_{\nu \nu} \right) X_{\nu} \\
&\quad + \sum_{\nu=2}^{n} b_{n\nu} \lambda_{\nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i \\
&= \frac{b_{nn}}{a_{nn}} \lambda_{nn} X_n + \sum_{\nu=0}^{n-1} \frac{\Delta_{\nu} \left(\hat{b}_{n\nu} \lambda_{\nu} \right)}{a_{\nu \nu}} X_{\nu} \\
&\quad + \sum_{\nu=0}^{n-1} \hat{b}_{n,\nu+1} \lambda_{\nu+1} \left(\hat{a}_{\nu \nu} + \hat{a}_{\nu+1,\nu} \right) X_{\nu} + \sum_{\nu=2}^{n} b_{n\nu} \lambda_{\nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i.
\end{align*}
\]

Using the fact that
\[
a_{\nu \nu} + \hat{a}_{\nu+1,\nu} = \frac{1}{a_{\nu \nu}} \left(\frac{a_{\nu \nu} - a_{\nu+1,\nu}}{a_{\nu+1,\nu+1}} \right),
\]
and substituting (7) into (6), we have
\[
Y_n = \frac{b_{nn}}{a_{nn}} \lambda_{nn} X_n + \sum_{\nu=0}^{n-1} \frac{\Delta_{\nu} \left(\hat{b}_{n\nu} \lambda_{\nu} \right)}{a_{\nu \nu}} X_{\nu} + \sum_{\nu=0}^{n-1} \hat{b}_{n,\nu+1} \lambda_{\nu+1} \left(\frac{a_{\nu \nu} - a_{\nu+1,\nu}}{a_{\nu \nu} a_{\nu+1,\nu+1}} \right) X_{\nu} \\
\quad + \sum_{\nu=2}^{n} b_{n\nu} \lambda_{\nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i \\
= T_{n1} + T_{n2} + T_{n3} + T_{n4}.
\]
By Minkowski’s inequality it is sufficient to show that

\[\sum_{n=1}^{\infty} n^{k-1} |T_{ni}|^{k} < \infty, \quad i = 1, 2, 3, 4. \]

Using (i)

\[\sum_{n=1}^{\infty} n^{k-1} |T_{n1}|^{k} = \sum_{n=1}^{\infty} n^{k-1} \left| \frac{b_{nn}}{a_{nn}} \lambda_{n} X_{n} \right|^{k} \]

\[= O(1) \sum_{n=1}^{\infty} n^{k-1} |X_{n}|^{k} = O(1), \]

since \(\sum a_{n} \) is summable \(|A|_{k} \).

Using (i), (iii), (iv) and H"{o}lder’s inequality,

\[\sum_{n=1}^{\infty} n^{k-1} |T_{n2}|^{k} = \sum_{n=1}^{\infty} n^{k-1} \left| \sum_{\nu=0}^{n-1} \Delta_{\nu}(\hat{b}_{n\nu} \lambda_{\nu}) \frac{X_{\nu}}{a_{\nu\nu}} \right|^{k} \]

\[\leq \sum_{n=1}^{\infty} n^{k-1} \left\{ \sum_{\nu=0}^{n-1} (|a_{\nu\nu}|^{-1} |\Delta_{\nu}(\hat{b}_{n\nu} \lambda_{\nu})| |X_{\nu}|)^{k} \right\} \]

\[= O(1) \sum_{n=1}^{\infty} n^{k-1} \left(\sum_{\nu=0}^{n-1} |b_{\nu\nu} \lambda_{\nu}|^{-k} |\Delta_{\nu}(\hat{b}_{n\nu} \lambda_{\nu})| |X_{\nu}|^{k} \right) \times \]

\[\times \left(\sum_{\nu=0}^{n-1} |\Delta_{\nu}(\hat{b}_{n\nu} \lambda_{\nu})| \right)^{k-1} \]

\[= O(1) \sum_{n=1}^{\infty} (n|b_{nn} \lambda_{n}|)^{k-1} \sum_{\nu=0}^{n-1} |b_{\nu\nu} \lambda_{\nu}|^{-k} |\Delta_{\nu}(\hat{b}_{n\nu} \lambda_{\nu})| |X_{\nu}|^{k} \]

\[= O(1) \sum_{\nu=1}^{\infty} |b_{\nu\nu} \lambda_{\nu}|^{-k} |X_{\nu}|^{k} \sum_{n=\nu+1}^{\infty} (n|b_{nn} \lambda_{n}|)^{k-1} |\Delta_{\nu}(\hat{b}_{n\nu} \lambda_{\nu})| \]

\[= O(1) \sum_{\nu=1}^{\infty} |b_{\nu\nu} \lambda_{\nu}|^{-k} |X_{\nu}|^{k} \sum_{\nu=1}^{\infty} \nu^{k-1} |b_{\nu\nu} \lambda_{\nu}|^{k} \]

\[= O(1) \sum_{\nu=1}^{\infty} \nu^{k-1} |X_{\nu}|^{k} = O(1). \]
Using (ii), (v), (vi), (vii) and Hölder’s inequality,
\[
\sum_{n=1}^{\infty} n^{k-1} |T_{n\lambda}|^k = \sum_{n=1}^{\infty} n^{k-1} \left| \sum_{\nu=0}^{n-1} \hat{b}_{n,\nu+1}\lambda_{\nu+1} \left(\frac{a_{\nu\nu} - a_{\nu+1,\nu}}{a_{\nu\nu}a_{\nu+1,\nu+1}} \right) X_{\nu} \right|^k \\
\leq \sum_{n=1}^{\infty} n^{k-1} \left(\sum_{\nu=0}^{n-1} |\hat{b}_{n,\nu+1}\lambda_{\nu+1}| \left| \frac{a_{\nu\nu} - a_{\nu+1,\nu}}{a_{\nu\nu}a_{\nu+1,\nu+1}} \right| |X_{\nu}| \right)^k \\
= O(1) \sum_{n=1}^{\infty} n^{k-1} \left(\sum_{\nu=0}^{n-1} |\hat{b}_{n,\nu+1}\lambda_{\nu+1}| |X_{\nu}| \right)^k \\
= O(1) \sum_{n=1}^{\infty} n^{k-1} \left(\sum_{\nu=0}^{n-1} |b_{\nu\nu}| |\hat{b}_{n,\nu+1}\lambda_{\nu+1}| |X_{\nu}| \right)^k \\
= O(1) \sum_{n=1}^{\infty} n^{k-1} \left(\sum_{\nu=0}^{n-1} |b_{\nu\nu}| \right)^{1-k} \left(\sum_{\nu=0}^{n-1} |\hat{b}_{n,\nu+1}\lambda_{\nu+1}| |X_{\nu}| \right)^k \times \\
\times \left(\sum_{\nu=0}^{n-1} |b_{\nu\nu}| \right)^{k-1} \\
= O(1) \sum_{n=1}^{\infty} \left(n |b_{0n}\lambda_{n+1}| \right)^{k-1} \sum_{\nu=0}^{n-1} |b_{\nu\nu}|^{1-k} |\hat{b}_{n,\nu+1}| |X_{\nu}| \lambda_{\nu+1}|^{k-1} \\
= O(1) \sum_{\nu=0}^{\infty} |b_{\nu\nu}|^{1-k} |\lambda_{\nu+1}| |X_{\nu}| \sum_{n=\nu+1}^{\infty} \left(n |b_{0n}\lambda_{n+1}| \right)^{k-1} |\hat{b}_{n,\nu+1}| \\
= O(1) \sum_{\nu=0}^{\infty} |b_{\nu\nu}|^{1-k} |\lambda_{\nu+1}| |X_{\nu}| \nu^{k-1} |\hat{b}_{\nu+1}\lambda_{\nu+1}|^{k-1} \\
= O(1) \nu^{k-1} |\lambda_{\nu+1}X_{\nu}|^k = O(1).
\]

From (viii),
\[
\sum_{n=1}^{\infty} n^{k-1} |T_{n\lambda}|^k = \sum_{n=1}^{\infty} n^{k-1} \left| \sum_{\nu=0}^{n-2} b_{\nu\nu}\lambda_{\nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i \right|^k = O(1).
\]

\[\Box\]

A weighted mean matrix is a lower triangular matrix with entries \(p_k/P_n\), \(0 \leq k \leq n\), where \(P_n := \sum_{k=0}^{n} p_k\).

Corollary 1. Let \(\lambda_n\) be a sequence of constants, \(\{p_n\}\) a sequence of positive constants, \(B\) a triangle satisfying
(i) \(P_n |bn| = O(p_n/|\lambda_n|) \),

\[
\sum_{n=0}^{n-1} |\Delta_\nu (\lambda_\nu \hat{b}_\nu)| = O(|b_{nn} \lambda_n|),
\]

(ii) \(\sum_{n=\nu+1}^n (n|b_{nn} \lambda_n|)^{k-1} |\Delta_\nu (\lambda_\nu \hat{b}_\nu)| = O(\nu^{k-1} |\lambda_\nu b_{\nu\nu}|^k) \),

(iii) \(\sum_{n=\nu+1}^n |b_{\nu\nu} \hat{b}_{n,\nu+1} \lambda_{\nu+1}| = O(|b_{nn} \lambda_n|) \),

(iv) \(\sum_{n=\nu+1}^\infty (n|b_{nn} \lambda_n+1|)^{k-1} |\hat{b}_{n,\nu+1}| = O((\nu|b_{\nu\nu} \lambda_{\nu+1}|)^{k-1}) \),

(v) \(\sum_{\nu=1}^\infty \nu^{k-1} |\lambda_{\nu+1} X_\nu| = O(1) \).

Then \(\lambda \in (|\mathcal{N}|, p_n|k|, |B|, k) \).

Proof. Conditions (i), (iii) - (vii) of Theorem 1 reduce to conditions (i) - (vi), respectively of Corollary 1.

With \(A = (\mathcal{N}, p_n) \),

\[
a_{nn} - a_{n+1,n} = \frac{p_n}{P_n} - \frac{p_n}{P_{n+1}} = \frac{p_{nn+1}}{P_nP_{n+1}} = a_{nn+1,n+1},
\]

and condition (ii) of Theorem 1 is automatically satisfied.

A matrix \(A \) is said to be factorable if \(a_{nk} = b_n c_k \) for each \(n \) and \(k \).

Since \(A \) is a weighted mean matrix, \(A \) is a factorable triangle and, as has been shown in [4], its inverse is bidiagonal. Therefore condition (viii) of Theorem 1 is trivially satisfied. \(\square \)

Corollary 2. Let \(\lambda_n \) be a sequence of constants, \(\{p_n\} \) a sequence of positive constants, \(A \) a triangle satisfying

(i) \(p_n/(P_n|a_{nn}|) = O(1/|\lambda_n|) \),

(ii) \(|a_{nn} - a_{n+1,n}| = O(|a_{nn} a_{n+1,n+1}|) \),

(iii) \(\sum_{\nu=0}^{n-1} |\Delta_\nu (\lambda_\nu P_{\nu-1})| = O(P_{n-1}|\lambda_n|) \),

(iv) \(|\Delta_\nu (P_{\nu-1} \lambda_\nu)| \sum_{n=\nu+1}^\infty \left(\frac{n p_n |\lambda_n|}{P_n} \right)^{k-1} = O(\nu^{k-1} \left(\frac{P_{\nu} |\lambda_\nu|}{P_{\nu}} \right)^k) \).
(v) \[\sum_{\nu=0}^{n-1} p_\nu |\lambda_{\nu+1}| = O(P_{n-1} \lambda_{n+1}), \]
(vi) \[\sum_{\nu=1}^{\infty} n^{k-1} \left(\frac{np_\nu \lambda_{\nu+1}}{P_n} \right)^{k-1} \frac{p_\nu}{P_n P_{n-1}} = O \left(\frac{(\nu p_\nu |\lambda_{\nu+1}|)^{k-1}}{P_n^{k-1}} \right), \]
(vii) \[\sum_{\nu=1}^{\infty} n^{k-1} |\lambda_{\nu+1} X_{\nu}|^k = O(1), \]
(viii) \[\sum_{\nu=1}^{\infty} n^{k-1} \left(\frac{p_\nu}{P_n P_{n-1}} \right)^k \left| \sum_{\nu=2}^{n} \lambda_\nu P_{\nu-1} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i} X_i \right|^k = O(1). \]

Then \(\lambda \in (|A|, |\mathcal{N}, P_n|, k) \).

Proof. With \(B = (\mathcal{N}, P_n) \), conditions (i) - (viii) of Theorem 1 reduce to conditions (i) - (viii), respectively of Corollary 2, since

\[\hat{b}_{\nu \nu} = \frac{p_\nu P_{\nu-1}}{P_n P_{n-1}}. \]

\[\square \]

Corollary 3. Let \(q_n = 1 \) for each \(n \), \(\{p_n\} \) a positive sequence satisfying conditions (iii)-(vi) of Corollary 2,

(i) \[\frac{np_n |\lambda_n|}{P_n} = O(1), \]
(ii) \[\sum_{\nu=1}^{\infty} n^{k-1} |\lambda_\nu X_{\nu}|^k = O(1). \]

Then \(\lambda \in (|C, 1|, |\mathcal{N}, P_n|, k) \).

Proof. With \(A = (C, 1) \), condition (i) of Corollary 2 becomes condition (i) of Corollary 3.

Note that

\[a_{nn} - a_{n+1,n} = \frac{p_n}{P_n} - \frac{p_n}{P_{n+1}} = \frac{p_n P_{n+1}}{P_n P_{n+1}} = a_{nn} a_{n+1,n+1}, \]

and condition (ii) of Corollary 2 is automatically satisfied.

Since the inverse of \((C, 1)\) is bidiagonal, condition (vii) of Corollary 2 is automatically satisfied. \[\square \]

Corollary 4. Let \(\{p_n\} \) be a positive sequence, \(q_n = 1 \) for each \(n \), satisfying
(i) \(\frac{P_n|\lambda_n|}{np_n} = O(1) \),

(ii) \(\sum_{\nu=0}^{n-1} |\Delta_{\nu}(\nu\lambda_{\nu})| = O(n|\lambda_n|) \),

(iii) \(|\Delta_{\nu}(\nu\lambda_{\nu})| \sum_{n=\nu+1}^{\infty} \frac{|\lambda_n|^{k-1}}{n(n+1)} = O\left(\frac{|\lambda_{\nu}|^k}{\nu} \right) \),

(iv) \(\sum_{\nu=0}^{n-1} |\lambda_{\nu+1}| = O(n|\lambda_{n+1}|) \),

(v) \(\sum_{\nu=0}^{n} \frac{|\lambda_{n+1}|^k}{n(n+1)^k} = O\left(\left(\frac{|\lambda_{\nu+1}|}{\nu} \right)^{k-1} \right) \),

(vi) \(\sum_{\nu=1}^{\infty} \nu^{k-1}|\lambda_{\nu+1}X_{\nu}|^k = O(1) \).

Then \(\lambda \in \overline{\{N, p_n|k, |C, 1|}\} \).

With \(B = (C, 1) \), the conditions of Corollary 1 reduce to those of Corollary 4.

We now turn our attention to obtaining necessary conditions.

Theorem 2. Let \(A \) and \(B \) be two lower triangular matrices with \(A \) satisfying

\[
\sum_{n=\nu+1}^{\infty} n^{k-1}|\Delta_{\nu}\hat{a}_{n\nu}|^k = O(|a_{\nu\nu}|^k).
\]

Then necessary conditions for \(\lambda \in (A|k, |B|) \) are

(i) \(|b_{\nu\nu}\lambda_{\nu}| = O(|a_{\nu\nu}|) \),

(ii) \(\left(\sum_{n=\nu+1}^{\infty} n^{k-1}|\Delta_{\nu}\hat{b}_{n\nu}\lambda_{\nu}|^{k} \right)^{1/k} = O(|a_{\nu\nu}|^{1-1/k}) \),

(iii) \(\sum_{n=\nu+1}^{\infty} n^{k-1}|\hat{b}_{n,\nu+1}\lambda_{\nu+1}|^k = O\left(\sum_{n=\nu+1}^{\infty} n^{k-1}|\hat{a}_{n,\nu+1}|^k \right) \).

Proof. For \(k \geq 1 \) define

\[
A^* = \left\{ \{a_i\} : \sum a_i \text{ is summable} |A|_k \right\},
\]

\[
B^* = \left\{ \{b_i\} : \sum b_i\lambda_i \text{ is summable} |B|_k \right\}.
\]
With \(Y_n \) and \(X_n \) as defined by (3) and (4), the spaces \(A^* \) and \(B^* \) are BK-spaces, with norms given by
\[
\|a\|_1 = \left\{ |X_0|^k + \sum_{n=1}^{\infty} n^{k-1}|X_n|^k \right\}^{1/k}, \tag{9}
\]
and
\[
\|a\|_2 = \left\{ |Y_0|^k + \sum_{n=1}^{\infty} n^{k-1}|Y_n|^k \right\}^{1/k}, \tag{10}
\]
respectively.

From the hypothesis of the theorem, \(\|a\|_1 < \infty \) implies that \(\|a\|_2 < \infty \).

The inclusion map \(i : A^* \to B^* \) defined by \(i(x) = x \) is continuous, since \(A^* \) and \(B^* \) are BK-spaces. Applying the closed graph theorem, there exists a constant \(K > 0 \) such that
\[
\|a\|_2 \leq K \|a\|_1. \tag{11}
\]

Let \(e_n \) denote the \(n \)-th coordinate vector. From (3) and (4), with \(\{a_n\} \) defined by \(a_n = e_n - e_{n+1}, n = \nu \), \(a_n = 0 \) otherwise, we have

\[
X_n = \begin{cases}
0, & n < \nu, \\
\hat{a}_{\nu\nu}, & n = \nu, \\
\Delta_\nu \hat{a}_{\nu\nu}, & n > \nu,
\end{cases}
\]
and

\[
Y_n = \begin{cases}
0, & n < \nu, \\
\hat{b}_{\nu\nu}, & n = \nu, \\
\Delta_\nu \hat{b}_{\nu\nu}, & n > \nu.
\end{cases}
\]

From (9) and (10),
\[
\|a\|_1 = \nu^{k-1}|a_{\nu\nu}|^k + \sum_{n=\nu+1}^{\infty} n^{k-1}|\Delta_\nu \hat{a}_{\nu\nu}|^k \right\}^{1/k},
\]
and
\[
\|a\|_2 = \nu^{k-1}|b_{\nu\nu}|^k + \sum_{n=\nu+1}^{\infty} n^{k-1}|\Delta_\nu \hat{b}_{\nu\nu}|^k \right\}^{1/k},
\]
recalling that \(\hat{b}_{\nu\nu} = \tilde{b}_{\nu\nu} = \overline{b}_{\nu\nu} \).

From (11), using (8), we obtain
\[
\nu^{k-1}|\nu_{\nu\nu}|^k + \sum_{n=\nu+1}^{\infty} n^{k-1}|\Delta_\nu \overline{b}_{\nu\nu}|^k.
\]
\[\leq K^k (\nu^{k-1} |a_{\nu\nu}|^k + \sum_{n=\nu+1}^{\infty} n^{k-1} |\Delta_\nu \hat{a}_{\nu\nu}|^k) \]
\[\leq K^k (\nu^{k-1} |a_{\nu\nu}|^k + O(1) |a_{\nu\nu}|^k) \]
\[= O(|a_{\nu\nu}|^k (\nu^{k-1} + 1)) \]
\[= O(\nu^{k-1} |a_{\nu\nu}|^k). \]

The above inequality will be true if and only if each term on the left hand side is \(O(\nu^{k-1} |a_{\nu\nu}|^k) \). Using the first term,
\[\nu^{k-1} |b_{\nu\nu} \lambda_{\nu}|^k = O(\nu^{k-1} |a_{\nu\nu}|^k), \]
which implies that \(|b_{\nu\nu} \lambda_{\nu}| = O(|a_{\nu\nu}|) \), and (i) is necessary.

Using the second term we obtain
\[\left(\sum_{n=\nu+1}^{\infty} n^{k-1} |\Delta_\nu (\hat{b}_{\nu\nu} \lambda_{\nu})|^k \right)^{1/k} = O(\nu^{1-1/k} |a_{\nu\nu}|), \]
which is condition (ii).

If we now define \(a_n = e_{n+1} \) for \(n = \nu \), \(a_n = 0 \) otherwise, then, from (3) and (4) we obtain
\[X_n = \begin{cases} 0, & n \leq \nu, \\ \hat{a}_{n,\nu+1}, & n > \nu, \end{cases} \]
and
\[Y_n = \begin{cases} 0, & n \leq \nu, \\ \hat{b}_{n,\nu+1} \lambda_{\nu+1}, & n > \nu. \end{cases} \]

The corresponding norms are
\[\|a\|_1 = \left\{ \sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{a}_{n,\nu+1}|^k \right\}^{1/k}, \]
and
\[\|a\|_2 = \left\{ \sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{b}_{n,\nu+1} \lambda_{\nu+1}|^k \right\}^{1/k}. \]

Applying (11),
\[\left\{ \sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{b}_{n,\nu+1} \lambda_{\nu+1}|^k \right\}^{1/k} \leq K \left\{ \sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{a}_{n,\nu+1}|^k \right\}^{1/k}, \]
which implies condition (iii). \(\square \)
Corollary 5. Let B be a lower triangular matrix, $\{p_n\}$ a sequence satisfying
\[\sum_{n=\nu+1}^{\infty} n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k = O \left(\frac{1}{P_k} \right). \tag{12}\]

Then necessary conditions for $\lambda \in (|N|, p_n|, |B|_k)$ are
\[(i) \quad |b_{\nu\nu}\lambda_\nu| = O \left(\frac{P_\nu}{P_\nu} \right),\]
\[(ii) \quad \left(\sum_{n=\nu+1}^{\infty} n^{k-1} |\Delta_\nu (b_{n\nu}\lambda_\nu)|^k \right)^{1/k} = O \left(\frac{P_\nu}{P_\nu} \right),\]
\[(iii) \quad \sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{b}_{n,\nu+1}\lambda_{\nu+1}|^k = O(1).\]

Proof. With $A = (N, p_n)$, equation (8) becomes (12), and conditions (i)-(iii) of Theorem 2 become conditions (i)-(iii) of Corollary 10, respectively. \qed

Corollary 6. Let $1 \leq k < \infty$, $\{p_n\}$ a positive sequence. Then $\lambda \in (|N|, p_n|, |B|_k)$ if and only if
\[(i) \quad |b_{\nu\nu}\lambda_\nu| = O \left(\frac{P_\nu}{P_\nu} \right),\]
\[(ii) \quad \left(\sum_{n=\nu+1}^{\infty} n^{k-1} |\Delta_\nu (b_{n\nu}\lambda_\nu)|^k \right)^{1/k} = O \left(\frac{P_\nu}{P_\nu} \right),\]
\[(iii) \quad \sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{b}_{n,\nu+1}\lambda_{\nu+1}|^k = O(1).\]

Every summability factor theorem becomes an inclusion theorem by setting each $\lambda_n = 1$.

Corollary 7. Let A and B be triangles satisfying
\[
(i) \quad \frac{|a_{nn}|}{|b_{nn}|} = O(1),
(ii) \quad \frac{b_{n+1,n} - b_{nn}}{b_{nn} b_{n+1,n+1}} = O(1),
(iii) \quad \sum_{\nu=0}^{n-1} |\Delta_\nu \hat{a}_{n\nu}| = O(|a_{nn}|),
(iv) \quad \sum_{n=\nu+1}^{\infty} (n|a_{nn}|)^{k-1} |\Delta_\nu \hat{a}_{n\nu}| = O\left(\nu^{k-1} |a_{\nu\nu}|^k \right),
\]
\((v)\) \(\sum_{\nu=0}^{n} |a_{\nu\nu}| \tilde{a}_{n,\nu+1} = O(|a_{nn}|),\)
\[(vi)\] \(\sum_{n=\nu+1}^{\infty} (n|a_{nn}|)^{k-1} |\tilde{a}_{n,\nu+1}| = O((\nu|a_{\nu\nu}|)^{k-1}),\)
\[(vii)\] \(\sum_{n=1}^{\infty} n^{k-1} \left| \sum_{\nu=2}^{n-2} \sum_{r=1}^{\nu \nu} \tilde{b}_{\nu r} X_r \right|^k = O(1).\)

Then \(\sum a_n\) summable \(|B|k\) implies that it is summable \(|A|k, k \geq 1.\)

Corollary 7 is Theorem 1 of [3].

Corollary 8. Let \(\{p_n\}\) be a positive sequence, \(T\) a nonnegative triangle satisfying

\[(i)\] \(t_{ni} \geq t_{n+1,i}, \quad n \geq i, i = 0, 1, \ldots,\)
\[(ii)\] \(P_n t_{nn} = O(p_n),\)
\[(iii)\] \(\tilde{t}_{n0} = \tilde{t}_{n-1,0}, \quad n = 1, 2, \ldots,\)
\[(iv)\] \(\sum_{\nu=1}^{n-1} t_{\nu\nu} |\tilde{t}_{n,\nu}| = O(t_{nn}),\)
\[(v)\] \(\sum_{n=\nu+1}^{\infty} (mt_{nn})^{k-1} |\Delta_\nu \tilde{t}_{n\nu}| = O(\nu^{k-1} t_{\nu\nu}^k),\)
\[(vi)\] \(\sum_{n=\nu+1}^{\infty} (mt_{nn})^{k-1} |\tilde{t}_{n,\nu}| = O((\nu t_{\nu\nu})^{k-1}).\)

Then \(\sum a_n\) summable \(|\mathcal{N}, p_n|k\) implies \(\sum a_n\) is summable \(|T|k, k \geq 1.\)

Proof. Since each \(\lambda_n = 1,\) condition (vi) of Corollary 1 simply states that \(\sum a_n\) is summable \(|\mathcal{N}, p_n|k.\)

Condition (i) of Corollary 1 reduces to condition (ii) of Corollary 6.

Note that
\[
\Delta_\nu \tilde{t}_{n\nu} = \tilde{t}_{n\nu} - \tilde{t}_{n,\nu+1} = \tilde{t}_{n\nu} - \tilde{t}_{n-1,\nu} - \tilde{t}_{n,\nu+1} + \tilde{t}_{n-1,\nu+1} \\
= \sum_{i=\nu}^{n} t_{ni} - \sum_{i=\nu+1}^{n-1} t_{n-1,i} - \sum_{i=\nu}^{n} t_{ni} + \sum_{i=\nu+1}^{n-1} t_{n-1,i} \\
= t_{n\nu} - t_{n-1,\nu} \geq 0.
\]
Therefore, from (i) and (iii) of Corollary 6,
\[\sum_{\nu=0}^{n-1} |\Delta_{\nu} \hat{t}_{n\nu}| = \sum_{\nu=0}^{n-1} |t_{n\nu} - t_{n-1,\nu}| = \sum_{\nu=0}^{n-1} t_{n-1,\nu} - \sum_{\nu=0}^{n-1} t_{n\nu} = \hat{t}_{n-1,0} - \hat{t}_{n0} + t_{nn} = t_{nn}, \]
and condition (ii) of Corollary 1 is satisfied.

Condition (iii) of Corollary 1 reduces to condition (v) of Corollary 6.

Using condition (ii) of Corollary 1, condition (iv) of Corollary 6, and the fact that condition (iii) of Corollary 6 implies that \(\hat{t}_{n0} = 0 \),
\[\sum_{\nu=0}^{n-1} t_{\nu\nu} \hat{t}_{n,\nu+1} = \sum_{\nu=0}^{n-1} t_{\nu\nu} (\hat{t}_{n,\nu+1} - \hat{t}_{n\nu}) + \sum_{\nu=0}^{n-1} t_{\nu\nu} \hat{t}_{n\nu} = O(t_{nn}), \]
and condition (iv) of Corollary 1 is satisfied.

Using condition (iv) of Corollary 1 and condition (v) of Corollary 6,
\[\sum_{n=\nu+1}^{\infty} (nt_{nn})^{k-1} \hat{t}_{n,\nu+1} = \sum_{n=\nu+1}^{\infty} (nt_{nn})^{k-1} |\Delta_{\nu} \hat{t}_{n\nu}| + \sum_{n=\nu+1}^{\infty} (nt_{nn})^{k-1} \hat{t}_{n\nu} = O((\nu t_{nn})^{k-1}), \]
and condition (v) of Corollary 1 is satisfied.

\[\square \]

Remark 1. Corollary 6 is equivalent to the corrected version of the Theorem in [1], which appears in [2].

Corollary 9. Let \(A \) and \(B \) be two lower triangular matrices, \(A \) satisfying (8). Necessary conditions for \(\sum a_n \) summable \(|A|_k \) to imply that \(\sum a_n \) is summable \(|B|_k \) are

(i) \(|b_{\nu\nu}| = O(|a_{\nu\nu}|) \),

(ii) \(\sum_{n=\nu+1}^{\infty} n^{k-1} |\Delta_{\nu} \hat{b}_{n\nu}|^k = O(|a_{\nu\nu}|^{k2^{k-1}}) \),

(iii) \(\sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{b}_{n,\nu+1}|^k = O\left(\sum_{n=\nu+1}^{\infty} n^{k-1} |\hat{a}_{n,\nu+1}|^k \right) \).

To prove the corollary simply put \(\lambda_n = 1 \) in Theorem 2.

Corollary 10. Let \(B \) be a lower triangular matrix, \(A \) a weighted mean matrix with \(\{p_n\} \) a sequence satisfying (8). Then necessary conditions for \(\sum a_n \) summable \(|N, p_n|_k \) to imply that \(\sum a_n \) is summable \(|B|_k \) are
(i) \[\frac{P_\nu|b_{\nu\nu}|}{P_\nu} = O(1), \]

(ii) \[\sum_{n=\nu+1}^\infty n^{k-1}|\Delta_\nu \hat{b}_{n\nu}|^k = O\left(\nu^{k-1}\left(\frac{P_\nu}{P_\nu}\right)^k\right), \]

(iii) \[\sum_{n=\nu+1}^\infty n^{k-1}|\Delta_\nu \hat{b}_{n,\nu+1}|^k = O(1). \]

To prove the corollary set \(\lambda_n = 1 \) in Corollary 5.

REFERENCES

(Received: October 18, 2004)